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Abstract: Grapes are one of the world’s most crucial and widely consumed crops. The yield of grapes varies depending on the
method of fertilization. There are so many factors that impact crop production and quality. One of the major elements affecting
crop quality output is leaf disease. Therefore, it is necessary to diagnose and classify diseases at an early stage. This paper aims
to assist farmers in accurately analyzing grape leaf disease and informing them about in early stages. Using image preprocessing,
argumentation, and semantic segmentation, an image was partitioned into many tiles and then used in the subsequent stage of the
proposed method. Histogram Equalization was used to improve the contrast of the images by spreading out the most frequent intensity
values. Convolutional processing is carried out to extract meaningful data from the input. A 3x3 convolution filter is used to extract
features from images in the dataset. Max pooling layers mitigate the exponential increase in network parameters caused by many
convolution layers. The detection and classification operations of leaf diseases are completed by the fully connected layer. A dataset
of 3297 images of grape leaves affected by four distinct diseases and healthy leaves is used to conduct the entire experiment. The
proposed model yields 99.3% correct classification accuracy.
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1. INTRODUCTION
Wine, brandy, non-fermented beverages, and fresh or

dried raisins are all made from grapes, which are among
the most widely cultivated fruits in the world. Approx-
imately 81.22% of India’s total grape production comes
from Maharashtra, which also happens to be a significant
exporter of fresh grapes [1][2]. The grapes are processed
into juice and dried to produce raisins[3]. Also, wine and
brandy are prominent spirits made from fermented grapes
[4]. However, the grape industry has suffered significant
losses due to diseases in grape leaves. Black rot, a disease
transmitted by pathogens, is one of many disorders that
damage grapes. Hence, leaf disease is a primarily focused
pest control and disease detection area in orchards [5].
Unfortunately, a human was only responsible for detecting
leaf disease, which led to a decade of time, money, and
productivity loss.

As a result, new diseases emerged in unknown places
where the native ability to combat them was inadequate.
Therefore, an automated disease detection system is neces-
sary for earlier disease detection. Furthermore, earlier dis-
ease detection will save money and improve product qual-
ity [6][7][8][9]. Plant diseases, including black rot, Esca,

and Leaf Blight, and insect pests like beetles, thrips, and
wasps, can cause significant damage to grapevines [10][11].
Problems can be eliminated with the use of sprays[12].
Early detection and treatment of infections are essential to
produce a healthy crop of grapes. Deep learning techniques
and methods are the best ways to detect infectious objects.

When two tasks are similar enough, machine learning
experts may use what they have learned in one to tackle the
other. This technique is called transfer learning. Transfer
learning can improve a model’s performance in detecting
objects. The application of deep learning aids in developing
solutions to various problems. Responses to the problem
based on technology have been implemented. However,
the same issue is addressed in this study with a more
effective method. The following points are considered in
the proposed techniques.

Shift in light and spectrum reflectance are two concerns
that the suggested technique aims to accomplish. It must
address insufficient image contrast in the supplied im-
age.Image contrast, grayscale conversion, and image scaling
are all examples of pre-processing operations [13][14][15].

The next stage is to break an image down into its
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constituent parts. Using these items, researchers can identify
contaminated areas in the image. The segmentation method
has some drawbacks:

Color segmentation fails when lighting conditions
change from those of the original images. Seed selection
plays a role in regional segmentation. All the many types
of texture take too long to manage.

The use of CNNs in disease detection on grape leaves is
discussed in this research. This strategy addresses two sig-
nificant issues: CNN models need training data for starters.
While each disease emerges at a different time of year, there
is limited time to collect images. A sample’s classification
begins with deciding which category it falls within. This
process also polls this method’s input variables. A specific
input type is recognized a few times a year. The most
challenging task is to increase classification accuracy. This
data is then used to develop and verify new datasets that are
different from the training set. Therefore, creating the best
CNN structure to detect grape leaf diseases is problematic.
Grape leaf disease detection using a better CNN algorithm
is the paper’s essential contribution and innovation, and it
is summarized below:

A grape leaves disease data set must be constructed to
generalize the model. The model’s sturdiness is enhanced
by acquiring images of damaged grape leaves with complex
and consistent backgrounds. In addition, data augmentation
techniques are used to build additional training images from
the initial diseased grape leaf shots, which reduces the
model’s tendency to overfit. Using digital image processing
technologies, it is also possible to mimic images of grape
leaf diseases in various conditions. This method improves
the generalization performance significantly [11]. Using a
more advanced CNN model, diseases affecting grape leaves
may be identified.

Furthermore, the deep convolution neural network
model is proposed to investigate the features of sick grape
leaf images. One benefit of deep separable convolution
is that it helps keep the model’s first two convolutional
layers from being overfitted by reducing the number of
parameters. Afterward, the Inception structure improves the
extraction performance for multiscale illness areas. These
four cascade Inception structures are then given a dense
connection method to alleviate the disappearing gradient
problem, promote feature propagation, and reuse.

This research focuses on the features of different transfer
learning techniques for better disease classification. In the
proposed algorithm, we have used semantic segmentation
of images to enhance disease prediction. The suggested
algorithm is contrasted with both contemporary and conven-
tional methods. Experiments have shown that the proposed
model has a greater accuracy rate (99.3%) than any classic
model.

A. Contributions
• Partition images into multiple tiles using semantic

segmentation to focus on relevant sections of the leaf.

• Enhance detection accuracy by targeting unhealthy
portions of the images, improving disease segment
extraction.

• Use pre-trained models (e.g., SqueezeNet, VGG16)
for transfer learning by adding new layers (convolu-
tional, fully connected, and softmax).

• Employ different configurations of dropout percent-
ages, learning rates, and batch sizes to optimize model
performance.

• Improve feature extraction and disease classification
through consistent preprocessing and segmentation
techniques.

• Leverage semantic segmentation for better feature
extraction and localization of disease-affected areas.

• Retain high accuracy in classifying grape leaf dis-
eases by retraining existing neural networks with
enhanced image datasets.

• Demonstrate the effectiveness of preprocessing, seg-
mentation, and transfer learning in accurately classi-
fying grape leaf diseases.

• Provide a scalable and efficient approach to agricul-
tural disease detection using advanced image process-
ing and deep learning techniques.

The paper is organized as follows: Section 2 highlights
similar work done in the same field. Section 3 describes
the methodology used in the research. The analysis and
discussion of the findings are explained in section 4. Section
5 concludes the paper.

2. RELATED WORK
Artificial intelligence has made significant strides in re-

cent years because of developments in Deep Learning. This
is very helpful for image-based classification and recogni-
tion. Applications include the detection and classification of
plant leaf disease and object recognition. The advantages
and power of deep learning techniques are foreshadowed
in earlier research. For example, in recent years, the re-
searchers used many deep-learning algorithms to recognize
plant leaves. As a result, deep learning techniques in image-
based problems and agricultural applications are becoming
increasingly common [12], as given below:

Principal Component Analysis (PCA) and back-
propagation networks are used to develop a method for
detecting and classifying diseases of grape leaves. The leaf
disease samples included in the study are grape downy
mildew and grape powdery mildew, respectively. It can
recognize diseases with 94.2% accuracy using this method.
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Classification of grape leaf diseases has never been easier
than it is, thanks to the technique used by the author in the
thresholding technique. First, the image is pre-processed,
and then the K-mean algorithm is used to segment the
diseased area. By utilizing the hue features, this strategy
produced better results in terms of accuracy [16][17].

Crop types and diseases were identified using deep-
learning models by researchers in [13]. Various training
models, datasets, and training-testing sets are used to obtain
a 99.35% accuracy rate. A mobile application was created
to assist farmers in identifying wheat leaf disease. Many
different CNN models are employed in [14] to diagnose
weed disease accurately; however, the highest score is
reached using VGG Net. The authors use an open library
of 87,848 images of plant leaves to identify leaf disease
using five alternative CNN architectures [15]. When applied
to the ImageNet database, SIFT encoding and pre-trained
deep learning model achieves a 91% accuracy rate [18].

A novel neural network model is proposed in [19] based
on VGG Net and inception to detect apple leaf disease
that achieves 78.8 % accuracy. The authors used deep
convolution neural networks to create a Refinement Filter
Bank architecture to diagnose illnesses and pests of grape
plants to avoid false positives and class imbalance. Primary
diagnosis, secondary diagnosis, and integration made up
the system’s map, 13% higher than Faster R-CNN. Plant
leaf disease can be diagnosed more quickly and accurately
using an innovative deep-learning approach with CNNs.
According to this research, plant disease detection has been
dramatically improved using CNNs. Furthermore, grape leaf
diseases can be detected in real-time, although there are
no adequate CNN models for this purpose. Therefore, this
work proposes a real-time grape leaf disease detector based
on Faster R-CNN [20].

Various authors developed methods for detecting dis-
eases on the leaves of orchid plants. Digital cameras capture
images of orchid plant leaflets. The programmer employs
a variety of tactics, including boundary segmentation, mor-
phological processing, and a filtering strategy, to classify
images into two disease categories: black leaf spot and
solar burn [1]. Authors in [2], are primarily concerned
with detecting disease in cotton and estimating its stage.
The leaf can find most diseases and their symptoms. The
authors in [3] provide an overview of the characterization
and detection of diseases of cotton leaves. It is tough to
pinpoint the exact type of plant leaf disease afflicting a
leaf. Accurately identifying cotton leaf diseases can benefit
from image processing and artificial intelligence (AI). This
research was based on information from a computerized
camera.

The Rainbow Connection and Google Net Inception’s
structure using CNNs seems powerful for finding apple
leaf disease. A dataset of 26,377 images of damaged apple
leaves may be used to identify these five most common ail-

ments, according to the INAR-SSD model proposed in [21].
The Authors in [22] developed an SVM classifier with an
identification rate of 90% for grape downy mildew disease
and a recognition rate of 93.33% for grape powdery mildew
disease. Many plant diseases are detected via image analysis
because of advances in image processing technology.

In [23], authors employed a neural network to identify
whether a potato leaf was healthy or sick. Results show
that the proposed approach accurately identifies 92% of the
disease. By recognizing pathological signs with extremely
high visual variance, significant intraclass dissimilarity, and
low interclass similarity deep CNNs have significantly done
advanced plant disease classification[8]. On a dataset of
44 species, the CNN leaf image recognition accuracy was
99.7%. A limited number of large datasets were acces-
sible. Using Google, the authors discovered cherry leaf
powdery mildew disease 99.6% of the time. Transfer learn-
ing could help a deep learning algorithm recognize plant
illnesses[24][25]. To identify fourteen distinct crop species
and twenty-six distinct disease types, the authors used
ImageNet-trained deep-learning models. Gathered 54,306
images of healthy and wounded plant leaves to verify the
models’ accuracy. In a hold-out test, they got 99.35% of
the answers right[13].

CNN frameworks are widely used to classify agricultural
illnesses. Many of these experiments have yet to improve
classification accuracy, though. There will be no room for
error if only one model is used. Therefore, teams generally
combine multiple models to win a significant machine learn-
ing competition rather than relying solely on a single model
as the Inception-ResNet-v2 [26] constructed by merging
two huge deep CNNs, as its name implies. Integration
is the most exact and practical solution for significantly
different models [16]. As a result of our investigation, we’ve
developed the United Model. With GoogLeNet and ResNet,
the United Model combines two of the most prominent deep
learning architectures. As a result, use transfer learning for
better accuracy and reduced training time.

Deep learning has produced significant advances in
computer vision since the advent of artificial intelligence.
This method is one of the most common ways to diagnose
and classify plant diseases. For example, grape disease
can be identified using principal component analysis and a
backpropagation network[16]. The prediction accuracy was
as high as 94.29% for downy mildew and powdery mildew
grape diseases in the dataset. It was possible to distinguish
two different grape diseases using the method described
by [27]. The technique acquired good training accuracy
using anisotropic diffusion and K-means clustering with
characteristic hue thresholding. The authors used two deep-
learning models to detect 14 crop species and 26 illnesses
(AlexNet and GoogLeNet). The study showed that 99.35%
of the training-testing sets were accurate after looking at
two other training processes and three distinct dataset types
[13]. To help farmers diagnose disease, the Authors created
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a smartphone application. After applying two other frame-
works for the task, the mean recognition accuracy on WDD
2017 was 97% and 95%, respectively. The prior accuracy
of 93.27% and 73.000% of the conventional CNN frame-
work has been improved by this model. Weed detection
in Bermudagrass lawns using deep CNN models has been
previously reported. This study indicated that the VGG Net
model outperformed the Detect Net model when detecting
three of the most common turfgrass diseases. Considering
these findings, a DCNN-based weed management system
was presented. The authors reached the best results by
applying five fundamental CNN architectures to 87,848
images spanning 25 plant species from 58 different classes,
with an accuracy of 99.53% (2018a). Real-time disease
detection during plant growth is more important than a deep
CNN classification for preventing diseases from spreading
[15].

Deep learning algorithms could be used to detect plant
leaf disease reliably, which an increasing number of re-
searchers are examining. The authors used signs of grape
leaf Esca in the summer to identify and detect the disease.
An image classification accuracy of 91% was achieved
on ImageNet using the MobileNet network, trained on
the ImageNet dataset. It uses Classification and detection
networks to reach the best Esca AP score (RetinaNet) [18].
The authors created the INAR-SSD network architecture
using VGG Net and Inception building to identify apple
leaf disease and achieved a 78.8% mAP success rate. It used
Refinement filter banks to cope with false positives, class
imbalance in disease and pest detection in grape plants,
and a deep convolution neural network. With Faster R-
CNN—which includes a main diagnostic unit, a secondary
diagnostic unit, and an integration unit—the mAP is 13%
more than the best result. A new deep learning approach
based on CNNs has been developed to identify plant leaf
disease accurately. Many studies have found that CNNs
have helped detect and identify plant diseases [28]. Various
methodologies and models are offered; however, more peo-
ple produce adequate results. Therefore, a Faster R-CNN-
based detector for grape leaf illnesses has been proposed as
a real-time outcome of this study.

Various techniques and methods are proposed in the
state of the art [29][30], but this paper is concerned with a
high-performance deep learning model to detect grapes leaf
disease. Prior work in grape leaf disease classification has
leveraged traditional image processing techniques. While
these methods are straightforward and computationally
efficient, they often struggle with accurately segmenting
and classifying diseases due to limited feature extraction
capabilities and sensitivity to noise and variations in image
quality. Our approach addresses these limitations by incor-
porating advanced image preprocessing techniques, such
as histogram equalization and Gaussian blur, to enhance
image quality and feature visibility. We also utilize semantic
segmentation to focus on relevant image regions, improv-
ing disease detection accuracy. By retraining pre-trained

neural networks with standardized and enhanced images,
our method benefits from deep learning’s superior feature
extraction capabilities. This approach not only mitigates the
weaknesses of prior work but also demonstrates improved
accuracy and robustness in classifying grape leaf diseases.
The performance of these neural network typologies was
evaluated using a range of measures, including F1-score,
recall and precision, and the model’s inference time. This
paper discusses various evaluation measures and unique
deep neural network models.

3. MATERIAL AND METHODS
This section provides results using modern methodolo-

gies, models, and datasets.

A. Dataset
In the dataset, diseases are separated into groups. Fig. 1

shows sample images from the dataset discovering several
pathogens on grape leaves. The complete dataset is split
80:20 between training, and testing data.

1) Dataset Description
The dataset consists of 3297 images split into four

groups representing different diseases and their symptoms.
Table I provides a comprehensive explanation of the
dataset.

B. Image Processing and Argumentation
Using image preprocessing, argumentation, and seman-

tic segmentation, an image was partitioned into many tiles
and then used in the subsequent stage of the proposed
method. After segmentation, images are used to retrain
already trained models, like SqueezeNet, VGG16, etc. The
many convolution layers in each pre-trained neural network
are followed by several ReLu layers. The same output is
subsequently fed into the deep neural network’s upgraded,
fully connected layer to initiate treatment. The proposed
building’s layout is shown in Fig. 2.

The images were preprocessed to increase the quality
of the dataset used to train a deep learning network. As
a first step, we have standardized image size by scaling
each image to 256×256 pixels using the Python Imaging
Library and a Python script. Pixel values were normalized
to a range of [0, 1] by dividing by 255. This step helps
in accelerating the convergence of the neural network by
standardizing the input values. Histogram Equalization was
used to improve the contrast of the images by spreading out
the most frequent intensity values. It enhances the visibility
of features in low-contrast areas of the images. Gaussian
blur was applied to reduce noise and detail in the images.
Pixel values were clipped to a specific range to handle
outliers and ensure that the input data remained within the
desired range for the model. The next step classifies the
grapes leaves images into groups and then specifies them
for each disease.

Utilizing semantic segmentation enhanced the detection
accuracy in this instance. The first algorithm describes
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Figure 1. Sample of diseased or pathogenic leaves

TABLE I. Dataset Description

Grapes Leaf Disease type Count of images
“Grape Black rot” 843
“Grape Esca (Black Measles)” 852
“Grape Leaf blight (Isariopsis Leaf Spot)” 762
“Grape healthy” 840
Total Images 3297

Figure 2. Transfer Learning with DNN
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segmentation as splitting the entire image into a prede-
termined number of tiles. The segmented tiles’ assistance
effectively extracted the leaf image’s necessary portion. In
both instances, feature extraction was performed using the
same model training and evaluation data set. This technique
was also intended to focus on the desired location inside an
image, thereby reducing the unhealthy portion of the image
and increasing the detection rate. The images were then fed
into a neural network that had already been trained.

The following is an algorithm for the detection of
disease that has been proposed:

Algorithm 1 Semantic Masking

1: Input: Grapes Images Dataset
2: Output: Masking Grapes Image
3: Generate the masked image (MaskV ) from Input Image

(Inp)
4: With Inp and MaskV to get Mask f
5: Segment image Mask f into Imaget (square tiles)
6: for Imaget in Mask f do
7: Categorize Imaget into Mask f Grape diseases
8: if Imaget is a disease then
9: Identify the Disease

10: end if
11: end for

With the help of previously unexplored datasets, the
validity of a machine learning model can be tested by cross-
validation (also known as k-fold). After a small sample of
data was analyzed, the model’s performance was evaluated
on all available data. Because of the new information,
they could make predictions about data that had not been
included in the training procedure [15]. Our study used
four pre-trained Convolutional Neural Networks on the
ImageNet dataset.

C. Training Phase
This process involved numerous iterations in rationaliz-

ing the model’s internal weights. The information was used
to train a model that could then classify leaf diseases.

To train a model, one can either start from scratch or use
transfer learning. Pre-trained on a large set of images (such
as ImageNet’s 1.2 million images in 1,000 classifications),
a network was then used and tweaked for a new purpose.
Multiple transfer learning procedures are available to deal
with such problems.

A deep learning technique known as transfer learning
involves retraining a network on a different dataset. The
transfer learning process, seen in Fig. 3, entails adding new
layers to the top of a prior-trained network (InceptioNet,
SqueezeNet, VGGNet,). These layers are convolutional,
fully connected, and multi-class softmax classification lay-
ers. Each model was tested using a range of dropout
percentages, learning rates, and batch sizes. Sections to

TABLE II. Deep Neural Network Description.

follow will go into greater depth on the instructional and
structural approaches.

This cutting-edge method was created by adapting trans-
fer learning models for agriculture, yielding useful insights.
Transfer learning can be advantageous when training a
model without access to previous weights. A new model
was supposed to be trained with features derived from a
huge dataset, as shown in Fig. 3, and then fine-tuned with
specific data.

Essential things that must be considered while applying
transfer learning methodologies are domains and tasks. Our
objective is to classify leaf diseases; the relevant domain
is image classification. As mentioned before, re-training
would require several adjustments, extra data, and more
time. Once these are known, training a Deep Neural Net-
work (DNN) that is well-suited to the job is a breeze. This is
the goal of transfer learning, and it is successfully achieved.
The entire process flow is depicted in Fig. 4, while Table II
outlines the enhanced architectural qualities utilized in the
design.

The following is a description of the deep neural net-
works utilized by TL:

1) Convolutional Layer
The convolutional layer is a vital part of any deep

neural network, as it extracts both low-level and high-level
features from the input image. Convolutional processing is
carried out by this layer to extract meaningful data from
the input. The network’s early layers learn to categorize
data concretely based on the input, while the later layers
learn to classify the data abstractedly based on the output.
In this study, we use a 3x3 convolution filter to extract
features from images in the dataset. The first convolution
layer consists of 33 filters with a kernel size of 5x5 and
a ReLU activation function. As a result of this capability,
more intricate traits can be learned from data. Therefore, the
problem of vanishing gradients no longer exists. Convolu-
tion operation * between two real-valued functions (say, Z
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Figure 3. Proposed Model

and Y) always produces the same outcome, as shown by the
equation 1. An abundance of input attributes is associated
with each map feature. For instance, the input x of the
ith convolution layer can be described by the following
equations:

hic = F(Zi ∗ Y) (1)

This formula is composed of three parts: the activation

function F, the convolution Y , and the convolution kernel
Z. For a kernel with a single layer of convolutions, we have
Z = {Zi1 ,Zi2 , . . . ,Zik }.

Here k is the number of convolutions.

A*A*B is the is the weight matrix of kernel Zik.

Where:

A represents the window, while B represents the number
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Figure 4. Methodology Flow Graph
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of channels.

2) Pooling Layer
Using max pooling layers can mitigate the exponential

increase in network parameters caused by many convolution
layers. We can use pooling layers to decrease the massive
feature map produced by the convolution layer. The layer’s
job is to find promising features in the feature map and
pull them out. We use the feature map’s absolute maximum
when calculating this layer’s value. As a bonus, the pooling
layer can help make translations more robust. To begin, the
maximum pooling in Region R is equivalent to the average
pooling in other regions.

Mp = max
i∈R j

(xi) (2)

Ap :
 xi∑

i∈R j
xi

 (3)

Two-stage kernel sizes and pooling are necessary. The
highest values are depicted on the map in the upper left cor-
ner, while the middle represents the average value obtained
by adding all four values together.

Prior-trained models generate a fixed feature vector by
running image segments through a convolution and pooling
layer. Color, texture, and form are the usual characteristics
mined by computers. After processing an image using pre-
viously trained models, a feature vector will be generated.
This technique is applied to the diagnosis of plant diseases.
To maximize characteristics for disease identification in
leaves, a fully linked layer uses the feature vector.

3) Fully Connected Layer
The detection and classification operations are com-

pleted by the FC layer, which follows the max pooling
layer. The second-to-last layer is masked using probability
dropout to prevent overfitting. The final classification is
depicted as follows:

t̂ = µ (xI (hs ⊗ I) + wI) (4)

Hence, DNN Qc, which can mean bacterial blight, leaf
blast, or brown spot, is the categorized result.

The primary focus of the model is to unearth hidden
information. Overfitting is a serious problem in neural
networks. However, the overfitting problem can be mitigated
by utilizing regularization techniques to overcome insuffi-
cient data or a larger dataset than the network can handle.

D. Evaluation Phase
Evaluation of proposed models is done using the fol-

lowing metrics:

1) Training Loss
The training loss is a measure of how well the model is

performing on the training data. It is typically calculated as
the average of the loss function values across all training
samples.

Training Loss =
1
N

∑
L(ytrue, ypred) (5)

where L(ytrue, ypred) is the loss function (e.g., cross-
entropy loss, mean squared error) evaluated for the true
target ytrue and the model’s prediction ypred for each training
sample.

2) Validation Loss
The validation loss is a measure of how well the model

is performing on a separate validation dataset, which is not
used for training. This provides an estimate of the model’s
performance on unseen data.

Validation Loss =
1
M

∑
L(ytrue, ypred) (6)

where M is the number of validation samples.

3) Training Accuracy
The training accuracy is a measure of how well the

model is classifying the training samples correctly. It is
typically calculated as the percentage of correctly classified
samples out of the total number of training samples.

Training Accuracy = Number of correctly classified training samples
Total number of training samples

(7)

Validation Accuracy = Number of correctly classified validation samples
Total number of validation samples

(8)

4. RESULT ANALYSIS AND DISCUSSION
1) Determine the Number of Epochs

Quantity epochs’ potential impact on system perfor-
mance is the focus of current testing efforts. The tests use
epoch 50 and 100 for comparison and rates of leanings are
0.0001. In Fig. 5, the test is shown.

With 50 epochs of training and a learning rate of 0.0001,
as shown in Fig. 5, the accuracy rate is 98.2%.

According to Fig. 6, a precision rate of 98.32% is
attained with the training stage 100 epoch and a learning
rate of 0.0001. Based on the testing method, it may be ex-
trapolated that more epochs are more dependable. However,
the higher the epoch frequency, the longer it takes to finish
the training.
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Figure 5. Training accuracy and loss rate at 0.0001 with epoch 50
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Figure 6. Learning rate of 0.0001 with training accuracy and loss at epoch 100
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2) Determine the Rate of Learning
An evaluation was done on how much learning affects

machine efficiency. One of the training parameters is the
learning rate for estimating the weight correction value. In
this test, 50 and 100 epochs are employed instead of 0.001
and 0.01. Fig. 7 shows the outcomes of the tests.

Based on Fig. 7, the test shows a precision rate of
98.37% in epoch 50 and a learning rate of 0.001.

Based on Fig. 8, the test shows a precision rate of
98.61% in epoch 100 and a learning rate of 0.001.

Based on Fig. 9, the test shows a precision rate of 99.1%
in epoch 50 and a rate of learning of 0.01.

In the 100-epoch training stage, a precision rate of
99.31% and a learning rate of 0.01 are achieved (see Fig.
10). A higher pace of learning yielded a higher percentage
of accurate data, as seen in the testing phase.

The result demonstrates that the ranking of accuracy is
based on the metrics of learning rate and epoch. A better
outcome can be expected from using a more trustworthy
epoch value. Cross-validation is a metric to assess the
quality of a model’s predictions. The models’ efficacy was
the target of this investigation. Each subset of the data is
tested many times after being separated into k groups. The
kth subset is used for training in each cycle, whereas the k-
1st subset is evaluated afterwards. Five to twenty number of
cross-validation is used for model testing. The term ”folds”
refers to the process of partitioning the available data into
multiple subsets for the purpose of training and evaluating a
model. Table III displays the results of model testing with
5, 10, and 20 cross validation. The five models vary in
accuracy by around 5% throughout all iterations. Fig. 11
shows that the proposed model consistently outperforms the
alternatives across many iterations, with an overall accuracy
of 99.3%. Mobile Net’s 96.8% accuracy is the lowest of the
five models.

Diseases were discovered and predicted using a collec-
tion of 3,297 grape leaf images. We created and used five
unique deep-learning models as classifiers from the outset.
Predictions and evaluations were made using the models
of deep learning programmes. Table III summarises the
results of a 20-fold cross-validation test for recall, accuracy,
and precision for all deep learning application models. A
precise AUC (Area under the Curve) of 1 would indicate
that a predictive or classifying test is 100% accurate. The
outcomes indicate that AUC optimization yielded a value
of 0.9997%. Thus, CNN’s research plan can diagnose and
categorize grape leaf diseases. Sample collection took time
and labour, making using lab data to predict future diseases
hard. Nonetheless, Inception V3 had the highest recall, f1-
score, and accuracy for predicting leaves (all 99.3%). Con-
sidering Inception V3’s suitability for a high-level image
processing function, this is expected. In artificial intelli-
gence, the k-fold cross-validation approach is frequently

utilized for disease classification and identification studies,
even with very small and medium data sets. Neural Network
had the highest AUC (99.97%), accuracy (99.30%), f1-
score (99.3%), precision (99.3%), and recall (99.3%) when
predicting leaves using 20-fold cross-validation. There was
a train-test split evaluation of each deep learning model. The
linear distribution of the suggested model and the confusion
matrix are displayed in Table IV (Number of instances).

The percentage breakdown of Table IV’s confusion
matrix is shown in Fig.11. Grape black rot had a TP rate
of 98.6%, Grape esca black measles at 98.9%, Grape leaf
blight at 100%, and 99.8% overall (Grape healthy). A con-
fusion matrix evaluates many metrics, including accuracy,
precision, sensitivity, error rate, and specificity. The results
are expressed as a percentage: Fig. 12 shows the suggested
model’s ROC (receiver operating characteristic curve).

The suggested model outperforms the other machine
learning models in terms of F1 score, Recall, and, Precision
as shown in Fig. 13.
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Figure 7. Accuracy of training at epoch 50 and learning rate 0.001
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Figure 8. Learning rate of 0.001 with training accuracy and loss at epoch 100
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Figure 9. Learning rate of 0.01 with training accuracy and loss at epoch 50

TABLE III. Comparison of different models

Dataset used Model Number of folds Accuracy F1 score Precision Recall

Grapes Leaves

Proposed Model

5

0.988 0.958 0.981 0.979
VGG19 0.981 0.981 0.981 0.981
VGG16 0.982 0.980 0.979 0.968

SqueezeNet 0.986 0.971 0.965 0.958
MobileNet 0.9574 0.9578 0.9588 0.950

Proposed Model

10

0.991 0.908 0.981 0.962
VGG19 0.887 0.883 0.859 0.862
VGG16 0.983 0.981 0.978 0.974

SqueezeNet 0.987 0.980 0.968 0.979
MobileNet 0.951 0.955 0.958 0.943

Proposed Model

20

0.993 0.992 0.989 0.993
VGG19 0.983 0.979 0.958 0.984
VGG16 0.984 0.977 0.984 0.980

SqueezeNet 0.987 0.947 0.967 0.977
MobileNet 0.968 0.968 0.9687 0.968



16 Naresh Kumar Trivedi, et al.

Figure 10. Learning rate of 0.01 with training accuracy and loss at epoch 100

TABLE IV. Matrix of confusion for the suggested model

Grape Black
rot

Grape Esca
(Black Measles)

Grape Leaf
blight

(Isariopsis Leaf
Spot)

Grape
healthy

∑
Grape Black rot 98.6 % 0.9 % 0.0 % 0.1 % 843

Grape Esca (Black
Measles) 1.3 % 98.9 % 0.0 % 0.0 % 852

Grape Leaf blight
(Isariopsis Leaf

Spot)
0.0 % 0.0 % 100.0 % 0.1 % 762

Grape healthy 0.1 % 0.1 % 0.0 % 99.8 % 840∑
846 850 761 840 3297
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Figure 11. Performance Comparison of different deep learning models with the proposed model
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Figure 12. ROC curve for Proposed model with k fold 20
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Figure 13. Comparison against other classifiers
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5. CONCLUSION AND FUTURE WORK
Academic interest in artificial neural networks (ANNs)

has been revitalized by the tremendous progress in im-
age processing and image applications using CNN. This
research proposes a novel method to classify grape leaf
diseases which yields prediction accuracy 99.3%. This
method exploits the concept of semantic masking. When
the performance of proposed model is compared with other
transfer learning approaches, the proposed model emerges
as a much superior model. The limitation of this work is
that semantic segmentation relies on manual tuning and
expert knowledge for optimal performance. In future, the
model can be expanded to recognize the impact of multiple
pathogens on a plant leaf or a combination of pathogens.
Also, the role of abiotic causes, such as nutritional levels,
in the development of leaf diseases can be explored in the
future.
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