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Abstract: The 3D reconstruction of a scene from multiple images is a fundamental problem in the field of computer vision.Existing methods 
can be classified into two strategies: bottom-up or top-down.This paper presents a full system for complete 3D shape reconstruction following 
the top-down strategy. A rotary table is employed to change a camera’s viewing direction to an object on the table. This offers a cost-effective 
solution to the multi-view stereo acquisition problem without the need for using several cameras. From the acquiredcalibrated images of the 
object, a variational approach is developed for 3D shape reconstruction of the object. The approach works directly in 3D Euclidean space based 
on a level set formulation. A correlation criterion between the 2D images is optimized by driving the evolution of the surface using the 
corresponding Euler-Lagrange equation. Several successful experiments to evaluate the proposed system are reported.

  Keywords: Level set methods ,Multiview stereo and 3D reconstruction .

I. INTRODUCTION

The 3D reconstruction of a scene from multiple images is a 
fundamental problem in the field of computer vision. There 
are many real world applications of 3D models, such as 
computer graphics, robot navigation, TV/film special effects, 
computer games, virtual reality inspection, navigation, and 
object identification. Recently it has become a very important 
and fundamental step in particular for cultural heritage digital 
archiving. The motivations are different: documentation in 
case of loss or damage, virtual tourism and museum, education 
resources, interaction without risk of damage, and so forth.

Given a set of images of a scene captured from multiple 
calibrated cameras, the goal is to recover the unknown 3D 
structure using these images and the knowledge of the camera 
geometry. This problem is known as multi-view stereo in 
computer vision and is of great importance as it provides a 
way to infer the geometric and photometric properties of a 
scene without interfering with it. Additional advantages of 
using multi-view stereo to infer these scene properties include 
that the setup is fairly simple, the cost is relatively low and the 
process can be easily automated.

In most applications in the field of vision-based 3D 
reconstruction[1][4], two strategies can be applied:

• Bottom-up or data driven strategies [4][5]: These 
algorithms are based on image matching, using either 
intensity-based (direct) methods or feature-based 
methods. This class includes all techniques that compute 
correspondences across images and then recover 3D 
structure by triangulation and surface fitting. Establishing 
correspondence in this traditional way is a hard problem 
that often leads to many outliers [1]. Some disadvantages 
of this approach are that, it is computationally intensive 
and algorithmically demanding. Furthermore, views must 

often be close together (i.e., small baseline) so that 
correspondence techniques are effective. 
Correspondences must be maintained over many views 
spanning large changes in viewpoint. The modeling of 
occlusions is complicated and there is not a standardized 
and widely accepted framework for modeling occlusions 
for bottom-up methods [4][5]. There are many methods in 
literature belonging to this strategy. Refer to [1][4][27]for 
a recent review and taxonomy of algorithms.

• Top-down or model driven strategies [21]: In this case, 
the computations are performed in three-dimensional 
scene space in order to construct the volumes or surfaces 
in the world that are consistent with the input images. 
Top-down approaches assume there is a known, bounded 
area in which the objects of interest lie. These strategies 
overcome the disadvantages of the bottom-up approach; 
they have the ability to explicitly model occlusions and 
consider multiple views. Exampleshere include shape 
form silhouettes [12][13], space carving [6][15][26],
reconstruction using variational 
methods[8][17][18][28][29], volumetric graph-cuts [30] 
and continuous global optimization [6].

The existing approaches suffer from one or more of the 
following issues in the problem of multi-view 3D 
reconstruction: shape representation, objective function 
optimization and the initialization requirements. In this paper 
we present a complete approachaddressing these issues 
following the top-down strategy due to its notable advantages 
over the bottom-up strategies. Many existing 
systems[6][15][26][30] represent a shape as a set of voxels or 
polygon meshes, which may fail with complex shapes. In 
contrast, our proposed approach uses a level set representation
that provides several advantages over traditional object 
representations, such as its capability to model complex 
surfaces and to cope with varying object topologies [3]. In 
terms of optimization, several existing approaches iteratively 

International Journal of Computing and Digital Systems
           -- An International Journal 

@ 2012 UOB
CSP, University of Bahrain



32   T. El-Melegy, N. Al-Ashwal: A Multi-view 3D Shape Reconstruction… 

update the shape based on local decisions starting from an 
initial volume,such as space carving methods [6][15][26], 
which often causes the propagation of unrecoverable errors 
from one region to another. In contrast, our approach defines a 
global objective function on the whole 3D space, whose 
optimization leads naturally to the evolution to a partial 
differential equation (PDE) of the level set function. This 
evolution is efficiently solved on a discretized 3D grid using 
well-defined numerical methods [20][23]. While many 
algorithms [12][13][8][17][18][28][29] require a good 
initialization to guarantee algorithm convergence, our 
approach  tends to work starting from any initial position, and 
the reconstruction process is not sensitive to the initial level 
set function. 

Our approach is inspired by Faugeras and Keriven[8], who 
were the first to combine image matching and shape 
reconstruction in a variational framework that minimizes an 
energy functional that is written as the integral of a data 
fidelity criterion on the unknown surface. However, the 
numerical implementation is rather complicated and requires 
simplification by dropping some terms. The final result tends 
to be sensitive to where the level set function has started its 
evolution. In contrast, we start with a new, different 
formulation that models the surface to be reconstructed as a 
level set embedded in an energy functional from the 
beginning. An advantage of this formulation is that one can 
easily and in straightforward manner model any available 
information on the object shape into the energy functional. For 
example, this may allow the reconstruction of an object with 
shape variations consistent with a set of training model 
examples [24]. This can prove very useful indeed in several 
nowadays applications of computer vision and graphics that 
focus on building 3D models of a certain category of objects. 
For example, generation of realistic 3D human face models 
and facial animations can indeed exploit the earlier knowledge 
that the object looks like a human face. Another example is 
the 3D modeling of the human jaw from a sequence of intra-
oral images [25], which can make use of prior information on 
the shape of human teeth.

In addition to the distinctive and novel aspects of our 
approach (strong, flexible shape representation and efficient 
global optimization algorithm with no special initialization 
requirement), we build a simple, yet effective 3D 
reconstruction system consisting of a rotary-table and a USB
camera, both controlled via a desktop PC. The system uses the 
rotary table to change the camera’s viewing direction to an 
object on the table. This offers a cost-effective solution to the 
multi-view stereo acquisition problem without the need for 
using several cameras. A checkerboard calibration pattern is 
used to calibrate the camera in the very first view to recover 
the camera projective geometry and its parameters. Then the 
camera parameters are automatically updated for all the other 
views, without the need for re-calibration. The images 
acquired from the different views are used for shape modeling. 
The developed approach is successfully evaluated in several 
experiments using synthetic and real datasets, as well as using 
our own system setup.

The rest of this paper is organized as follows. In Section II
we describe our acquisition setup for capturing images from 
multiple views. A brief description of camera geometry and 
calibration is also given. We explain our approach for 3D 
reconstruction in Section III. The experimental results are 
reported in Section IV. This paper is concluded in Section V.

II. SYSTEM SETUP AND CAMERA CALIBRATION

We have developed a data acquisition setup to capture 
calibrated images from multiple views of objects. The 
hardware setup consists of a rotary table, a USB camera and a 
desktop PC. The rotary table is built from scratch using a 
stepper motor, a driver and an interface circuit to the parallel 
port of the PC. Figure 1 shows the constructed rotary table. The 
system operates as follows: The object to be reconstructed is 
placed on the rotary table. In order to obtain different 
viewpoints of the object, we simply rotate the table by a 
desired angle each time and grab an image. This is repeated for 
a number of times (typically 10-12) to cover the object from all 
views. A complete program with graphical user interface 
(GUI), written in Visual C++, is used to control the speed, 
direction and the step size of the table motion and to acquire 
the images from the USB camera. By construction, the step 
size of the table rotation can be as low as 0.1.

Most 3D reconstruction techniques require the calibration 
of the camera, especially if quantitative measurements are 
sought. Camera calibration allows us to derive the projection 
equations linking points in our 3D world to their projections 
on the image and solve for the camera intrinsic and extrinsic 
parameters. According the most common camera model in 
computer vision, the pinhole camera model [9], a world 3D 
point ෩܆ = (ܺ, ܻ, ܼ, 1)் and an image point ܠ෤ =  are (the over-symbol ~ denotes homogeneous vectors)்(ݓ			,ݒ,ݑ)
related via ෤ܠ = ,෩܆۾ (1)
where P is a 3 × 4 homogeneous camera projection matrix 
which can be decomposed into[9]:۾ = ,[ܜ|܀]۹ (2)

where ۹ is the camera calibration matrix containing the 
intrinsic parameters of the camera (e.g., focal length and 
principal point), ܀ is an orthonormal rotation matrix and ܜis a 
3D translation vector. Both ܀ and ܜ represent the camera 
extrinsic parameters which define the camera orientation and 
position with respect to the world coordinates.  The above 
formulation relies on the assumption that the map from the 
world to the image is linear projective. That is, there exists no 
significant lens distortion or it has been corrected [22]. 

The procedure of calculating the camera matrix P is called 
camera calibration[9]. Many methods are available in 
literature [9]for the determination of the camera matrix. We 
use for this sake in our system Robert’s technique [10], which 
has the advantage of high accuracy without the need of 
accurate feature extraction. This is done with the help of a 
checkerboard pattern, see Figure 2. The world coordinate 
system is chosen along the sides of the calibration pattern. At 
the initial viewpoint (first position of the table), the camera is 
initially calibrated by putting the calibration pattern on the 
table such that the world’s Y-axis coincidences with the 
rotation axis of the table (A correction procedure is carried out 
here to compensate for any possible misalignment [2]). This 
way the initial projection matrix ۾଴ at this initial viewpoint is 
calibrated.

At each subsequent rotation angle, we need to compute a 
new projection matrix for the new viewpoint. Recalibrating 
the camera using the calibration pattern is not needed. By 
rotating the object on the table by a specific angle  , the 
camera intrinsic parameters are expected not to change, but we 
simply need to update the extrinsic parameters of the camera 
to reflect the new camera orientation.
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Figure 1. The rotary table is used in our work to change the camera’s viewing 
direction to an object.

Figure 2. A checkerboard pattern is placed on the rotary table to calibrate the 
camera. The world’s Y-axis coincidences with the table rotation axis.

The camera projection matrix at any view i is calculated as۾௜ = ,(௜ߠ)܀଴۾ (3)

where ܀(ߠ௜) is a 4 4 rotation matrix around the Y-axis by 
the angle i .

A simple experiment was carried out to assess the accuracy 
of camera calibration across multiple-views. Several images of 
the pattern from various views are used to reconstruct the 
corners of the pattern squares in the 3D world coordinates. 
These 3D points are then compared to the known ground-truth 
positions of the calibration pattern squares. The root-mean-
square error is found to be about0.1 ± 0.04	݉݉across the 
various views, which indicates very high calibration accuracy.

III. PROPOSED APPROACH

In this paper we consider the problem of recovering the 3D
shape of a given object from a set of 2D images taken from n
multiple calibrated viewpoints. We assume that the object is 
made of Lambertian materials and there is texture in the 
albedo. The approach proposed in this work shares some 
fundamental points with that of [8]. The two approaches find a 
surface that minimizes an energy functional that is written as 
the integral of a data fidelity criterion on the unknown surface. 
This criterion is based on the normalized cross-correlation 
between image pairs. However ours is different in a number of 

aspects. In [8]the normalized cross-correlation between image 
pairs is done by picking a window around a point in one image 
and comparing it with its transformed window (around the 
corresponding point) in another image. This transformation is 
computed through the unknown surface, which is then taken 
locally planar. Here, we will present a better matching 
process. Instead of considering the transformations between 
image patches, we project a point on the surface to each 
visible image and then pick a window around each projected 
point. Then the matching is done by comparing each pair of 
these widows.

The Euler-Lagrange equation that minimizes the functional 
of [8]is driven in terms of the surface, then the evolution is 
implemented via introducing later a level set formulation with 
some simplification by dropping some terms. In this work, the 
energy functional is embedded in a level-set framework from 
the beginning. An advantage of this formulation is that one 
can easily and in straightforward manner model any available 
information on the object shape into the energy functional. 
The minimization of the energy functional is done on the 
whole 3D space, leading naturally to the evolution to a partial 
differential equation (PDE) of the level set function. All the 
terms in the PDE are used to implement the evolution without 
dropping any of them. Consequently, our approach offers a 
number advantages over that of [8] and similar works, e.g. 
[17][18][29], which tend to be sensitive to the initial position 
of the surface. In the contrary, our approach tends to work 
starting from any initial position, and the final result is not 
sensitive to where the level-set function has started its 
evolution. 

In this section, we give the full details of the proposed 
approach. We start with brief review of some fundamental and 
preliminary concepts on level sets. Then we formulate our 
approach in a level-set framework, addressing the object 
visibility and evolution issues.

A. Preliminary Concepts

Level set methods were devised by Osher and Sethian[3]to 
implicitlymodel evolving interfaces in two or three 
dimensions. Level set methods have several advantages 
compared to the explicitactive contours (snakes) introduced by 
Kass et al. [11]and other deformable methods that use the 
parametric representation of curves and surfaces:

• One can perform numerical computations involving 
curves and surfaces on a fixed Cartesian grid without 
having to parameterize these objects. 

• It is conceptually straightforward to move from two to 
three and even higher dimensions (although 
computational cost is exponential in dimension).

• Moving interfaces automatically handle the topological 
changes, which happen often and are desired in 
evolutions; they can easily merge or separate.

• Geometric quantities are easy to calculate: surface 
normal, curvature, direction and distance to the nearest 
point on the surface. Surface motion can depend on them.

Therefore, level set methods have received attention in 
many fields, including image processing, computer graphics, 
computer vision, fluid mechanics, and computational 
geometry. By now, level set methods have become standard 
tools for implementing evolution PDEs. 

In an implicit formulation the interface inΩ ⊂ ܴ௡ is a non 
empty subset defined by [3] Γ = ܠ} ∈ Ω;߶(ܠ) = 0},			(4)
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where the function, ߶(ݔ) , ߶:ܴ௡ → ܴ, has the following 
properties 

ቐ߶(ܠ) > ܠݎ݋݂						0 ∈ inside(Γ),߶(ܠ) < ܠݎ݋݂						0 ∈ outside(Γ),߶(ܠ) = ܠ	ݎ݋݂						0 ∈ Γ.
�(5)

In three spatial dimensions the gradient of the implicit 

function ߶(ܠ) , is given by ∇߶ = ቀபథப௫ , பథப௬ , பథப௭ቁ .		∇߶ is 

perpendicular to the isocontours of ߶ pointing in the direction 

of increasing ߶. Thus, the unit normal is ࢔ = ∇థ
|∇థ|, for points 

on the interface. The mean curvature of the interface is defined 

as the divergence of the normal,  ߢ = ࢔.∇ = div ቀ ∇థ
|∇థ|ቁ, so that 

ߢ > 0 for convex regions, ߢ < 0 for concave regions and ߢ = 0 for a plane.
Often, the interior of the interface (surface) can be 

presented as൛ܠ ∈ Ω:ܪ൫߶(ܠ)൯ = 1ൟ,where ܪ(. )is the standard 
Heaviside function. Using this notation, the integration of 
some function ݂ over the interior can be given by ∫ 	ஐ  The directional derivative of the Heaviside .ܠ݀	((ܠ)߶)ܪ݂
function ܪ(. ) in the normal direction ࢔ is given 
by∇ܪ൫߶(ܠ)൯.࢔ = .)ߜ where ,|߶∇|(߶)ߜ ) is the standard Dirac 
function on the real line((ݑ)ߜ = ܪ߲ ⁄ݑ߲ ).As such, the integral 
of the function ݂over only the boundary Γ can be presented 
by∫ 	ஐ .ܠ݀|(ܠ)߶∇|((ܠ)߶)ߜ݂

B. Multi-view Stereo Level-set Formulation

The object to be reconstructed is to be represented by a 
level set function  . We seek the zero level set of  that 
minimizes the energy functional

(߶)ܧ = න 	ஐ઴(܆)ߜ(߶)|∇߶|ܻܼ݀ܺ݀݀ +
ߤ ∫ 	ஐ ,ܼܻ݀݀ܺ݀|߶∇|(߶)ߜ (6)

where ઴(܆) is some matching score for all points ܆ =(ܺ, ܻ, ܼ) ∈ Ω ⊂ ܴଷ,which should be minimized on onlythe 
object surface (boundary). The integral (6)is however done on 
the whole 3D space Ω by introducing the term ߜ(߶)|∇߶| in 
the integral. The second term is a smoothness term weighted 
in the functional by the regularizing parameter ߤ that to be 
chosen a priori. One advantage of this formulation is that one 
can easily model any available information on the object shape 
into the energy functional (6); for example we can add a priori 
information to force the level set function to reconstruct a 
predefined object. 

The function ઴(܆) is based on the normalized cross-
correlation and taken as ઴(܆) = ∑ 	௡ೡ௜,௝ୀଵ௜ஷ௝

઴௜௝(܆),		 (7)

where vn is the number of visible cameras to the current 

voxel X and the cross-correlation, ઴௜௝(܆) , between two 
visible cameras i and j is given by [18]

઴௜௝(܆) = 1 − ൻூ೔,ூೕൿ
ට⟨ூ೔,ூ೔⟩⋅ൻூೕ,ூೕൿ.																			(8)

As such, similar to [8], the functional (6) works best when 
the object surface is textured. The correlation (8) is computed 
over two fixed windows in the two images ,i jI I . The 

window in the image iI is taken around the pixel coordinates (ݎ௜ , ܿ௜) of the projection of the scene point X onto theimage

iI via the projection matrix ۾௜, 

௜ݎ) , ܿ௜) = (෤௜ܠ)ૈ = ૈ൫۾௜܆෩൯ = ௜ݑ)ૈ , ௜ݒ (௜ݓ, = ቀ௨೔௪೔ , ௩೔௪೔ቁ,				(9)

where the inhomogenizing transformation ૈ (converts form 
homogenous to inhomogeneous coordinates). The quantities in 
(8) are thus given by     

௜ܫ⟩ , ⟨௜ܫ = ∑ 	೓మ
௠ୀି೓మ

∑ 	మೢ௡ୀିమೢ
௜ݎ)௜ܫ) + ݉, ܿ௜ + ݊) − ௜̅)ଶ,(10)ܫ

ൻܫ௝ , ௝ൿܫ = ∑ 	೓మ
௠ୀି೓మ

∑ 	మೢ௡ୀିమೢ
൫ܫ௝(ݎ௝ + ݉, ௝ܿ + ݊) − (11)			௝̅൯ଶ,ܫ

ൻܫ௜, ௝ൿܫ = ෍ 	
೓మ

௠ୀି೓మ
෍ 	
మೢ

௡ୀିమೢ
௜ݎ)௜ܫ) + ݉, ܿ௜ + ݊) − (௜̅ܫ ×

൫ܫ௝(ݎ௝ + ݉, ௝ܿ + ݊) − ௝̅൯,(12)ܫ
where ℎ and ݓ are the height and width of the correlation 
window. We take ℎ=5, and5=ݓ in all our experiments. The 

quantities iI and jI denote the mean values of iI and jI
respectively

௜̅ܫ = ଵ
௛×௪ ∑ 	೓೓

௠ୀି೓మ
∑ 	మೢ௡ୀିమೢ

௜ݎ)௜ܫ + ݉, ܿ௜ + ݊),								(13)

௝̅ܫ = ଵ
௛×௪ ∑ 	೓೓

௠ୀି೓మ
∑ 	మೢ௡ୀ మೢ

௝ݎ௝൫ܫ + ݉, ௝ܿ + ݊൯.										(14)

Summation that appears in (7) is computed only for those 
points of the surface { : ( ) 0}S  X X which are visible in 
the two concerned images. Thus, estimating (ࢄ)ࢶ requires 
computing the hidden parts of the surface for all cameras.

C. Visibility

At each step, in order to compute the summation in (7), we 
need to compute the visibility, ߯ . It is equivalent to the 
problem of determining which part of the surface is visible 
from a given view point (the camera center in our case). This 
is a classical problem in computer graphics. A typical 
approach to this problem is the so-called ray tracing. The idea 
is to start from each point in the domain of interest, shoot a ray 
towards the view point, and check the number of times this ray 
hits the surface. Unfortunately this intuitive algorithm turns 
out to be computationally expensive. However, it is possible to 
exploit the level-set representation of surfaces to efficiently 
solve the problem. We adopt here a level-set implementation 
of the implicit ray tracing technique that is originally reported 
in [19]. This is a one-pass algorithm that finds the line of sight 
for a given configuration of implicit surfaces in an incremental 
way. The algorithm computes another level set function ߰ ,
which tells us the portions of  that are visible from the view 
point.More precisely, ܆} ∈ Ω:߰(܆) ≥ 0}will be the regions 
visible from a view point v , see Figure 3. Therefore, the 
desired visibility function can be written as ߯ =  For.(߰)ܪ
more detail on implicit ray tracing, we redirect readers to [19]. 

D. Evolution Equation

Now we can rewrite (7) to reflect the visibility as:

઴ = ∑ 	௡௜,௝ୀଵ௜ஷ௝
઴௜௝(܆,݆)߯(܆,݅)߯ ,          (15)

where n is the number of all views, ( , )z X is a 

characteristic function which denotes the visibility of the 
voxel X to the camera z

൜߯(ࢄ,ݖ) = 1				if		܆		is		visible		to		camera		z,߯(ࢄ,ݖ) = 0				if		܆		is		not		visible		to		camera		z. �(16)
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The Euler-Lagrange equation for  of the functional 
can be shown (after lengthy computation) equal 

பா
பథ = ઴∇)(߶)ߜ− ⋅ ࢔ + ઴	ߢ + ߢߤ

where ߢ	 is the mean curvature.Employing an artificial 
timeݐ > 0, the evolution equation becomes

பథ
ப௧ = − பா

பథ = ઴∇)(߶)ߜ ⋅ ࢔ + ઴	ߢ
Note here, on the contrary to other approaches 

neither drop any terms nor approximate the other terms; all the 
terms of the resulting evolution equation are used.

In our implementation, we use a regularized form of [20][20](߶)ߜ (߶)ఌߜ = ଵ
గ

ఌ
ఌమାథమ

This regularized form ߜఌ(߶) is used in 
of (߶)ߜ	 . Using this approximation, the algorithm has the 
tendency to compute a global minimizer. One of the reasons is 
that, the Euler-Lagrange equation acts only locally, on a few 
level surfaces around ߔ = 0 using the original Dirac function, 
while by the regularized form, the equation acts on all level 
sets, of course stronger on the zero level set, but not only 
locally. In this way, in practice, we can obtain a global 
minimizer, independently of the position of the initial set. The 
final evolution equation is hence given by

பథ
ப௧ = − பா

பథ = ఌ(߶)(∇઴ߜ ⋅ ࢔ + ઴ߢ +
We now turn to some implementation issues. The 

term∇઴ = ப઴
ப܆   is given by 

∇઴ = ∑ 	௡௜,௝ୀଵ௜ஷ௝
߯(݅, ,݆)߯(܆ ઴∇(܆

Figure 3. Illustration of visibility algorithm in 2D. The view point v is visible 
to all points in the region ( ) 0 X , the gray region, and invisible to the 

region ( ) 0 X , the white region.

The gradient ∇઴௜௝ can be computed directly from 
However we will need to calculate the following derivatives: பூ೔ப܆ and 

பூೕ
ப܆ , which can proceed as follows. Using the chain rule 

we have ப
ப܆ ௜ܫ ቀૈ൫۾௜܆෩൯ቁ = பூ೔(۾೔܆෩)೅பૈ ⋅ பૈப

where பூ೔(۾೔܆෩)೅பૈ = ,௜ܫ∇
and 

பૈ(ܠ෤೔)பܠ෤೔ = ப(௨೔/௪೔,௩೔/௪೔)ப(௨೔,௩೔,௪೔) = ቈ1/ݓ௜				0												0				1/ݓ௜ 				
And two last ingredients needed, 
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of the functional (6)
equal to

(17)															,(ߢߤ

Employing an artificial 

+ .(ߢߤ (18)

Note here, on the contrary to other approaches [8][18] we 
neither drop any terms nor approximate the other terms; all the 

resulting evolution equation are used.

we use a regularized form of 

మ .              (19)

is used in (18) in place 
. Using this approximation, the algorithm has the 

tendency to compute a global minimizer. One of the reasons is 
Lagrange equation acts only locally, on a few 

g the original Dirac function, 
ized form, the equation acts on all level 

sets, of course stronger on the zero level set, but not only 
locally. In this way, in practice, we can obtain a global 
minimizer, independently of the position of the initial set. The 

+ (20)									.(ߢߤ

We now turn to some implementation issues. The 

઴௜௝. (21)

. Illustration of visibility algorithm in 2D. The view point v is visible 
, the gray region, and invisible to the 

d directly from (8). 
calculate the following derivatives: 

Using the chain rule 

෤೔ܠப(෤೔ܠ)ૈ . பܠ෤೔ப܆෩ . ப܆෩ப(22)܆

(23)

− −	௜ଶݓ/௜ݑ ௜ଶ቉.(24)ݓ/௜ݒ

பܠ෤೔ப܆෩ = .௜۾ and

As such, we have all pieces need to compute 

allow us to calculate ∇઴௜௝ then ∇઴.
The numerical implementation of the PDE evolving 

carried out on the discretized Cartesian grid using
implicit scheme [20][23] to satisfy the
Lewy (CFL) condition [23]. By using this scheme we can 
speed up the evolution of the level set function.

Implementation note: The background of the object 
segmented out from the input images beforehand
background pixels in each image can be given a specific color 
(e.g., black). A better scenario though is to mark those 
background pixels with alternating colors in the input images 
(e.g., white in one image and black in another, and so on). 
This will cause those points to have very little correlation 
among the various views (thus contributing significantly to the 
error criterion (6)). Consequently, this will 
level set evolution to excludefrom the object 3D 
projected to background pixels in any of the input images. 
This scenario improves further the results of the approach in a 
straightforward manner, without the need for
in the level set evolution, and more importantly
need for taking hard decisions on those points
may lead to unrecoverable reconstruction 

IV. EXPERIMENTAL 

In this section, the proposed approach
using several experiments on different datasets. Firstly the 
approach (implemented in Matlab, but the data acquisition 
program with the GUI implemented in Visual
to a synthetic dataset generated using the AutoCAD
This experiment using the AutoCAD environment helps 
quantify the performance versus ground
varying degrees of artificial noise. 
usefulness of the proposed approach is demonstrated 
its application toreal datasets publically 
internet, as well as real datasets obtained using 
setup which we have constructed.

A. Synthetic Dataset

We apply our approach on a synthetic 
using the AutoCAD 2007 program. We use AutoCAD 
program to simulate the developed system. As described in 
section II, the camera must be calibrated at the initial view. In 
this experiment, we accomplish this using a synthetic 
calibration pattern, see Figure 4. The captured image is then 
used to find ۾૙ as explained in Section
other projection matrices are derived given the rotation angle 
of the object (rotary table). Then the setup is used to get 12 
images of a horse object by rotating the object about the 
axis and taking an image every 30
proposed approach is applied to those images, and some 
rendered views of the reconstructed object are shown in 
6. Apartfrom some voxelization effect due to the numerical 
implementation on a discretized grid, the horse shape is 
accurately modeled. Due to our efficien
noticehow the fine details of the horse’s legs and tail are 
correctly reconstructed. The size of volume in this experiment 
is 160 × 160 × 160 voxels, and it takes about 65 minutes to 

                                                                                           

ப܆෩
ப܆ = ቎

1					0					00					1					00					0					10					0					0
቏. (25)

As such, we have all pieces need to compute 
பூ೔ப܆ and 

பூೕப܆,	which 

The numerical implementation of the PDE evolving (20) is 
carried out on the discretized Cartesian grid using the semi-

satisfy theCourant-Friedrichs-
. By using this scheme we can 

speed up the evolution of the level set function.

he background of the object can be
segmented out from the input images beforehand.So the 
background pixels in each image can be given a specific color 
(e.g., black). A better scenario though is to mark those 
background pixels with alternating colors in the input images 

image and black in another, and so on). 
This will cause those points to have very little correlation 
among the various views (thus contributing significantly to the 

). Consequently, this will softly guide the 
excludefrom the object 3D points being 

in any of the input images. 
This scenario improves further the results of the approach in a 

manner, without the need forany modification 
, and more importantly, without the 

need for taking hard decisions on those points, the case that 
reconstruction errors. 

XPERIMENTAL RESULTS

approach is evaluated extensively 
using several experiments on different datasets. Firstly the 
approach (implemented in Matlab, but the data acquisition 
program with the GUI implemented in Visual C++), is applied 

generated using the AutoCAD program. 
This experiment using the AutoCAD environment helps 
quantify the performance versus ground-truth results under 
varying degrees of artificial noise. Then the practical 
usefulness of the proposed approach is demonstrated through 

publically available from the 
real datasets obtained using the system 

a synthetic dataset generated 
007 program. We use AutoCAD 

program to simulate the developed system. As described in 
, the camera must be calibrated at the initial view. In 

this experiment, we accomplish this using a synthetic 
. The captured image is then 

as explained in Section II, from which all the 
other projection matrices are derived given the rotation angle 
of the object (rotary table). Then the setup is used to get 12 
images of a horse object by rotating the object about the Y30° , see Figure 5. The 
proposed approach is applied to those images, and some 

views of the reconstructed object are shown in Figure 
some voxelization effect due to the numerical 

implementation on a discretized grid, the horse shape is 
Due to our efficient shape representation, 

the fine details of the horse’s legs and tail are 
The size of volume in this experiment 

voxels, and it takes about 65 minutes to 
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complete on a P4 3GHz PC with 2Gbytes RAM. The 
level set is a sphere with radius 0.01.

To simulate non-ideal conditions in real environment
input images are noised by additive Gaussian noise with zero 
mean and standard deviation, σ,	that is varied from 
steps of 10. Then at each value of	σ, our approach is applied 
to the input images. To assess the quality of the reconstructed 
shape, the 3D reconstruction from the noisy images is re
projected onto the different view directions and the silhouettes 
are obtained as illustrated in Figure 7. As an accuracy measure, 
we use the root mean square error ( RMSE ) between those 
obtained silhouettes and the corresponding ground
(noise-free) silhouettes: 

RMSE = ට ଵ
௡಺ு಺ௐ಺ ∑ ௜௣௥௢௝௡಺௜ୀଵܫ) − ௜௚௧ܫ

where In is the number of images, IH is the image height, 

IW is the image width, ܫ௜௣௥௢௝is the projected image to the 

view, and ܫ௜௚௧ is the corresponding ground-truth noise
image for the i-th view. For the sake of comparison, the same 
procedure is repeated using Faugeras and Keriven’s approach
[8]. The plot of  RMSE versus σfor the two approaches 
shown in Figure 8. From this figure, one can notice 
consistently the better and robust performance of the 
proposedmethod over the approach in [8]versus all lev
noise. Up to the high noise level of 50, RMSE
0.18 for our approach, while the other approach sooner 
exceeds this RMSE level. For noise higher than that, the input 
images hardly show the details of the horse, and accordingly 

RMSE starts to increase notably. However, as shown in 
7(d) and (e), even in this case, the silhouettes of the 
reconstructed horse are recovered with rather good accuracy.

Figure 4. Using AutoCAD to simulate our developed setup and acquire the 
image of the calibration pattern.

view 3D Shape Reconstruction… 

complete on a P4 3GHz PC with 2Gbytes RAM. The initial

ideal conditions in real environments, 
input images are noised by additive Gaussian noise with zero 

that is varied from 0 to 70 in 
, our approach is applied 

to the input images. To assess the quality of the reconstructed 
shape, the 3D reconstruction from the noisy images is re-
projected onto the different view directions and the silhouettes 

As an accuracy measure, 
) between those 

obtained silhouettes and the corresponding ground-truth 

௚௧)ଶ, (26)

is the image height, 

is the projected image to the i-th 

truth noise-free 
For the sake of comparison, the same 

Faugeras and Keriven’s approach
for the two approaches is 

. From this figure, one can notice 
and robust performance of the 

versus all levels of 

RMS remains below 
for our approach, while the other approach sooner 

For noise higher than that, the input 
details of the horse, and accordingly 

starts to increase notably. However, as shown in Figure 
(d) and (e), even in this case, the silhouettes of the 

good accuracy.

Using AutoCAD to simulate our developed setup and acquire the 

Figure 5. Using AutoCAD to simulate our developed setup and acquire 
images from multi-views of an object. (Top) Horse. (Bottom) Some views of 
12-frame horse sequence taken using AutoCAD simulated camera.

Figure 6. Some rendered views of the final reconstructed 3D model by the 
proposed approach.

                    (a)(b) (c)

(d) (e)

. Using AutoCAD to simulate our developed setup and acquire 
object. (Top) Horse. (Bottom) Some views of 

frame horse sequence taken using AutoCAD simulated camera.

. Some rendered views of the final reconstructed 3D model by the 

(e)
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Figure 7. The ground-truth (noise-free) silhouette of the first view of the horse 
sequence (a) versus the silhouettes of the projections of the reconstructed 
shape onto the first view at different values of σ: (b) σσ = 60, (e)σ = 70.

Figure 8. RMSE versus the noise standard deviation σ
approach and Faugeras and Keriven’s approach [8] on the horse sequence.

Note also that in our experiment with the approach in 
is taken to initialize it properly as it is sensitive to where the 
evolution has started, which is not the case with our approach. 

B. Real Datasets from the Internet

To evaluate our approach on real objects we apply it 
to reconstruct objects whose datasets are available on the 
internet. Each dataset contains the projection matrices of each 
view. The backgrounds of the downloaded images are 
segmented manually. Figure 9 shows some images of a 12
frame sequence for a rooster dataset obtained
Computer Vision and Image Processing Lab at the University 
of Louisville [33]. To run our approach, the initial zero level 
set function was taken as a sphere, where several locations and 
sizes have been experimented with. Figure 10
some of those initial zero level sets along with the 
reconstructed 3D rooster model. The proposed 
able to obtain very good reconstruction results starting from 
various initial level sets. Notice also how the rooster’s crown 
that has sharp and thin parts is accurately reconstructed. 
can compare the results in Figure 10(a) with the results of 
space carving approach in Figure 10(b), which showed a noisy 
result with missing parts and several floating voxels
results here are smoother and there are no floating voxels in 
the obtained 3D model. Some evolution stages are shown in
Figure 11. In this experiment we used a volume of size 80 × 80 × 80, and ߤ = 100. On a P4 with speed 2.8
with 1GBytes of RAM; it takes about 30 minutes to reach the 
final shape.

Our method is also applied to the Oxford dinosaur 
[31]. Figure 12 shows some of the 36 images used. 
shows the results of applying our method 
different initial level set functions. As shown in this figure our 
approach could reconstruct the object regardless of the 
position and size of the initial level set function. The 
dinosaur’s hands, feet and tail are correctly reconstructed in
very good details. The volume size used in this experiment is 140 × 140 × 140 and ߤ = 100.

Our approach is also applied to a sequence of 
another dinosaur [32]. Figure 14 shows some of 
In Figure 15, we see the result of applying this method, as 

view 3D Shape Reconstruction…                                                                                            

free) silhouette of the first view of the horse 
versus the silhouettes of the projections of the reconstructed = 0,(c) σ=50, (d) 

σ for the proposed 

on the horse sequence.

the approach in [8], care 
is taken to initialize it properly as it is sensitive to where the 

not the case with our approach. 

on real objects we apply it first 
to reconstruct objects whose datasets are available on the 
internet. Each dataset contains the projection matrices of each 
view. The backgrounds of the downloaded images are 

shows some images of a 12-
obtained from the 

Computer Vision and Image Processing Lab at the University 
. To run our approach, the initial zero level 

everal locations and 
10(a) illustrates 

some of those initial zero level sets along with the 
The proposed approach was 

results starting from 
various initial level sets. Notice also how the rooster’s crown 
that has sharp and thin parts is accurately reconstructed. You 

with the results of 
, which showed a noisy 

sult with missing parts and several floating voxels. The 
results here are smoother and there are no floating voxels in 
the obtained 3D model. Some evolution stages are shown in

. In this experiment we used a volume of size 
a P4 with speed 2.8 GHz PC 

30 minutes to reach the 

Our method is also applied to the Oxford dinosaur dataset 
shows some of the 36 images used. Figure 13

shows the results of applying our method starting from 
different initial level set functions. As shown in this figure our 
approach could reconstruct the object regardless of the 
position and size of the initial level set function. The 
dinosaur’s hands, feet and tail are correctly reconstructed in
very good details. The volume size used in this experiment is 

Our approach is also applied to a sequence of 24 image for 
shows some of these images. 

, we see the result of applying this method, as 

before, starting from different initial
figure, the fine details of dinosaur’s fingers and tail are 
accurately modeled. The volume size used in this experiment 
is 100 × 100 × 100, and ߤ = 100. It takes about 1 hour to get 
the final surface in 4 iterations.

Figure 9.  Some views of 12-frame rooster sequence.

Figure 10.(a) Some initial level set functions (spheres shown in green) and the 
final reconstructed 3D model (shown in red) by the proposed 
Two rendered views of the reconstruction by the space carving technique 
using the same input images.

(a)

(b)

                                                                                           

initializations. As shown in 
figure, the fine details of dinosaur’s fingers and tail are 

The volume size used in this experiment 
. It takes about 1 hour to get 

frame rooster sequence.

Some initial level set functions (spheres shown in green) and the 
final reconstructed 3D model (shown in red) by the proposed approach. (b) 
Two rendered views of the reconstruction by the space carving technique [14]
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        Initial surface             After 2 iterations               After 4 iterations

After 6 iterations            After 8 iterations            After 10 iterations

Figure 11. The evolution of the level set function to rec
surfacefor the experiment on the 12-frame rooster sequence.

Figure 12.Some views of 36-frame dinosaur sequence.

Figure 13. Several different initial level sets (spheres shown in 
and the final 3D surface (shown in red) for the dinosaur sequence.

view 3D Shape Reconstruction… 

Initial surface             After 2 iterations               After 4 iterations

After 6 iterations            After 8 iterations            After 10 iterations

. The evolution of the level set function to reconstruct the final 
.

frame dinosaur sequence.

. Several different initial level sets (spheres shown in green) 
and the final 3D surface (shown in red) for the dinosaur sequence.

C. Real Datasets Using Our Setup

To evaluate the proposed approach using the developed setup
we apply it to some other objects. Figure 16 
images of a baby toy. The background in the input images has 
been segmented out manually.Figure 
the reconstructed object. In this experiment we used a volume 
of size 80 × 80 × 80 andߤ = 100. The approach needed f
iterations to reach the final shape taking 
P4 with speed 2.8 GHz with 1GBytes of RAM. Another 
experiment is done on a duck toy whose images are taken by 
this setup, see Figure 18. Figure 19
reconstructed object. In this experiment we used a volume of 
size 80 × 80 × 80 and ߤ = 100. The f
reach the final shape took about 20 minutes

Figure 14.Some views of 24 images of dinosaur #2.

Figure 15. Several initial level set functions (spheres shown in green) 
and some views of the final reconstructed 3D model (shown in red) 
for dinosaur #2.

using the developed setup, 
Figure 16 shows some of 12 

kground in the input images has 
Figure 17 shows some views of 

the reconstructed object. In this experiment we used a volume 
The approach needed four 

taking about 30 minutes on a 
P4 with speed 2.8 GHz with 1GBytes of RAM. Another 
experiment is done on a duck toy whose images are taken by 

showssome views of the 
reconstructed object. In this experiment we used a volume of 

The four iterations needed to 
about 20 minutes.

views of 24 images of dinosaur #2.

. Several initial level set functions (spheres shown in green) 
reconstructed 3D model (shown in red) 
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Figure 16. Some images of a 12-frame sequence of a baby toy taken by our 
setup.

Figure 17. Some views of the final reconstructed baby

Figure 18. Some images of a 12-frame sequence of a duck toy taken by our 
setup.

view 3D Shape Reconstruction…                                                                                            

a baby toy taken by our 

. Some views of the final reconstructed baby toy.

of a duck toy taken by our 

Figure 19. Some views of the final reconstructed duck toy.

V. CONCLUSIONS

We have presented a simple, yet effective 
multi-view 3D shape reconstruction 
table and a USB camera, both controlled via a desktop PC. 
The system offers a cost-effective solution to the multi
stereo acquisition problem without the need for using sever
cameras. A variational approach has been formulated and 
developed to reconstruct the 3D 
acquired sequence of calibrated images. In contrast to existing 
methods, this approach presents 
representation and an efficient global optimization algorithm 
with no special initialization requirement
represented as a level set from the first problem formulation. 
This also allows the easy incorporation of any available shape 
a priori information in the energy funct
the surface evolution. Our extensive experimental results have 
shown the proposed approach can successfully 
shape regardless of the position of the initial surface. 
have also demonstrated that fine details of the
been correctly recovered. 

Our current efforts are directed to 
incorporating prior shape information in our
to reconstruct objects with shape variations consistent with a 
set of training model examples. This can offer a great 
advantage when working with a specific category of objects. 
Some early implementation and results of 
drafted in [24]. Another direction for our current research 
efforts is to address the time performance of the a
developed approach takes a small number of iterations
(typically 4-8) to converge, but a single
rather a long time (about 3-12 minutes 
size) due to the high computational cost for the various 
approach operations (e.g., visibility calculation and level set 
evolution). One possibility to reduce this time is 
our shape reconstruction code from Matlab to a full
programming language (e.g., C++)
possibility is to utilize parallel programming concepts to carry 
out computations concurrently on multi
nowadays on desktop PCs.
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