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Abstract: Multi-sensor data fusion is ubiquitous; therefore, the associated research is significant. There are several instances in the
day-to-day activities where data fusion can be observed. The present generation autonomous driving system requires a thorough
understanding followed by a voluminous dataset for training the model. The earlier efforts have utilized the point-level fusion technique.
thereby supplementing the LiIDAR point cloud with the camera features. In experimental data, imagery and proximity sensors are
paramount for the model’s performance. The sole purpose of preserving the semantic density of the imagery is compromised in
point-level technique, rendering the technique ineffective. The present work attempts to enhance the conventional point-level fusion
techniques by allocating prime importance to semantic density without increasing the computational time. This is facilitated by
performance optimization, which identifies the hindrances and enhances the transformation of the view through bird’s-eye-view pooling.
ResNET-FPN is introduced to down-sample the images without affecting the semantic density: the latency is shortened by =~ 68%. On the
other hand, EKF is used to fuse the sensor data and evaluate the noise-covariance by compensating for the quadratic effects of the data.
The proposed model 1s compared with the existing models based on their performance in each background class. The loU of the existing
models 1s compared with the proposed model, and it is observed to outperform the BEVFusion model by = 3.1%. The detection precision

is found to be (0.9684. and the detection recall is 0.9436. while the mAP is evaluated to be 74.3%. which is = 5.6% better than BEV Fusion.
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1. INTRODUCTION

A wide variety of sensors are used in autonomous

driving systems, rendering them complex. Various sensors
offer supplementary signals to enhance the overall data
collection. The inevitable usage of sensors with different
modalities demands the usage of the Multi-Sensor Data
Fusion(MSDF) for accurate object detection. Camera data
1s rich in semantic information in the perspective space;
Light Detection and Ranging(LiDAR) based sensors supply
spatial information in a three-dimensional space, and radar
estimates the velocity at any particular instant. The present
work considers the fusion of three-dimensional LiDAR
sensor data with two-dimensional camera data. Mapping
the semantic information from the camera with the spatial
information from the LiDAR for accurate object detection
forms a crucial aspect for autonomous driving[1].
There have been several efforts to develop reliable three-
dimensional object detection systems for autonomous driv-
ing. Regarding information depth, laser-based sensors excel,
but cameras can capture semantic data down to a deeper
level. Therefore, a fusion of camera and LiDAR-based
sensors complement each other, permitting the development
of a formidable three-dimensional detection system for a
safe and exceptional autonomous driving experience.

However, MSDF has associated challenges due to the dif-
ference in modalities generated by the data of each sensor.
To achieve a multi-modal and multi-task fusion, there 1s a
need for a unified representation of the data from differ-
ent sensors. In earlier efforts, two-dimensional perception
has been achieved by projecting spatial LiDAR data onto
semantic camera data. The method 1s less successful 1n
detecting objects in three-dimensional space because of the
geometric distortion that occurs when the LiDAR data is
projected onto the camera(Figure.la).

Some of the recent efforts in sensor fusion aim at enhanc-
ing the LiDAR point cloud data with CNN features|2],
semantic labels[3], [4] and two-dimensional 1mage-based
virtual points[5]. Though there 1s a commendable detection
performance on large-scale benchmarks, the point-level-
based fusion 1s less impressive on tasks of a semantic
nature such as BEV-Segmentation[6], [7]. [8], [9]. which
can be attributed to the semantically-lossy behavior of the
projection of camera to LiDAR(Figure.1b). Further, the
differences in density are more pronounced for sparser
LiDAR data.

The present work proposes a fusion of multi-modal features
by maintaining geometric structure and semantic density,
which is expected to enhance 3D perception. The Fea-
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Figure 1. Projection losses[1]

ture Pyramid Network(FPN) encoder, with Residual Net-
work(ResNET) as the backbone, 1s used for image classifi-
cation and object detection due to the inherent characteristic
of deep convolutional layers permitting faster visual data
processing. ResNET 1s more accurate in real-time applica-
tions, which justifies its usage in the present study. Since the
view transformation consumes nearly 80% of the model’s
runtime, an Extended Kalman Filter(EKF) kernel is used
for pre-computation and interval reduction, ensuring process
speed-up by = 65%. Furthermore, due to the non-linearity in
the measured data, EKF 1s used to temporally estimate the
state’s mean and covariance on-the-run, iteratively. Lastly,
the encoder measurements are prone to uncertainties in ego-
vehicle localization due to the accumulation of errors, which
1s significant when the measurements are made from larger
distances| 10]. Therefore, EKF is used to fuse the sensor data
by statistically minimizing the error during the estimation
of the ego vehicle state vector.

The present approach also disproves the conventional wis-
dom that point-level fusion provides the best multi-sensor
fusion solution. The present model is simple in construc-
tion and operation, rendering it more robust and reliable.
Therefore, the work paves the way for future sensor-fusion
developments by building upon the platform reported in the
document.

2. RELATED WORK

Over a decade, immense efforts have been put forth
to develop a reliable and robust method for the fusion
of sensors with different modalities. However, there is a
great scope for developing more sophisticated and accurate
models, as the existing models are identified with few
challenges in overcoming the projection accuracy through
reduction in geometric and semantic losses. The earlier
works to achieve three-dimensional perception based on
LiDAR-only data include the single-stage 3D Object
detectors[11], [8], [12]. [13]. [14], which provided the
platform for the evolution of many robust and sophisticated
models. The model is enhanced using PointNets[15] and
SparseConvNet[16] for extracting the flattened point-cloud
features. Nevertheless, the restriction offered through
the bounding box in the earlier models is overcome
by introducing the anchorless models[17]. [18], [19],
[20]. Further investigations have led to the development
of two-stage models through the amalgamation of the

Region-based Convolutional Neural Network(R-CNN)
architecture with the existing one-stage-based object
detection model[21], [22], [23], [24], [25], [26]. The
most crucial task for the offline construction of High-
Definition(HD) maps 1s the three-dimensional segmentation
of the semantic features. The models[16], [27], [28], [29].
|30] developed to address the seminal task, analogous to
U-Net, are note-worthy.

To replace the expensive LiIDAR sensors for 3D object
detection, commendable efforts are made to achieve
three-dimensional perception based on Camera-only
data. The FCOS3D|[31] model utilizes three-dimensional
regression branches suitably coupled with the image
detectors[32]. which 1s later enhanced to achieve greater
depth in detection[33], [34]. Irrespective of perspective
view-based object detection, models that learn from the
object queries in the three-dimensional space coupled with
the Deformable Transformer(DETR)[35] detection model,
viz. DETR3D[36], PETR|[37] and Graph-DETR3D[38], are
also developed. The view transformer-based camera-only
three-dimensional perception models explicitly transform
camera data to perspective bird’'s eye view|6], [39],
[40], [7]. The state-of-art models such as BEVDet|41]
and M?BEV[42], utilize Lift-Splat- Shoot(LSS)[7] and
Orthographic Feature Transform(OFT)[40] for three-
dimensional object detection. Also, the three-dimensional
object detection models through time-dependent cues using
multiple cameras viz. BEVDet4D[43], BEVFormer[44]| and
PETRvV2[37] are some salient developments in single-frame
methods. However, the models such as BEVFormer|44],
CVT[9], and EGO3RT][45] also perform exceptionally well
through multi-head attention for view transformation.
Lastly, efforts are put forth to study the models for
multi-task learning. Simultaneous detection of objects and
instant segmentation form the key aspects of multi-task
learning[46], [47]. Further, the simultaneous detection and
segmentation is extended to human-object interaction[43],
[48]. [49], |50]. The models for detection of object and
instance segmentation, simultaneously, viz M?BEV[42],
BEVFormer[44] and BEVerse|51], are not developed by
considering multi-sensor data fusion. Also, the activities
are performed simultaneously, which demands longer
computational time and higher hardware requirements,
thereby significantly increasing the computational cost.
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On the other hand, the MMF model[52] though performs
detection and segmentation simultaneously, it is object-
centric, which cannot be extended to BEV Segmentation.

The most recent attempts aim to significantly improve
the detection performance by fusing sensors of different
modalities. The methods can be categorized into proposal-
level and point-level. The proposal-level methods are object-
centric and therefore do not support map segmentation
effectively, whereas point-level techniques are both object-
centric and geometric-centric. Some of the exceptional
contributions towards proposal-level techniques include IS-
FUSION|?]. SparseFusion|[?], ObjectFusion[?] MV3D[33].
F-PointNet[54], F-ConvNet[49], CenterFusion[55].
FUTR3DI[56] and TransFusion|57], while point-level
techniques include PointPainting[2]., PointAugmenting|3],
MVP|5]. FusionPainting[ 58], AutoAlign[59],
DeepContinuouskFusion|52], Deep Fusion|4], and
FocalSparseCNN|[60]. Not all techniques can be
incorporated to process the camera and LiDAR data.
L1DAR data processing can be carried out very eftectively
through input-level decoration models viz. PointPainting|2],

PointAugmenting|3], MVP|5]. FusionPainting[58],
AutoAlign[39], and FocalSparseCNN|60], while
camera 1images require feature-level decoration viz.

DeepContinuousFusion[52], Deep Fusion[4].
Contrary to the aforementioned models,
model has following points,

label=()

the proposed
which render it unique:

1) It 1s a point-level fusion approach that performs
multi-sensor fusion in a shared space by providing
welghtage to both semantic and geometric informa-
tion equally, both in the foreground and background

2) Faster computation 1s ensured alongside ob-
ject detection, facilitated through a Residual
ats fom mups Encoder Features Transformation

cameras

Network(ResNET) based Feature Pyramid Net-
work(FPN) model.

3) EKF is incorporated to handle the non-linearity of
the camera and LiDAR data more effectively.

4) EKF fuses the camera and LiDAR data from
ResNET-FPN by minimizing the accumulation error
generated due to the usage of ResNET-FPN.

5) The framework 1s more generic with multi-sensor(3
Cameras(C) and 3 LiDAR(L)) perception and mul-

titasking.

3. METHOD

The three crucial activities that have direct implications
on the model performance are listed in the section 3-1,
section 3-2, and section 3-3.

1) Unified Representation

Distinct qualities may be present in various viewpoints.
LiDAR and radar features, for example, are usually in the
three-dimensional bird’s-eye view, whereas camera features
are in the perspective view. Every camera function, such
as front, back, left, and right, has a unique viewing angle.
Due to this perspective mismatch, feature fusion becomes
challenging because the same element may correspond to
entirely different spatial locations in distinct feature tensors
(naive element-wise feature fusion will not operate in this
scenario). Thus, 1t 1s imperative to identify a shared repre-
sentation that 1s easily convertible to 1t without sacrificing
information and appropriate for various purposes|1].

2) To Camera

One option 1s to project the LiDAR point cloud onto the
camera plane and display the 2.5D sparse depth driven by
RGB-D data. This conversion 1s geometrically lossy. In the
3D space, two neighbors on the depth map may be very far
apart. For activities like 3D object detection that rely on the
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geometry of the item or scene, this reduces the effectiveness
of the camera view.

3) To LiDAR

The majority of cutting-edge sensor fusion techniques
[2]. [5], [4] embellish LiDAR points with the matching cam-
era features (e.g., virtual points, CNN features, or semantic
labels). But this projection from the camera to LiDAR
1s semantically lossy. Because of the stark differences in
densities between LiDAR and camera features (for a 32-
channel LIDAR scanner), < 5% of camera features match
a LIDAR point. On semantic-oriented tasks (such as BEV
map segmentation), the model’s performance is significantly
affected by giving up the semantic density of camera
features. More modern fusion techniques in the latent space,
including object query, have comparable demerits[57], [19].

4) To BEV

The lossy identified and explained through Figure.la
and Figure.1b are considered during the transformation. The
projection of LiDAR data to BEV evens out the sparse fea-
tures in the height dimension, thereby eliminating the aspect
of geometric lossy. On the contrary, the transformation of
camera images to BEV is non-trivial due to its inherent
depth.

The depth distribution of the pixels of the camera images 1s
predicted using LSS[7] and BEVDet[41], [61]. The features
are re-scaled upon scattering each feature’s pixels to D
discrete points along the ray of the camera. A cloud of
the feature points is generated with a size of NHWD,
where N 1s the number of the cameras(in the present study,
it is 3 numbers), while, H and W are the height and the
width of the image, respectively. The grid size considered
in the cartesian coordinate system 1s 0.35m X 0.35m, which
is evened out in the z-direction.

The transformation of camera-to-BEV consumed a compu-
tational time of =~ 452ms with a Quadro P6000 Graphics
processing. This can be attributed to the large number of
grid points generated per frame of the camera feature. The
Li1DAR features are, therefore, less dense and computation-
ally inexpensive. Nevertheless, curtailing the computational
time for the camera features demands a pre-computation
and reduction 1n the interval considered earlier.

The Pre-computation involves associating the camera fea-
tures to BEV grid points. From the calibration of the
camera, the intrinsic and extrinsic stay the same, permitting
locating coordinates of the feature cloud of the camera. Pre-
computation 1s performed by segregating the grid points
based on indices, and the ranks of the points are recorded.
This permits the reordering of the feature points based
on the pre-computed ranks. This task alone reduces grid-
association latency by =~ 24%, with the remaining latency
reduction achieved through interval reduction.

The Interval Reduction aggregates the grid-points generated
during the pre-computation through symmetric functions
viz. mean, maximum, and summation, within the BEV
grid. The assigned Graphics Processing Unit(GPU) thread
accelerates the feature aggregation and eliminates the de-

pendency between the outputs. This enables the reduction
in latency by = 44%

A. Multi-tasking

Practically, most 3D perception activity i1s carried out
under detection and segmentation. The object center is
evaluated based on the size, velocity, and rotation of the
earlier 3D detection articles|57], [17], [5]. On the other
hand, the segmentation is carried out by classifying the
features and associating the binary segments with each. The
training of the segmentation head is carried out through

CVT[9], with the focal loss being treated using Lin et.al
model[62].
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4. EXPERIMENTS
A. Model

ResNET50(Figure.3) 1s considered the backbone of the
FPN due to its superior performance in extracting features
with fewer parameters. The bottom-up feature extraction
i1s handled by the CNN layers {C;,C,,C3.C4}, with the
dimensionality of the output of each CNN layer being 64,
256, 512, and 1024, respectively. The intermediate CNN
layers {C,’",C,",C3’.C4",C5’}, obtained by 1X 1 convolution
and 2Xx downsampling, eliminate the effects of aliasing
between convolutional layers and transfer 3X3 convolutional
kernel. Lastly, the FPN layers {F'|. F». F3, F4, F's}, which are
obtained by top-down operation and 1 X 1 convolution, are
responsible for multi-scale information fusion, emanating
from different convolutional layers. It generates the fea-
ture map by fusing the multi-scale camera images, down-

sampled to 256 x 704. The settings for FPN are made as
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Figure 4. Treatment of detection and tracking signals

per[62], with the dimensionality of each FPN layer being
set to 256. Similarly, the L1IDAR data, handled by ResNET-
FPN, is down-sampled to 0.075 and 0.1 for detection and
segmentation, respectively.

B. Framework

The framework for the present study is depicted in
Figure.2, where 3 cameras and 3 LiDAR sensor data are
input to the respective encoders. The convolutional encoders
follow the ResNET-FPN architecture depicted in Figure.3.
The features of the camera images are extracted and trans-
formed, which forms the key aspect to achieve higher
accuracy. LSS[7] and BEVDet|[61] models are followed to
achieve the transformation of camera images. The trans-
formed 1mages are filtered through an Extended Kalman
Filter(EKF) and fused. EKF is a non-linear time-invariant
state model represented by the Equation.1[63].

Wi+ 1) = (D) + x (D0 = yW() +v(i) (1)

where y(i) and v(i) are non-correlated processes with zero-
mean, while ¢ and y are the operators. The state (i + 1) 1s
predicted based on the {(i) measurement. EKF 1s effective
in handling error back-propagation[64], with considerably
shorter time for training in comparison with second-order
gradient models such as the Gauss-Newton[10] and Least
Mean Squares(LMS)[65] algorithms. Therefore, EKF trans-
forms inherently non-linear LiIDAR and Camera data, which
generates a system matrix and evaluates noise-covariance by
compensating for the quadratic effects of the data.

The filtered data i1s mapped by estimating the error through
the update-and-predict of the EKF input state. The root
mean squared error(RMSE) estimated for a single target 1s
~ (.32 during the present study. EKF predicts the model’s
state (¥(i + 1)), while Mahalanobis distance(MD) matches
the states of multiple sensors[66], and the EKF updates the

state based on the error generated by the MD calculation.
D*(x) = (x — X;) X Mi(x — X;) (2)

Equation.2 i1s used to evaluate the MD, where x i1s the
observations to be made, X; is the calibration data set for
the corresponding i” sensor, while X; is mean and M; is
the RMSE of the i sensor calibration data. Figure.4a and
Figure.4b depict the error minimization, where corrected

data is the output from the EKF.

C. Dataset

The present model 1s trained using Waymo Dataset|67],
which has 798 sequences for training and 202 sequences for
validation of vehicles and pedestrians. 64 lanes of LiDAR,
or 180,000 points per 0.1 seconds, make up the point
clouds. The dataset for the present study comprises 20, 156
annotated samples of three monocular Camera RGB images
capturing a 180° field-of-view and three 32-beam LiDAR
data. The camera images are well-nourished with semantic
information, while the LiDAR data precisely provide the
spatial information.

D. Training

The model’s training is carried out end-to-end to avoid
camera-encoder freezing, as observed in earlier models|2],
|3], [57]. The weight decay i1s = 0.001, and optimization 1s
achieved through AdamW|[68] model.

E. Metrics

The evaluation of the model 1s made based on the

following parameters discussed in section 4-El1 and sec-
tion 4-E2.

1) Intersection over Union(loU)
The accuracy with which the data 1s predicted can
be obtained through Intersection over Union(/oU), which
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1s defined as the percentage of overlap between the ac-  mathematically represented by Equation.3.
tual value(ground-truth) and the predicted value(Figure.5), AN Bl

loU = (3)
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where A 1s the ground truth and B is the predicted value.

Evaluation and comparison of the present model 1s facili-
tated by reporting the IoU on the defined background classes
viz. Drivable space, Pedestrian crossing, walkway, stop-line,
car parking, and lane divider. The mean IoU is calculated,
forming the basis for comparing other models. Table.I lists
the performance of the existing models, which are used
for assessing the ResNET-FPN model(present study) based
on the identified background classes. It can be observed
that the present model outperforms with a mean IoU of
~ 3.1% greater than the BEVFusion model. The ResNET-

FRONT LEFT CAMERA

FRONT CAMERA

FPN model’s performance is promising for 3 Cameras and 3
LiDAR sensor data. However, it can be further enhanced by
considering a larger dataset with 6 Cameras and 6 LiDAR
Sensors.

2) Mean Average Precision(mAP)

The mAP is calculated based on the Average Preci-
ston(AP) obtained from the area under the precision-recall
curve. The AP 1s averaged for N samples as indicated by
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Figure 8. Qualitative results of Camera and LiDAR data indicating object recognition
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Models Modality Drive Crossing Walkway Stop Line Car Parking Divider Mean
OFT[40] C 74 33.3 45.9 219 35.9 33.9 42.1
LSS[7] C 75.4 38.8 46.3 30.3 39.1 36.5 —-b
CVT|9] C 74.3 36.8 39.9 25.8 35 29.4 40.2
BEVFusion|1] C 81.7 54.8 58.4 47.4 50.7 46.4 56.6
PointPillars|8] L 72 43.1 53.1 29.7 27.7 31.5 43.8
CenterPoint| 17] L 75.6 48.4 DD 36.5 3./ 41.9 48.6
PointPainting[2] C+L 75.9 48.5 57.1 36.9 34.5 41.9 49.1
MVP|5] C+L 76.1 48.7 S7 36.9 33 42.2 49
BEVFusion| 1] C+L 83.5 60.5 67.6 32 57 37 62.7
ResNET-FPN C+L 38.4 65.2 67.1 1.7 61.1 54.2 64.6

TABLE I. Comparison with the existing models based on loU. Camera(C); LiDAR(L)

Equation.4 to obtain mAP.

N
|

AP = — AP; 4

n N; (4)

S. REesuvrrs AND DiscussioN

Based on the methodology defined in the earlier section,
Li1DAR signals are processed for detection and tracking. The
predicted signal generated through the EKF is compared
with the measured signal, which is corrected based on the
root-mean-squared error(RMSE) represented 1n percentage.
The standard deviation between measured and predicted
data for the detected signals is =~ 6%, which is corrected
to achieve a standard deviation between measured and
corrected signal as ~ 5% (Figure.4a). Also, for tracking
signal, the RMSE for predicted values ~ 7%, which is
corrected to achieve an error of = 5.1% (Figure.4b).
Figure.6a represents the IoU for the model, which demon-
strates a good performance with a minimum score of
0.7, while most of the distribution 1s within the range of
84 — 99%. The error plots Figure.6b, and Figure.6¢ show
symmetricity about zero with the maximum distribution
close to zero, whereas 1n the case of error plot in the Z-
direction, the range is between 0.5 to 1, with maximum
peaks between to 0.8 — 1. The mean position errors in X,
Y, and Z directions are calculated to be 0.0041,0.0363,
and 0.7243, respectively. The detection performance can be
evaluated through accuracy and loss data plots as depicted in
Figure.7a and Figure.7b, respectively. The model’s accuracy
1S & 72% while the loss 1s calculated to be = 55%. The
detection precision and recall are = 0.9684 and = 0.9436,
respectively, and mAP 1s 74.3.
A qualitative result of the object detection 1s demonstrated
in Figure.8b, while the quantitative evaluation i1s performed
through accuracy and loss data plots as depicted in Fig-
ure.7a and Figure.7b, respectively. It 1s observed from
Figure.7a that the training accuracy of the model reaches
~ 72% at the end of training without significant variation
thereafter. Similarly, the training loss curve depicted in
Figure.7b demonstrates a value = 51% and indicates an
insignificant change at the end of the model’s training.
The training accuracy and loss curve also demonstrate that
further training of the model fetches a meager improvement

in the model’s performance for the given dataset. The
detection precision and recall are = 0.9546 and =~ (.9344,
respectively, and mAP 1s 71.2.

The results are compared with the existing models, as
demonstrated in Table.Il. It can be observed that the model’s
performance is better than the BEVFusion[1] by ~ 1.4%.
Usage of ResNET-FPN reduces the latency by =~ 68%,
with a corresponding increase in uncertainty due to error
accumulation| 10]. The effect of error accumulation on the
model accuracy 1s mitigated by using EKF for the data
fusion, which reduces the standard deviation by correcting
the predicted signal based on the measured data|63]. Fur-
ther, unlike BEVFusion, the non-linearity of camera and
LiDAR data 1s handled by the introduction of EKEF. A
better comparison 1s possible between the present model
and BEVFusion| 1] by considering 6 cameras and 1 LiDAR
data, which is left for future work. The results are compared
with the existing models, as demonstrated in Table.ll. It can
be observed that the model’s performance 1s better than the
BEVFusion, which is = 5%. However, for the present study,
3 cameras and 3 LiDAR data are used, unlike 6 Cameras
and 1 LiDAR data in the case of BEVFusion model|1].

6. CoONCLUSION

It 1s evident from the earlier discussion that many MSDF
models have demonstrated greater accuracy in the recent
past. However, challenges persist that can be attributed
to the environmental or operating conditions that induce
errors in the data as discussed in section 1. A formidable
correction has to be incorporated, which otherwise can
affect the model’s accuracy. The model presented in this
paper attempts to fuse the multi-modal data from different
sensors to enhance object detection for future autonomous
driving purposes.

The model demonstrates performance fairly well placed
against the existing models, particularly BEVFusion. The
BEVFusion model is developed by considering 6 cameras
and 1 LiDAR data, while the present model considers
3 cameras and 3 LiDAR data for fusion. Hence, there
are differences in the modalities handled in the course of
development of the model. However, the present model
1s observed to have an accuracy of 72% with detection
precision and recall of = 0.9684 and = (0.9436, respectively.
The mean Average Precision is 74.3%, which is better than
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Models Modality mAP
BEVDet[41] C 42.2
M?BEV|[42] C 42.9

BEVFormer|44| C 44.5
BEVDet4D[61] C 45.1
PointPillars[8] Fi -
SECOND|69] L 52.8
CenterPoint|[17] i 60.3
PointPainting|2] C+L -
PointAugmenting[3] C+L 66.8
MVP|5] C+L 66.4
FusionPainting[ 58] C+L 68.1
AutoAlign[59] C+L -
FUTR3D|[56] C+L —
TransFusion[57] C+L 68.9
BEVFusion|1] C+L 70.2
FPN-ResNET(present work) C+L 74.3

TABLE II. Comparison with the existing models. Camera(C); LiDAR(L)

BEVFusion by = 5.6%.

Though the present model outperforms BEVFusion and
other point-level methods, there is still great scope for
developing multi-modal 3D object detection models with
inherent challenges associated with accurate depth esti-
mation. The model can be improved by utilizing ground
truth to supervise the view-transformer[70], [71] that can
be considered for future developments. Also. the present
model has considered 180° FoV, and there 1s a scope
for improvement by introducing 360° FoV with data from
both front and rear cameras and LIDARs data. Further, the
Single Nearest Neighbour(SNN) association i1s considered
for tracking in the present work, which can be improved
by introducing a Global Nearest Neighbour(GNN) or Joint
Probabilistic Data Association(JPDA).
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