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Abstract: Multimodal biometrics combines a diversity of biological traits in an attempt to produce a notable influence on identification
performance. In recent years, multimodal biometric recognition using machine learning algorithms has received considerable attention.
This study proposes a novel multi modal biometrics recognition method based on Multi-scale Geometric Curvelet (MGC) and
Minkowski distance factor models. The new method is termed, Geometric Curvelet and Minkowski Multimodal Biometric Recognition
(GC-MMBR), and works as follows. First, an intrinsic representation of multimodal features namely fingerprint, face and iris traits)
using Rationalized AdaBoost is learnt. Second, a MGC Feature Extraction model is applied to the resultant preprocessed features, to
extract intrinsic curve features. Finally, the reconstructed, extracted intrinsic features are used as input to a Minkowski distance-based
biometric recognition approach. When compared with existing methodologies, the proposed multimodal biometric recognition algorithm
is proven to perform well in terms of recognition rate. Specifically, comparative evaluation using the benchmark, CASIA Biometric Ideal
Test Dataset, shows our proposed GC-MMBR achieves 35% overall recognition rate, out-performing existing methods. Comparative
findings further proved the ability of proposed GC-MMBR to considerably reduce computational complexity and false acceptance rate.
Thus, we conclude our proposed method can provide benchmarking performance for conventional biometric recognition methods.

Keywords: : Multimodal biometrics, machine learning algorithms, Multi-scale Geometric Curvelet, Minkowski distance, Rationalized
AdaBoost

1. INTRODUCTION
Biometrics performs human identification from their

personal features. As a quickly developing field, it is
originally thrust forward by a requirement for strong se-
curity and surveillance applications. But, it’s prospective
as a real and uncomplicated means of identification also
surfaced the way for a host of applications that identifies the
user in an automatic manner through customized services.
Several methods are introduced in multimodal biometric for
biometric recognition. However, these methods are lack in
terms of recognition rate, absence of intrinsic curve fea-
tures extraction, higher computation complexity and false
positive. The suggested Geometric Curvelet and Minkowski
Multimodal Biometric Recognition (GC-MMBR) approach
is intended to obtain a greater recognition rate with less
computing complexity in multimodal biometric recognition,
thereby addressing the shortcomings of the current method.

Biometric features are analyzed through a variety of
machine learning techniques. The implementation’s key
component is a convolutional neural network (CNN), which
recognizes images using the Softmax classifier and feature
extraction [1]. This method combined three CNN models:
one for the iris, one for the face, and one for the fingerprint
to construct the system. The two layers of the fusion
strategy—feature level fusion and score level fusion—were
applied. The efficacy of the proposed model is evaluated
using the two most popular multimodal datasets: CASIA
and the BiosecureID biometric dataset.

An attention-based learning technique for determining
the liveness of fingerprint images is proposed [2] as a solu-
tion to the problem of fingerprint liveness detection where
experiments were conducted with two different datasets
and the outcomes demonstrated the beneficial effects of
the attention-based learning strategy. The extracted deep
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features are tested following the application of several
preprocessing steps, such as merging features from various
layers and dimensionality reduction using principal compo-
nent analysis (PCA). The test was carried out with Delhi
Finger Knuckle Print dataset [3].

To prevent overfitting problems, image augmentation
and dropout techniques were applied. The CNN methods
were fused using a variety of fusion techniques, including
feature as well as score level techniques, to examine the
effects of fusion approaches on recognition performance.
To empirically assess the performance of the constructed
system, a number of experiments were carried out on the
CASIA dataset [4].

Algorithms for machine learning are techniques that
assist in selecting appropriate feature representations, which
facilitates decision-making and the fusion of multimodal
data. The deep learning representations for the left and right
iris were used in the creation of IrisConvNet [5]. The goal
of this approach was to combine the outcomes of ranking
level fusion techniques.

IrisConvNet’s architecture was built using a convolu-
tional neural network and the Softmax classifier. Combining
these two methods allowed discriminative characteristics
to be derived without domain expertise. Here, the input
data which means image represented the localized iris
region. With this localized iris region, the overall image
was classified into different classes. Additionally, a discrim-
inative CNN training scheme based on back-propagation
and mini-batch AdaGrad optimization was put forth for the
purposes of updating weights and learning rate adaptation,
respectively. In biometric recognition, the intrinsic curve
properties of the iris were not retrieved, even if overall
accuracy increased and processing time was minimized.
In order to solve this problem, a feature extraction model
capable of obtaining the intrinsic curve features (i.e., Edge
of curve, Region of interest, Pixel dimensionality) of the
face, fingerprint, and iris is described in this study after
pre-processing. Intrinsic curve features are used to extract
relevant features of the image and provides clear recognize
image of iris, fingerprint and face. This is designed using
Multi-scale Geometric features and therefore referred to as
the Multi-scale Geometric Curvelet Feature Extraction.

The Variational Bayesian Extreme Learning Machine
(VBELM) is a multimodal fusion system for face and
fingerprint pictures that was created in [6] with the use of
a block-based feature image matrix. In this case, local fea-
tures—also referred to as local fusion visual features—were
used to extract middle layer semantic features. This offered
the benefit of improved characterization with reduced di-
mensionality for multi-modal biometrics.

Random input weights allowed for the efficient recog-
nition process with a clear speed advantage. Additionally,
by using a non-informative full Gaussian prior, VBELM
demonstrated greater stability and generalization. As a

result, VBELM made it possible for multimodal biometric
recognition to have a high recognition rate and concentrated
fusion feature description. Despite fast learning speed,
recognition rate was said to be compromised with high di-
mension samples. In this work, to address this issue, an un-
supervised learning technique to strengthen the recognition
rate, using the Minkowski distance between the testing and
training samples is investigated. A dimensionality reduction
Multi-scale Geometric Curvelet Feature Extraction model
based on centrifugal and asymmetric windows is proposed
to achieve this purpose.

The remaining sections of the document are arranged
as follows: In Section 2, the rationale for the suggested
approach is given along with a quick overview of a few
similar papers. An overview of the suggested machine
learning methods is given in Section 3. The experimental
results of the suggested method are shown in Section 4
along with a discussion and graph that are covered in
Section 5. Lastly, the last Section 6 reports the conclusions.

2. RELATED WORK
Biometric Recognition using fingerprint has found an

application in the recent years. One of the biometric traits
that are useful and an important source of forensic evidence
are latent fingerprints. In [7], latent fingerprint matching was
performed using top ‘k’ exemplar candidates. This in turn
improved the latent matching accuracy by baseline matcher
and hence resort the candidate list. However, it decreases
the recognition rate.

Therefore, A comparative study of biometric fusion
was discussed in [8] for higher recognition rate. But, it
failed in terms of performance of efficiency. In order to
overcome this issues, A survey on local matching using
fingerprint minutiae with the objective of verification and
identification along with a brief taxonomy and An excellent
trade-off between efficacy and efficiency was found in [9]
when examining experimental evaluation, which produced
good results. However, false acceptance level is higher. To
address this issue, a comparative study of different fusion
techniques using various multimodal biometrics including
face, fingerprint and finger vein was designed in [10].
However, recognition rate is not sufficient. With the ability
to identify the individuals in an automatic manner, in the last
few years, the need of biometric systems has grown, based
on their behavioural and biological characteristics. In [11],
a multimodal biometric recognition system to exploit the
discriminative capacity with the objective of recognizing the
individuals was investigated, resulting in good recognition
performance. But, the computation cost is higher.

To address this issue, face annotation model using
collaborative framework was designed in [12]. This model
not only increased the accuracy but also reduced the com-
putation cost. However, authentication was not investigated.
To address this issue, in [13], score level fusion algorithm
covering cost and client specific was presented. It happens
more frequently when doing multimodal biometric fusion



International Journal of Computing and Digital Systems 3

when modalities are absent. Hence, matching is not said to
be performed. Due to this, the scores are said to be missing
at the match score level. To address this issue, Neutral
Point Substitution (NPS) method was presented in [14] that
not only achieve good generalization performance but also
missing modalities. However, differentiation between fake
and real images was not said to be performed.

In [15], a biometric recognition performance was de-
signed to differentiate between the legitimate and impostor
samples. However, user inconvenience and system ineffi-
ciency in parallel biometrics was found to be addressed.
This was resolved in [16] by utilizing the coupling rela-
tionship between the stronger and weaker features to create
semi-supervised learning algorithms. In [17], a text-based
multimodal biometric technique was examined through
behavioral profiling, keystroke dynamics, and linguistic
analysis.

Recognizing a sample given a set of training biometric
samples is a pivotal pattern recognition problem. A novel
statistical method for multi biometric systems using geomet-
ric and multinomial distributions was presented in [18]. In
[19], the issues related to bimodal biometric authentication
in the field of mobile phones using Gaussian mixture model
was discussed. Based on face and iris, a multimodal system
to provide measures against attack was provided in [20].

A novel Gaze Analysis technique [21] using graph based
representation was designed to provide fast and reliable
identity recognition. Yet another Fisher’s discriminant anal-
ysis was applied in [22] to provide suffice discriminatory
information between ECG signals, confirming a very good
performance. A fingerprint identification data encryption
technique based on an enhanced Advanced Encryption
Standard (AES) was created in [23]. A human recognition
model using Grey wolf was investigated in [24], resulting
in the improvement of recognition.

Support Vector Machine classifiers were used in the
development of a unique 3D Local Energy based Histogram
(3D-LESH) feature extraction approach [25]. Similar to
prior cases, a semi-supervised learning model was created
in [26] using a vector space model and random projec-
tion scaling. Support vector machines were also used to
conduct reasoning on knowledge bases. Deep learning as
well as reinforcement learning techniques in mining of
biological data was undergone in [27]; where role of deep
learning was analyzed rigorously by which rationalized
AdaBoost algorithm was studied deeply. A Unimodal bio-
metric recognition system was introduced in [28]. However,
performance of recognition accuracy was not sufficient.
DCD-WR (Deep multimodal biometric recognition using
contourlet derivative weighted rank) designed in [29] for
improving recognition accuracy. However, it failed in terms
of parameter like recognition time and false acceptance
rate. In [30], a multimodal biometric system was introduced
for achieving higher recognition accuracy. The proposed

Figure 1. Geometric Curvelet and Minkowski Multimodal Biometric
Recognition (GC-MMBR) Block diagram

technique utilizes three complementary characteristics—the
fingerprint, finger vein, and iris—and allows for the simulta-
neous capture of both with a single device. By both boost-
ing and inhibiting rival classifiers and resolving disputes
between them, the best score level fusion is achieved. This
method failed to consider pre-processing model. Therefore,
enhanced image quality was significant problem.

From this related work two important facts are con-
cluded. First, intrinsic and curve features are highly sig-
nificant for biometric recognition when involving multi-
modalities. Second, the removal of irrelevant or insignificant
features requires the use of discriminative features. Our
research demonstrates that extracting discriminative features
and combining them with intrinsic and curve features leads
to a higher recognition rate with less complexity.

As illustrated in the above block diagram, the GC-
MMBR is divided into three stages. They are Rationalized
AdaBoost Pre-processing model, Multi-scale Geometric
Curvelet Feature Extraction model and Minkowski Biomet-
ric Recognition model. Here, given with the multimodal
face, fingerprint and iris features, intrinsic features are first
obtained. With the obtained intrinsic features, intrinsic curve
features are extracted to reduce the overall dimensionality.
Finally, the biometric recognition is performed using the
Minkowski distance, therefore reducing the false acceptance
rate. The elaborate description of the GC-MMBR method
is given in the forthcoming sections.

A. Rationalized AdaBoost Pre-processing model
Pre-processing refers to the elimination of unwanted

features with the aim of supressing the noise present in
feature vectors (i.e., face, fingerprint and iris) with enhanced
image quality. Entire face, fingerprint and iris region is not
inevitable for biometric recognition. Only the unique region
that incorporates the maximum possible length of feature
vectors is adequate. Hence, feature vector positioning is also
indispensable to reduce the system errors. So elimination of
unwanted features and reduction of noise in the principal
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Figure 2. Flow diagram of Rationalized AdaBoost Pre-processing
model

feature vectors with the objective of obtaining intrinsic
features are carried out in the pre-processing stage.

There have been many techniques implemented in the
past to retrieve the features of face, fingerprint and iris
[5], [6] using normalization. For biometric recognition, one
needs to identify the intrinsic features present in fingerprint
Iris and face. By adopting Rationalized AdaBoost Pre-
processing model this is accomplished. Figure 2 depicts
the flow process of Rationalized AdaBoost Pre-processing
model.

As illustrated in the above figure, the Rationalized
AdaBoost Pre-processing model selects the best features
during the pre-processing stage to train classifiers that use
them. To conduct pre-processing, sequence of ‘n’ samples
(i.e. collected from face, fingerprint and iris) is used. At
every iteration, the Rationalized AdaBoost Pre-processing,
evaluates the weights to obtain a hypothesis ‘H : P →
[0, 1]’, with ‘n’ samples given below.

f →< {(p11, y11), (p12, y12), ..., (p1n, y1n)} (1)

f p→< {(p21, y21), (p22, y22), ..., (p2n, y2n)} > (2)

ir →< {(p31, y31), (p32, y32), ..., (p3n, y3n)} > (3)

From above equation 1,2 and 3, ‘p11, p12, ..., p1n’ rep-
resents the face vector features, ‘p21, p22, ..., p2n’ represents
the fingerprint vector features and ‘p31, p32, ..., p3n’ repre-
sents the iris vector features respectively. The error of this
hypothesis for three features (i.e. face, fingerprint and iris)
is mathematically formulated as given below.

ε f =
∑n

i=1
|H(p1i) − y1i| (4)

ε f p =
∑n

i=1
|H(p2i) − y2i| (5)

εir =
∑n

i=1
|H(p3i) − y3i| (6)

From the above equation (4), (5) and (6), ‘ε f ’, ‘ε f p’
and ‘εir’ symbolizes the error of three hypothesis, face,
fingerprint and iris respectively along with the samples
‘p11’, ‘p21’ and ‘p31’ with their corresponding binary labels
‘[0,1]’ denoted in ‘y11’, ‘y21’ and ‘y31’. Followed by which,
the rationalized weight boundary ‘α’ is mathematically
formulated as given below.

α =
ε

(1 − ε)
, ε ∈ ε f , ε f p, εir (7)

At each iteration, the output of the above rationalized
weight boundary ‘α’ is mathematically formulated as given
below.

H(p f ) = {0i f ( log 1
α )<ε f

1,otherwise (8)

H(p f p) = {0i f ( log 1
α )<ε f p

1,otherwise (9)

H(pir) = {0i f ( log 1
α )<εir

1,otherwise (10)

From the above equations (8), (9) and (10), the pre-
processed features for face ‘H(p f )’, fingerprint ‘H(p f p)’
and iris ‘H(pir)’, are evolved. In this manner, the positive
samples contain images of iris, face, and fingerprint. But the
negative samples do not. The pseudo code representation of
Rationalized AdaBoost Pre-processing is given below.

As given in the above Rationalized AdaBoost Pre-
processing algorithm, for each ‘m’ samples, the objective
of the algorithm is to identify the intrinsic face, fingerprint
and iris features. To achieve this, error of hypothesis is eval-
uated first with which the rationalized weight boundary is
evaluated. Next, rationalized weight boundary is evaluated
to obtain the final pre-processed face, fingerprint and iris
images.

B. Multi-scale Geometric Curvelet Feature Extraction
model
With the pre-processed features, feature extraction is the

second step for modeling multimodal biometric recognition.
In this work, with the objective of extracting intrinsic curve
features of multimodal, Multi-scale Geometric Curvelet
Feature Extraction model is designed. Here, the statistical
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Input: samples face ’ m ’, feature vector ’ p(i)
1 ’

fingerprint feature vector ’ p(i)
2 , , iris feature vector

’ p(i)
3 ,

Output: Noise reduced samples face ’ p f ’,
fingerprint ’ p f p ’ and iris features ’pir’

Begin
For each ’ m ’ samples
For each p(i)

1 , p
(i)
2 , p

(i)
3

Measure error of hypothesis for three
features using (4), (5) and (6)
5: Measure rationalized weight boundary using

(7)
6: Measure output of rationalized weight

boundary using (8), (9) and (10) to obtain
pre-processed face, fingerprint and iris features

7: End for
8: End for
9: End

Algorithm 1: Rationalized AdaBoost Pre-processing

Figure 3. Flow diagram of Multi-scale Geometric Curvelet Feature
Extraction

measure such as centrifugal and asymmetric windows are
used, hence called as the Geometric Curvelet Feature Ex-
traction model. The purpose of using Multi-scale Geometric
Curvelet Feature Extraction model is to represent curve
features of multimodal features.

As illustrated in the above figure, in Multi-scale Geo-
metric Curvelet Feature Extraction model, the pre-processed
multimodal features are taken as input. Then, this image
is split into parabolic wedges ‘w’. The wedges are then
obtained from dividing the entire pre-processed images in
centrifugal ‘C’ and Asymmetric ‘A’ windows for each scale
‘j’ and is mathematically formulated as given below.

C j(w)[ f ] =
√

[p f ][φ2
j+1(w) − φ2

j (w)] (11)

C j(w)[ f p] =
√

[p f p][φ2
j+1(w) − φ2

j (w)] (12)

C j(w)[ir] =
√

[pir][φ2
j+1(w) − φ2

j (w)] (13)

From above equation (11), (12) and (13), ‘$\varphi $’,
corresponds to the low pass one dimensional windows for
face, fingerprint and iris features respectively. Followed by
which, angular window ‘A’ is measured.

A j(w)[ f ] = [p f ][A(
w1

w2
)] (14)

A j(w)[ f p] = [p f p][A(
w1

w2
)] (15)

A j(w)[ir] = [pir][A(
w1

w2
)] (16)

Finally, from the above equation (14), (15) and (16), the
features near the wedges ‘w1’ and ‘w2’ are isolated and the
mathematical formulation of the final multimodal feature is
given below.

C f = [C j(w)[ f ] − A j(w)[ f ]] (17)

C f p = [C j(w)[ f p] − A j(w)[ f p]] (18)

Cir = [C j(w)[ir] − A j(w)[ir]] (19)

By obtaining the mean differences as given above, the
curvelet features obtained for iris, face and fingerprint
not only decreases the pre-processed multimodal features
dimensionality but also avoid the redundancy of curvelet
coefficients. The pseudo code representation of Multi-scale
Geometric Curvelet Feature Extraction is given below.

As given in the above Multi-scale Geometric Curvelet
Feature Extraction algorithm, for each pre-processed mul-
timodal features, intrinsic curve features are obtained using
two different geometries namely, centrifugal and angular
windows respectively. By applying the two different ge-
ometries for different scales (also called as multi-scale),
dimensionality reduced multimodal features are extracted.
The curvelet multimodal coefficients that obtained act as
the feature extracted set for biometric identification.

C. Minkowski Multimodal Biometric Recognition model
A matrix is created by extracting multimodal biometric

features from images. Each row represents feature vectors
and each column represents different samples of the cor-
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Input: Pre-processed face ‘pf’, fingerprint ‘pfp’ and
iris features ‘pir’, wedge ‘w’

Output: Features extracted ‘Cf’, ‘Cfp’, ‘Cir’
1: Begin
2: For each pre-processed face ‘pf’, fingerprint

‘pfp’, and iris features ‘pir’
3: Measure centrifugal window ‘C j(w)’ using (11),
(12), and (13)

4: Measure angular window ‘A j(w)’ using (14),
(15), and (16)

5: Measure extracted face, fingerprint, and iris
features using (17), (18), and (19)

6: End for
7: End

Algorithm 2: Multi-scale Geometric Curvelet Feature
Extraction

responding feature vector. The matrix representation for
training samples is given below.

[

TrC f1 TrC f2 ..... TrC fn
TrC f p1 TrC f p2 ..... TrC f pn
TrCir1 TrCir2 ..... TrCirn

] (20)

In a similar manner, the matrix representation for test
samples is given below.

[

TC f1 TC f2 ..... TC fn
TC f p1 TC f p2 ..... TC f pn
TCir1 TCir2 ..... TCirn

] (21)

Based on training samples, the Minkowski distance
predicts whether the test samples are similar to the train
sample or not. The similarity is identified by Minkowski
distance, which calculates the separation between training
and test samples. Using multimodal features as the test
sample, an extensive search technique is used to improve the
biometric recognition rate in order to obtain the Minkowski
distance.

Distance = (Tr,T ) =
∑n

i=1
(Tri − Ti) (22)

The above distance measure is obtained for all the three
features, with which the distance between the training and
test samples are evaluated. Lower the distance more efficient
the recognition rate is said to be. Conversely, a higher
distance is thought to result in a lower recognition rate.
Below is the Minkowski Multimodal Biometric Recognition
pseudo code representation.

As given in the above Minkowski Multimodal Biometric
Recognition algorithm, for each extracted features, matrix

Input: Features extracted ‘Cf’, ‘Cfp’, ‘Cir’, Test
samples ‘TCf’, ‘TCfp’, ‘TCir’

Output: Optimal recognition
1: Begin
2: For each extracted features ‘Cf’, ‘Cfp’, ‘Cir’
3: Obtain matrix representation for training samples
4: Obtain matrix representation for test samples
5: Measure the distance between training samples
and test samples using (22)

6: End for
7: End

Algorithm 3: Minkowski Multimodal Biometric Recog-
nition

representation for training and testing samples are acquired
separately and stored in two different matrices. Using the
two different matrices,Minkowski distance is applied to
identify the distance between training and test samples for
face, fingerprint and iris features. With this, lower identified
distance is used for recognition. As a result, the biometric
recognition rate is said to be improved.

3. EXPERIMENTAL EVALUATION
Biosecure Dataset and CASIA Biometric Ideal Test

Dataset is chosen in our evaluation method which includes
several biometric traits namely face, iris, palm print, fin-
gerprint, and handwriting image whose goal is to integrate
interdisciplinary research projects in the field of biomet-
ric identity identification. For the purpose of conducting
experiments, we used face, fingerprint and iris images for
biometric recognition and implemented in MATLAB sim-
ulator with several training and test samples. Experiments
are conducted using 50-500 human biometric samples.

In this study, three current methods—IrisConvNet [5],
Variational Bayesian Extreme Learning Machine (VBELM)
[6], and Deep Multimodal Biometric Recognition using
Contourlet Derived WeightedRank Fusion with Human
Face, Fingerprint, and Iris Images (DCD – WR)—are com-
pared with the proposed Geometric Curvelet and Minkowski
Multimodal Biometric Recognition (GC-MMBR) method.
Various features of the suggested method are assessed,
including the quantity of human biometric samples, com-
putational time, computational complexity, and recognition
rate.

The term ”computational time” (CT) describes how
long it takes to extract the features from a face (Cf),
fingerprint (Cfp), and iris (Cir) in relation to the input of
human biometric samples (n). The measurement is done
in milliseconds and the mathematical formulation is given
below.

CT = n ∗ Time(C f +C f p +Cir) (23)

The computational complexity ‘CC’ refers to the com-
plexity involved during the execution of algorithm or the
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memory required to perform Minkowski Multimodal Bio-
metric Recognition algorithm. The measurement is done in
KiloBytes and the mathematical formulation is given below

CC = n ∗ MEM[Distance(Tr,T )] (24)

The term ”recognition rate” describes how well the
fusion template matches the input human biometric sam-
ples. It is expressed mathematically as follows, and its
measurement is expressed in percentages.

RR =
samplescorrectlyrecognized

n
∗ 100 (25)

The amount of time needed for the fusion template to
accurately identify human biometric samples among the
input samples is referred to as recognition time which is
given in milliseconds (ms).

RT = Time[
samplescorrectlyrecognized

n
] (26)

The likelihood that the system may mistakenly approve
a user who is not permitted because the biometric test
samples were not properly matched to the training sample
is known as the False Acceptance rate, or FAR. Stated
differently, the false acceptance rate (FAR) is a measure
that assesses the typical amount of false positives during
biometric authentication. The FAR measures the speed
at which illegal samples or users are identified in order
to assess the efficacy and precision of GC-MMBR. It is
expressed mathematically as follows, and its measurement
is expressed in percentages (%).

FAR = [
likelihoodo f incorrectrecognitiono f biometric

n
]∗100
(27)

4. DISCUSSION
The performance of the geometric curvelet and

Minkowski Multimodal Biometric Recognition (GC-
MMBR) method with the most advanced biometric recogni-
tion techniques for text categorization and biometric recog-
nition for multimodal features is presented. The CASIA
Biometric Ideal Test Dataset and Biosecure dataset are
used to evaluate the computational time, computational
complexity, recognition accuracy, recognition time, and face
acceptance rate with varying numbers of features, ranging
from 50 to 500, in order to compare the performance of
biometric recognition methods.

A. Computational time and its impact
We first test the biometric recognition method when

Multi-scale Geometric Curvelet Feature Extraction algo-
rithm is used. Figure 4 given below shows the computational

Figure 4. Comparison performances of computational time using
CASIA Biometric Ideal Test Dataset

Figure 5. Comparison performances of computational time using
Biosecure Dataset

time performances of the proposed GC-MMBR method
with comparison made to the existing IrisConvNet [5],
VBELM [6], DCD-WR and Multimodal biometric system
for biometric recognition text categorization on Biosecure
dataset and CASIA Biometric Ideal Test Dataset.

The computational time performances of biometric
recognition on the Biosecure dataset and the CASIA Bio-
metric Ideal Test Dataset are displayed in Figures 4 and 5
above. The chart shows that, when the number of human
biometric samples gets increased then higher feature set
is said to be exist and therefore the time taken to extract
is also said to be increased using all the three methods.
However, comparison shows betterment achieved using
GC-MMBR method than two other existing methods. It
shows that the GC-MMBR method perform at least as
well as traditional biometric recognition methods at a very
small sample size, and are continuously better when the
sample size increases. This is because by applying two
different geometries namely, centrifugal and angular win-
dows in Multi-scale Geometric Curvelet Feature Extraction
algorithm, dimensionality reduced multimodal features are
extracted. With dimensionality reduced multimodal features
extracted, optimal samples or features are said to be selected
with higher discriminative capacity and intrinsic features.
This in turn minimizes the computational time using GC-
MMBR method when compared to IrisConvNet [5] by 24%.
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Figure 6. Comparison performances of computational complexity
using CASIA Biometric Ideal Test Dataset

Figure 7. Comparison performances of computational complexity
using Biosecure Dataset

Moreover, based on mean differences, the resultant curvelet
features avoid redundancy in curvelet coefficients. This in
turn helps in minimizing the computational time using GC-
MMBR method by 43% when compared to VBELM [6]
and 21% when compared to DCD-WR and 14% when
compared to Multimodal biometric system. Similarly, the
computation time using proposed GC-MMBR method is
found to be increased by 33% compared to IrisConvNet [5],
45% compared to VBELM [6], 25% compared to DCD-WR
and 16% compared to Multimodal biometric system.

B. Computational complexity and its impact
In order to further investigate, another experiment was

conducted by varying the biometric samples in the range of
50 to 500 and measured their corresponding computational
complexity for GC-MMBR method and that methods is
compared with IrisConvNet [5], VBELM [6], DCD-WR and
Multimodal biometric system.

The performances of computational time were measured
according to the Minkowski distance with respect to 500
samples considered for experimentation. It is clear that
when there were less human biometric samples, the com-
putational complexity was found to be better; but, when
the number of human biometric samples increased, it was
discovered that the computational complexity associated

with employing all three approaches was rising. Also,
comparatively, better performance was observed using GC-
MMBR method and highest complexity was found to be
involved using VBELM method. It is observed from the
figure that all the variants of the proposed GC-MMBR
method significantly outperform the traditional biometric
recognition, IrisConvNet [5], VBELM [6] , DCD-WR and
Multimodal biometric system. This is because by applying
the Minkowski, the Minkowski metric is optimized, to op-
timize recognition time and biometric samples respectively.
Since a lower distance means more efficient recognition rate
and therefore biometric recognition is said to be improved,
we can conclude that optimization based on Minkowski
distance is quite effective with 12% found to be improved
than IrisCovNet [5] and 29% than VBELM [6] , 6% than
DCD-WR and 3% than Multimodal biometric system cor-
respondingly when applied in CASIA Biometric Ideal Test
Dataset. In the similar manner, it is reduced by 18%, 33%,
10% and 5% when compared to existing IrisCovNet [4],
VBELM [6], DCD-WR and Multimodal biometric system
respectively when applied in Biosecure Dataset. It is shown
in figures 5(a) and 5(b).

C. Recognition rate and its impact
To find the recognition rate, a third series of experiments

is carried out. Higher the rate of recognition then it ensures
efficiency of the method. The experiment conducted the
recognition rate for two different methods. The first tech-
nique is a straightforward but effective training procedure
that extracts discriminative features using a convolutional
neural network and a softmax classifier. The second ap-
proach uses a deep learning machine learning model for
multimodal biometric recognition, which is also a fusion
model. Finally the proposed method in this study is ana-
lyzed. Below are some sample computations.

CASIA Biometric Ideal Test Dataset

• Proposed GC-MMBR: Suppose the input i.e bio-
metric trait samples given is 50 and the correctly
recognized sample is 46 then the recognition rate will
be RR = 46

50 ∗ 100 = 92%

• IrisConvNet method applies the same logic mentioned
above for the 50 numbers of samples and 36 numbers
of correctly recognized samples. The recognition rate
will be RR = 36

50 ∗ 100 = 72%

• Similarly the same calculation method is used for
computing recognition rate for VBELM, DCD-WR
and Multilodal biometric systems.

For VBELM, RR = 35
50 ∗ 100 = 70%

For DCD-WR, RR = 41
50 ∗ 100 = 82%

For Multimodal biometric system, RR = 42
50 ∗ 100 =

82%
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Figure 8. Comparison performances of recognition rate using CASIA
Biometric Ideal Test Dataset

Figure 9. Comparison performances of recognition rate using Biose-
cure Dataset

Sample calculation (using Biosecure Dataset)

• Proposed GC-MMBR: Suppose the input i.e bio-
metric trait samples given is 50 and the correctly
recognized sample is 46 then the recognition rate will
be RR = 47

50 ∗ 100 = 94%

• IrisConvNet method applies the same logic mentioned
above for the 50 numbers of samples and 36 numbers
of correctly recognized samples. The recognition rate
will be RR = 38

50 ∗ 100 = 76%

• Similarly the same calculation method is used for
computing recognition rate for VBELM, DCD-WR
and Multilodal biometric systems.

For VBELM, RR = 37
50 ∗ 100 = 74%

For DCR-WR, RR = 42
50 ∗ 100 = 84%

For Multimodal biometric system, RR = 43
50 ∗ 100 =

86%

Figure 10. Comparison performances of recognition time using
CASIA Biometric Ideal Test Dataset

Figures 8 and 9 demonstrate how the GC-MMBR ap-
proach performs better when the intrinsic curve features
are extracted using the Geometric Curvelet feature. When
compared to alternative biometric recognition techniques,
the intrinsic curve feature-extracted GC-MMBR method
yields a more reliable outcome. The GC-MMBR method
and the VBELM [6] method both uses machine learning
algorithm to extract optimal features, but our method is
found to be better than the other two methods, for in
the VBELM method, through Variational Bayesian tech-
nique, random input weights are applied, which is only
a fusion in the form, and therefore ignores the intrinsic
curve information. On the other hand, by applying two
different geometrics in GC-MMBR, intrinsic curve features
are extracted. The biometric recognition rate utilizing the
GC-MMBR approach is therefore found to be enhanced
using the CASIA Biometric Ideal Test Dataset by 11%
than IrisConvNet, 24% than VBELM, 3% than DCD-WR,
and 2% than Multimodal biometric system. In Biosecure
Dataset, the biometric recognition rate using GC-MMBR
method is discovered to be enhanced by 17% than IrisCon-
vNet , 28% than VBELM and 4% than DCD-WR and 2%
compared to Multimodal biometric system respectively.

D. Recognition time and its impact
Performance of recognition time or biometric recogni-

tion time is evaluated by fourth set of experiment. The time
taken to recognize the biometrics via three features analyzed
for 500 distinct samples taken from Biosecure dataset and
CASIA Biometric Ideal Test Dataset.

The figures 7(a) and 7(b) given above illustrate the
comparison performances of recognition time using GC-
MMBR method, IrisConvNet [5], VBELM [6], DCD-WR
and Multimodal biometric system respectively. As seen in
the picture, the sizes of the three distinct features—the face,
fingerprint, and iris—increase as the quantity of human
biometric samples grows. As a result, the recognition time
is also said to be increased with the higher set of biometric
samples. However, comparison revealed that the time taken
for biometric recognition using GC-MMBR method to be
better than the other two methods. This is because by
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Figure 11. Comparison performances of recognition time using
Biosecure Dataset

applying Rationalized AdaBoost Pre-processing algorithm,
only the intrinsic face, fingerprint and iris features are
obtained through rationalized weight boundary. With the
intrinsic features when applied to two different geometrics,
centrifugal and asymmetric windows, the intrinsic curve
features are extracted. As a result, the biometric recognition
time using GC-MMBR method is found to be reduced by
20% when compared to IrisConvNet [5] and 46% when
compared to VBELM [6] and 47% than DCD-WR and 39%
than multimodal biometric system in CASIA Biometric
Dataset. Similarly, when proposed GC-MMBR method is
compared with existing the recognition time ie reduced
by 24% than IrisConvNet [5] and 48% than VBELM [6],
52% compared than DCD-WR, 42% compared to multi-
modal biometric system respectively when using Bio Secure
dataset.

E. False acceptance rate and its impact
Using the GC-MMBR approach, the effect of false

acceptance rate is finally assessed and compared with the
current IrisConvNet [5], VBELM [6], DCD-WR, and Multi-
modal biometric system, in that order. The patterns of many
human biometric samples are used to train the system during
the biometric identification process. In this training step, a
biometric template is computed for each human biometric
sample. The identified test sample is matched against every
known training template yielding a distance describing the
similarity between the test samples and training samples.
The sample calculation is as given below.

Sample calculation (using CASIA Biometric Ideal
Test Dataset)

• Proposed GC-MMBR: Suppose the input i.e bio-
metric trait samples given is 50 and the correctly
recognized sample is 46 then the FAR will be,
FAR = 9

50 ∗ 100 = 18%

• IrisConvNet method applies the same logic mentioned
above for the 50 numbers of samples and 36 numbers
of correctly recognized samples. The FAR will be,

Figure 12. Comparison performances of false acceptance rate using
CASIA Biometric Ideal Test Dataset

FAR = 13
50 ∗ 100 = 26%

• Similarly the same calculation method is used for
computing FAR for VBELM, DCD-WR and Multi-
lodal biometric systems.
For VBELM FAR = 17

50 ∗ 100 = 34%
For DCD-WR FAR = 18

50 ∗ 100 = 36%
For Multimodal biometric system FAR = 12

50 ∗ 100 =
24%

Sample calculation (using Biosecure Dataset)

• Proposed GC-MMBR: Suppose the input i.e bio-
metric trait samples given is 50 and the correctly
recognized sample is 46 then the FAR will be,
FAR = 8

50 ∗ 100 = 16%

• IrisConvNet method applies the same logic mentioned
above for the 50 numbers of samples and 36 numbers
of correctly recognized samples. The FAR will be,
FAR = 12

50 ∗ 100 = 24%

• Similarly the same calculation method is used
for computing FAR for VBELM, DCD-WR and
Multilodal biometric systems.

For VBELM, FAR = 15
50 ∗ 100 = 30%

For DCD-WR, FAR = 16
50 ∗ 100 = 32%

For Multimodal biometric system, FAR = 10
50 ∗ 100 =

20%

Figures 12 and 13 illustrate the execution comparison by
adopting the GC-MMBR method, IrisConvNet [5], VBELM
[6], DCD-WR and Multimodal biometric system respec-
tively. As seen in the figure, as the quantity of human
biometric samples increases, though pre-processing has
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Figure 13. Comparison performances of false acceptance rate using
Biosecure Dataset

been performed, some noise remains and is not discarded.
This in turn results in noise and therefore false acceptance
is said to occur. However, the false acceptance rate using
GC-MMBR method is found to be comparatively lesser
than using IrisConvNet [5], VBELM [6] and DCD-WR and
Multimodal biometric system. This is because of applying
using Rationalized AdaBoost model in the GC-MMBR
method only the best features are selected based on the
acceptable value of hypothesis. The resultant values greater
than the hypothesis are discarded, therefore comparatively
lesser noise is said to be observed. This in turn reduces
the false acceptance rate using GC-MMBR method by
22% compared to IrisConvNet [5]. Besides based on the
rationalized weight boundary, only the positive samples are
considered and neglecting the negative samples reduces
the false acceptance rate using GC-MMBR method by
35% compared to VBELM [6], 34% compared to DCD-
WR and 14% compared to multimodal biometric system
respectively using CASIA Biometric Ideal Test Dataset. In
a similar manner, the proposed GC-MMBR method reduces
the false acceptance rate by 24% compared to IrisConvNet
[5] and 33% compared to VBELM [6], 35% compared to
DCD-WR, 15% compared to multimodal biometric system
respectively when applied with Bio Secure dataset.

5. CONCLUSION
Multi-scale Geometric Curvelet (MGC) and Minkowski

distance factor models for face, fingerprint, and iris are con-
structed in order to present a reliable and quick multimodal
biometric system for person recognition. The proposed
method starts by applying a Rationalized AdaBoost Pre-
processing model to obtain intrinsic features based on error
of hypothesis and increased the recognition rate and also the
computational time is reduced in further stages. In order to
extract intrinsic discriminative curve features, a multi-scale
geometric curvelet feature extraction model based on a mix
of centrifugal and asymmetric windows is then suggested.
Finally, by using extracted intrinsic discriminative curve
features, Minkowski Multimodal Biometric Recognition
model is designed for effective recognition. Extensive exper-
iments have been conducted on CASIA Biometric Ideal Test

Dataset and Biosecure Dataset to evaluate different number
of parameters. The efficiency of the suggested GC-MMBR
approach was confirmed by experimental findings, which
showed a 15% increase in recognition rate and reducing the
false acceptance rate by 20% using CASIA Biometric Ideal
Test Dataset. Similarly, the proposed GC-MMBR method
shown the results by improving the recognition rate by
13% and reducing the false acceptance rate by 27% using
Biosecure dataset by which it is proved that recognition
rate is considerably improved and false acceptance rate is
reduced.
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