
International Journal of Computing and Digital Systems
2025, VOL. 17, NO.1, 1-10

http://dx.doi.org/10.12785/ijcds/1570999111

Detection of Soil Nitrogen Levels via Grayscale Conversion: A
Full-Factorial Design of Experiment Approach

John Joshua F. Montañez1,2
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Abstract: In smart agriculture, the detection of the level of soil nitrogen is essential in soil fertility and productivity that correlates to
crop yields and fertilizer recommendations. With the advancement of technology, identification of such level is easily obtained using
devices that capture images, which are affected by two factors, i.e., the tilting angle of the test tube and the lighting condition. The
device produces images containing three colors, namely, red, green, and blue, respectively. Using grayscale conversion, these values
are then converted into a single value to analyze appropriately. This study aims to determine the optimal combination of the factors to
obtain the correct reading of Nitrogen using a full-factorial design of experiments with four replications designed by Minitab®; the
design of the experiment is a valuable statistical tool that promotes efficient experimentations used by scientists and engineers. The
results are analyzed using Analysis of Variance, and it is depicted that the determined factors, tilting angle and lighting condition, and
their interactions are significant. The developed regression model explains 76.43% of variability among factors. The optimal setting for
tilting angle is 90°, while the lighting condition should be indoors. Design of Experiment is a valuable statistical tool that promotes
optimization and efficient experimentations used by scientists and engineers.
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1. Introduction
From the modern global perspective, soil health and the

management of soil nutrients have increased attention and
have been the focus of research [1]. An urgent concern of
each state government of ensuring sustainable and plentiful
agricultural products and maintaining and promoting agri-
cultural processes are undoubtedly needed to increase the
food supply without compromising the health of the planet,
considering that the population of the world continues to
increase in number is notably observed [2].

The first of the primary macronutrients is Nitrogen,
which is considered an essential component of nucleic acid
and protein, which are the building blocks of plant cells. It is
vital in the chlorophyll, which is included in photosynthesis,
a process by which plants convert sunlight to helpful energy.
Without Nitrogen, plants cannot produce necessary organic
compounds for survival and growth [3]. Phosphorus is
the second primary macronutrient for plants, necessary for
transferring energy within the plant cells. It focuses on
the growth and development of seeds and roots. Without
Phosphorus, plants may show stunted growth, decreased
seed production, and poor root development [4]. Potassium

is the last of the primary macronutrients that regulate water
balance since it maintains turgor pressure in plant cells.
It also maintains the shape and prevents wilting. Without
Potassium, no activation of vital enzymes will be possible
[5].

Practices and guidelines on sustainable farming and im-
plementation require monitoring and detecting levels of soil
macronutrients (i.e., Nitrogen, Phosphorus, and Potassium)
[6]. This permits information for farmers, agriculturists, and
soil enthusiasts regarding future trends and application of
the appropriate amount and type of fertilizers needed to
ensure optimal plant growth and increased crop yield. This
initiative not only assures increasing financial aspects as
these reduce over and under-application of fertilizer, but it
also aids in reducing any risk of environmental damage and
degradation in soil fertility and productivity [7].

Moreover, monitoring and detecting soil macronutrients
not only span agricultural production and the improvement
of agricultural processes. Climate change, biodiversity, and
water quality are all related to the maintenance of soil health
[8]. Creating possible greenhouse gas that impacts climate
change happens due to excessive application and imple-
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mentation of nitrogen-based fertilizers, which expel nitrous
oxide into the atmosphere [9]. Any efforts to mitigate the
effects of climate change must impart the principles and
management of sustainable soil management to decrease
greenhouse gas emissions [10].

Furthermore, overuse of fertilizer can cause unnecessary
runoff into nearby water sources like rivers or oceans,
negatively impacting aquatic ecosystems [11]. Excess phos-
phorous and Nitrogen from fertilizers may cause algal
blooms in water bodies that consume oxygen and create
dead zones in which aquatic living things cannot survive
[12].

Soil Test Kits determine soil macronutrients that intend
to analyze the given soil’s characteristics and properties
[13]. Planting crops, improving crop yields, and improv-
ing plant growth utilize this generally helpful produced
information. The colorimetric approach states that soil test
kits are considered cost-effective and time-efficient, making
them a convenient tool for farmers, agriculturists, and inter-
ested individuals [14]. The colorimetric approach in the Soil
Test Kits involves chemical reagents that change the color of
the concentration and presence of specific soil components.
Therefore, the color produced in the chemical process
determines the corresponding level of the macronutrients
present in the sampled soil [15].

With the recent advancement of technology, the colors
produced by the reagents can be easily determined through
image processing under computer vision without laboratory
analysis, which is considered time-consuming and expen-
sive; images capturing the colors the reagents produce are
the main focus of image processing. This advancement
allows us to analyze the nutrient content of the soil in a
non-invasive or non-destructive way [16].

Several factors can affect the images produced, leading
to an inappropriate reading of the levels of the soil macronu-
trients. These factors include user error, soil properties, and
equipment calibration. However, the two significant factors
affecting the reading results are the lighting condition and
the tilting angles of the test tube containing the reagents
[17].

The primary objective of this study is to determine the
optimal lighting condition and tilting angles of the test tube,
which will lead to the correct interpretation of the level of
the soil macronutrients via an image produced from the
chemical reagents. The objective can be achieved through
the full-factorial design of experiments, which streamlines
the process and saves time in soil nutrient analysis.

2. Related Literature and Studies
A. On the detection of Soil Macronutrients

The study of Isaak et al. [18] focuses on determining
soil macronutrients through soil spectroscopy measurement,
and its product was a device considered low-cost compared
to laboratory-grade spectroscopy. The device observes the

absorbance spectroscopy on the linear relationship in ob-
taining Nitrogen, Phosphorus, and Potassium through light-
emitting diodes.

Yamin et al. [19] modified the colorimetric process for
determining the macronutrients in oil palm plantations using
the Soil Test Kit. The method describes the passage of light
through an opaque medium utilizing a specified reagent
in the soil solution. The study reported an accuracy of
91.7% for Nitrogen, 89.6% for Phosphorus, and 93.8% for
Potassium. This research concluded with an Internet-of-
Things network data fusion to assess the variation of soil
macronutrients and the management of nutrients in oil palm
plantations.

Kaushik [20] emphasized that in soil fertility and pro-
ductivity, obtaining the soil characteristics, including the
level of soil macronutrients, i.e., Nitrogen, Phosphorus, and
Potassium, is vital, leading to food security. The study
showcases the India-based soil macronutrient classification.
Regarding the K-mean clustering method, India was divided
into three clusters based on the absolute correlation values
of various soil nitrogen, the different soil phosphorus con-
tent, and other organic carbon contents.

Patel et al. [21] incorporated hyperspectral remote sens-
ing in determining and identifying soil Nitrogen, Phos-
phorus, and Potassium soil levels instead of laborious,
cost-intensive, and time-consuming laboratory analysis. A
derivative Analysis for the Spectral Unmixing approach was
used to determine the composition of soil macronutrients.
The study concluded with the fractional abundance of the
soil macronutrients incorporated in situ to estimate soil
fertility.

Sadowska, Światkiewicz, and Żabiński [22] determined
the soil macronutrients, i.e., Nitrogen and Potassium, in the
three-year field trial on Peppermint (Mentha piperita L.)
sandy soil. This is intended to determine the appropriate
application of Biochar to plants and how it affects their
growth. The main factors influencing the time-dependent
responses of soil to Biochar were soil feedback, microbial,
and plant. These were experimented with through a three-
factorial design replicated three times.

Shiwakoti et al. [23] observed no difference in residue
burning on soil macronutrients over time after the treatments
incorporated in no burn residue incorporation with farmyard
manure or pea vines, no burn or spring burn with the
application of Nitrogen (0, 45, and 90 kg/ha), and fall burn
wheat residue incorporation. The findings concluded that
residue incorporation of farmyard manure at a fertilizer rate
of Nitrogen at 90 kg/ha reduces the macronutrient decline
over time.

Madhumathi, Arumuganathan, and Shruthi [24] con-
ducted a study that incorporated a wireless sensor net-
work that determines the level of soil pH, macronutrients,
moisture, and temperatures and recommends an appropriate
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amount of fertilizer and water to ensure optimal crop
growth and yield. The monitoring indicators are projected
on mobile applications from the cloud and wireless sensor
networks. A system that can compete with existing time-
consuming and cost-efficient laboratory analyses is what
aims to be developed.

Burton, Jayachandran, and Bhansali [25] reviewed the
related in situ soil nutrient monitoring research, including
pH and soil macronutrients, i.e., Nitrogen, Phosphorus, and
Potassium. The review study concluded that there is more
to learn about the soil heterogeneity in several indicators
of the electrochemical and optical system performance in
situ. It further revealed that incorporating several sensors
advances Internet-of-Things in agriculture is evident.

Lisuma, Mbega, and Ndakidemi [26] studied the effect
of Tobacco (Nicotiana tabacum L.) plant in sandy soil,
especially on the level of soil macronutrients and micronu-
trients, i.e., Calcium, Magnesium, and Sulfur at Tabora,
Tanzania. Generally, the tobacco plant is expected to uptake
soil macronutrients, and several experiments have compared
the unfertilized and fertilized plants. The study concluded
that there is a decrease in Potassium, Phosphorus, Sulfur,
and Magnesium while there is a notable increase in Calcium
and Nitrogen.

Alves et al. [27] developed an acceptable range for sev-
eral vital macronutrients in plants, specifically the Forage
cactus pear (Opuntia ficus-indica Mill). This range leads to
appropriate nutrient content demands for soil management
and improved fertilizer recommendations. The range is
achieved using 4×3×2 factorial in randomized blocks in
three replicates. Seventy-two plots were utilized for the
macronutrient contents of dry matter and cladodes.

B. On the Use of the Design of Experiments
The study of Carvalho et al. [28] utilized the Design of

Experiments to optimize collagen-chitosan-fucoidan cryo-
gel manufacturing. The study’s parameters or factors are
fucoidan concentration, collagen concentration, and temper-
ature. The Box-Behnken design was incorporated since it
has three levels for three factors. According to the study,
through the use of Design of Experiments, the optimal
combination for the production of cryogels is 10% fucoidan,
5% of collagen, and 3% of chitosan at -80 C.

Outeiro et al. [29] implored the combination of machine
learning and Design of Experiments to investigate the
effects of the cutting conditions in the machining of Ti-
6Al-4V Titanium Alloy. The objective of the research is
to optimize the alloy’s machinability while minimizing the
residual stress time. The machine learning is intended to
predict the residual stress versus the cutting conditions, i.e.,
cutting speed, uncut chip thickness, tool rake angle, and
the cutting-edge radius incorporating linear regression. The
results showcased that when there is a 40% increase in the
residual stress at the machine surface, the rake angle must
increase from negative (-6o) to positive (5o), and the cutting

edge should be increased by 100% (from 16µm to 30µm)
and the cutting speed must be decreased by 67% (from 60
to 20 m/min).

Dragan and Lelea [30] studied thermal design optimiza-
tion through area reduction of printed circuit boards via
the Design of Experiments under the optimization phase.
Their study also mentioned that the shape of the printed
circuit board is more vital than the area and how the said
area was reduced in terms of the thermal performance
of the experiments. The parameters were the length and
width of the printed circuit board using the finite volume
method. As the size of the printed circuit board decreases,
the housing dimension is reduced while having the same
thermal performance, leading to less integration space and
lower costs.

Concrete mechanical properties prediction in the con-
crete mix design and the measurement of the concrete
performance have been reviewed by Chong et al. [31]
through the use of Design Experiments. Different waste ma-
terials, dosage and type of chemical additives, and amount
and proportion of constituent materials were the different
factors considered. The paper considered and reviewed
several methods of analyzing concrete performance, namely,
Artificial Neural Network, Response Surface Methodology,
and Taguchi method. It positively criticized the Design of
Experiments. It saves time and simplifies work without
compromising mechanical performance.

Utilizing the Taguchi Design of Experiments, Chandra
and Prakash [32] optimized the microchannel heat sink
performance considering six factors, i.e., channel diameter,
channel number, mass flux, channel length, power, and time.
Optimizing the factors mentioned above while minimizing
the surface temperature of experimental results was its main
purpose. The optimized flux (150kg/m2s) and the higher
number of channels (13) are vital in the heat transfer
performance of the microchannel heat sink.

Arcieri, Baragetti, and Ž. Božić [33] used the Design
of Experiments to determine which among the parameters
highly influenced the residual stress distribution in an
hourglass specimen subjected to the impact of a foreign
object damage on 7075-T6; the 7075-T6 is an alloy in
the aeronautical industry. The specimen was tested with
bending or axial fatigue load and was assessed using
finite element analysis. It resulted in incorporating high-
impact forces that observe high tensile stresses, which are
unfavorable from a fatigue point of view, and hence, it is
wanted to have a low weight and reduce speed.

In the study of Guerra-Zubiaga, and Luong [34], the
energy consumption of industrial robots is aligned with the
objectives of Industry 4.0, i.e., reduced energy consump-
tion, utilizing the Design of Experiments. The observed
factors are temperature, payload, speed, and acceleration,
using the linear factorial experiment analysis. The study
observed that the most contributing factors to industrial
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robots’ increased energy consumption are linear speed and
acceleration, having a percentage of 95% in the first three
joints of a Kawasaki robot.

According to the literature review conducted by Román-
Ramı́rez and Marco [35], in optimizing the development of
lithium-ion batteries, the Design of Experiments played an
essential role in observing time-saving initiatives and cost-
reduction measures in the production of the batteries, as
mentioned above. Several factors were considered depend-
ing on the objectives of various researchers, including age-
ing electrode formulation, active material synthesis, thermal
design, capacity, and charging.

Yarici and Öztürk [36] analyzed the inverted square
split ring resonator in terms of its resonance frequencies
based on the chosen geometric parameters, using the Design
of Experiments approach. The distance between the rings,
the width of the rings, and the split width of the rings
were investigated and considered as the factors, while the
interaction in terms of the frequencies produced is the
response of the study. The conclusion focused on the most
significant parameter, the distance between rings and the
width of the rings, while the least significant is the split
width of the rings.

Rodriguez et al. [37] simulated the texture geometries
in optimizing tribological properties in terms of surface
texturing via Design of Experiments- Box Behnken. The
study factors are the percentage of the textured area, depth,
width, and oil film thickness. Texturing reduced the Coef-
ficient of Friction in the Tribological tests and aided in the
consumption of laboratory resources. The study mentioned
that while all factors are significant, the lubricant film
thickness is statistically significant.

C. On the determined factors for the Design of Experiments
Dacay et al. [38] developed a mobile application that

determines the Nitrogen, Phosphorus, and Potassium of
soil dedicated to corn. The study incorporated an optical
transducer, which is considered a wavelength detection
sensor that needs a light-emitting diode as a light source.
The study results were able to detect the soil macronutrients
and were validated by the Department of Agriculture-Soil
Laboratory.

Manickam [39] crafted a framework for monitoring
the soil condition using the Internet of Things. The study
incorporated several sensors, namely pH value, humidity,
moisture, temperature, and light, which were attributed to
the increase in crop production. The data from the sensors
were sent to MCP3204 ADC and from ADC to the cloud
via Raspberry Pi.

Golicz et al. [40] investigated the potential employ-
ment of a smartphone application alongside Nitrogen and
phosphate-sensitive test strips intended to determine the
content of plants available found in the soil. The noted
errors in determining soil nutrients were attributed to tem-

perature dependency, chemical interferences, and ensuring
optimal light conditions.

Lavanya, Rani, and GaneshKumar [41] presented a
study focusing on the Internet of Things that incorporated
Nitrogen, Phosphorus, and Potassium sensors in conjunction
with light-dependent resistors and light-emitting diodes. An
optimal light condition is vital in increasing the farmer’s
yields. Collected data are then sent to the Google Cloud
database for a fast retrieval system that includes fuzzifica-
tion of the levels of the soil macronutrients.

Hou et al. [42] studied the additive effect of biochar
amendment nitrogen deposition that stimulates plant
growth, photosynthesis, and Nitrogen, Phosphorus, and
Potassium observance. In determining the photosynthetic
gas exchange, being packed under good light conditions
is one of the criteria for choosing mature fresh leaves for
measures.

Budinski and Donlagic [43] incorporated colorimetric
chemical sensing into the fluidic flow injection sensor
system. The study’s sensor system description mentioned
that the fiber end face must be substantially titled; an
extreme tilt angle also decreases the amount of returned
light signal. The angle between 9° and 10° allowed a back
reflection from the microcell’s end cap.

Yuan et al. [44] mentioned that the titling angle is vital
for achieving the minimum separation time and maximum
plasma volume with high purity in developing manual and
portable centrifuges for myocardial infarction diagnosis.
Upon tilting the angle and tuning the diameter of the blood
sample vessel, 99.9% purity plasma was observed in less
than 3 min.

Guterstam et al. [45] presented a portion of their study
regarding the critical tilt angle affecting the implicit model
of other people’s visual attention. It was considered an
invisible force-carrying beam projecting from the eyes.
Several experiments were conducted to confirm the study’s
claims. The respondents’ judgment was highly affected by
the image of a face to one side and staring at the object.

Huang et al. [46] studied how to determine the optical
rotation of liquid crystal polymer retarders using digital
image processing. The study mentioned an optimal optical
rotation angle or tilting angle ranging from -90° to 90° for
two opposing wedge-shaped dark areas by computation of
the titling angle, optimization of the detection speed, and
more substantial stability of the mechanical properties of
the crystal polymer vortex retarder.

Yukhymenko et al. [47] studied a multistage shelf device
using a fluidized bed for heat-mass transfer processes. In the
processes mentioned in the study, the optimal angle of the
shelve is 25° concerning the horizontal. This means that
material particles on the shelf surface have a smaller angle,
impeding the material particle’s free flow concerning the
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TABLE I. Factors and Their Levels

Factor Low(-1) High (+1)
Tilting Angle 45° 90°

Lighting Condition Indoor Outdoor

Figure 1. Procedural Flowchart

outloading space.

3. Methodology
This section discusses the various strategies and tech-

niques for achieving the research objectives. It must outline
the series of instructions to be observed to be systematic
and thorough in executing the experimental protocols. The
essence of establishing the design of the experiment is tanta-
mount to yielding reliable and accurate results, emphasizing
suitable statistical tools for analysis, and leading to the
likelihood of producing valuable insights among factors.

A. Procedural Flowchart
Figure 1 showcases the procedural flowchart of the

study, composed of six significant steps to fulfill the re-
search objectives. Following the correct soil sampling for
the soil test kit is vital in detecting soil macronutrients. The
soil sample must be collected, and the correct representation
of the tested area must be observed. After the soil has been
successfully sampled, it is ready to be tested in terms of
the procedure set by the soil test kit, which performs the
nitrogen and phosphorus tests.

This produces several test tubes that have reagents with
their corresponding color. The soil test kit observes the
colorimetric method, pinpointing the level of the soil’s
macronutrients. Capturing the test tubes containing reagents
is necessary at this point, as mentioned above, to determine
their RGB values that directly link to the level of soil
macronutrients being tested at hand. Observing the experi-
mental protocol proves crucial mainly because experimen-
tation observes the full-factorial design of experiments that

lessen the number of runs, making gathering necessary data
efficient and time-saving.

B. Selection of Factors
The corresponding RGB values shall be extracted and

analyzed appropriately using the device that captures the
images from the test tube with reagents that have set a
region of interest. The grayscale conversion formula is
imperative to convert the necessary three-value factors, i.e.,
Red Value, Green Value, and Blue Value, into a single
response. As a prelude to the statistical treatment of the
data, necessary responses shall be recorded. The runs must
be precisely executed, ensuring consistency and replicabil-
ity, making the results reliable and accurate as carefully
prescribed by the Design of Experiments.

It is crucial to determine the factors that affect the sys-
tem’s output before optimizing the system and conducting
experiments. In line with the related literature and studies,
the tilting angle of the test is one of the identified factors in
detecting soil macronutrients. tubes containing the reagents
and the lighting conditions where the images were captured.

These factors are chosen so that the levels are lowest
and highest. Table 1 summarizes the factors and their
corresponding levels. The tilting angle has two levels, 45°
and 90°, while the lighting condition has two environments,
outdoor and indoor. This experimental protocol ensures the
reliability and accuracy of the study’s results.

C. Full factorial design of experiments using Minitab®
Implementing the full factorial design can be done

using Minitab®, a high-performance statistical software
package that is widely used in data analysis, quality control,
and especially in designing Experiments used by industry
practitioners and engineers. The software offers various
designs, including factorial response surface and mixture
designs.

In this study, the design matrix was designed by
Minitab®, considering 22 full-factorial designs of experi-
ments under four replications. Table 2 summarizes the runs
that the research must follow in the experimentation, leading
to the time-saving and cost-effective gathering of necessary
data. Sixteen runs must be completed for the analysis to
be possible. In the Minitab® graphical user interface, the
factors can be coded or uncoded depending on the user’s
appreciation.

D. Grayscale Conversion of RGB Values
The standard color model utilized in digital images is

RGB (Red, Green, Blue) values, representing the three
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TABLE II. Response Matrix for Four Replicates

Run Titling Angle Lighting Condition Grayscale Values
1 45° Indoor (-1) 126.11
2 90° Indoor (-1) 190.13
3 45° Outdoor (+1) 128.07
4 90° Outdoor (+1) 89.51
5 45° Indoor (-1) 126.81
6 90° Indoor (-1) 157.99
7 45° Outdoor (+1) 126.18
8 90° Outdoor (+1) 126.34
9 45° Indoor (-1) 125.31

10 90° Indoor (-1) 182.60
11 45° Outdoor (+1) 109.90
12 90° Outdoor (+1) 93.51
13 45° Indoor (-1) 99.20
14 90° Indoor (-1) 158.32
15 45° Outdoor (+1) 108.17
16 90° Outdoor (+1) 106.18

primary colors with individual pixel values from 0 to 255.

In this study, the device that captures the images of
the test tubes contains the chemical reagents that produce
an RGB value, which has three individual values for red,
green, and blue. It is essential to convert these three values
to a single value, making it a single channel of information
for easy processing and analysis in the design of experi-
ments. There are many ways to convert the RGB values
into grayscale, and this includes the lightness method, the
average method, and the luminosity method [47], [48], [49],
[50]. The formula for the luminosity method is shown in
formula (1) below; this converts RGB values to grayscale
values:

Grayscale = 0.3R + 0.59G + 0.11B (1)

4. Results and Discussion
This section discusses the study’s results after it under-

went the processes set forth by the procedural flowchart
found in the methodology section. The Design of Experi-
ment was followed as prescribed by the design matrix. The
data collected gathered were analyzed using Minitab®.

A. Data Gathering of Grayscale Values
Table 2 summarizes the results of the 16 runs designed

by Minitab® according to a 22 full factorial design of
experiments with four replicates. The RGB values were
initially recorded and computed accordingly using formula
(1) to convert the RGB values into grayscale values. Upon
having a single value, this was recorded in Table 1 and was
ready to be analyzed by Minitab®.

B. Significance of Effects
The significance of the effects, with α = 0.05, can be

determined by comparing the effects’ computed p-value
and its interaction. Table 3 summarizes the coded coeffi-
cients containing valuable values like the computed p-values

Figure 2. Pareto Chart of the Standard Effects

of tilting angle, lighting condition, and their interaction
through using Minitab® as a computer-aided software for
statistics.

Analyzing Table 3 and the Pareto chart of the stan-
dardized in Figure 2 shows that all the effects and their
interactions are significant since all of them are less than
0.05, with values of 0.020 for tilting angle, 0.000 for
lighting condition, and 0.001 for tilting angle*lighting con-
dition. In Figure 2, the tilting angle, lighting condition, and
titling angle*lighting condition crossed the dotted red line,
concluding its significance in the model.

Table 3 also indicates the value for the variance inflation
factor (VIF), which primarily concerns measuring the extent
to which the factors are influenced or inflated. This assesses
the amount of multicollinearity present in the developed
regression model. In the final analysis, no multicollinearity
is present in the developed regression model following the
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TABLE III. Coded Coefficients

Term Effect Coef SE Coef T-Value P-Value VIF
Constant 128.40 3.62 35.45 0.000

Titling Angle 19.35 9.68 3.62 2.67 0.020 1.00
Lighting Condition -34.83 -17.41 3.62 -4.81 0.000 1.00

Titling Angle*Lighting Condition -35.55 -16.77 3.62 -4.63 0.001 1.00

Figure 3. Main Effects Plot for Grayscale with Titling Angle and
Lighting Condition as Factors

factors and their interaction having a VIF of less than 10.

C. Regression Model
After performing the needed runs and experimentations,

they concluded a statistically reliable and helpful model pri-
marily based on Analysis of Variance. The developed model
is found in formula (2), calculated by Minitab®. A need
to reconstruct the model by omitting insignificant factors or
interactions is unnecessary since Table 3 concluded that all
the factors and their interaction are significant.

Grayscale = 99.4+0.430T A+32.9LC−0.746T A∗LC (2)

where TA is the tilting angle, LC is the lighting condition.

The developed regression models’ characteristics (S =
14.4954, R2 = 81.15%, R2(adj) = 76.43%, R2(pred) =
66.48%) based on the factors and their interaction. The
R2 explains the proportion of the entire variability of the
developed model, and the computed R2 is 81.15%. However,
R2 is easily threatened by the increase of factors, even by the
increase of insignificant factors. Thus, the other parameter,
R2 is useful since it is adapted to the total model size and
thus explains 76.43% of the variability in the incoming new
data.

D. Main Effects and Interaction Plots
The combined main effects plot for the titling angle and

lighting condition is found in Figure 3. When comparing
the main effects of tilting angle and lighting condition, the
light condition has a dominant effect in the regression model

Figure 4. Interaction Plot for Grayscale intended for Tilting Angle
and Lighting Condition

compared to the titling. There is an increase in grayscale
value as the tilting angle is changed from 45°to 90°, while
there is a decrease in grayscale value once the test tube is
placed from indoor to outdoor. Since the tilting angle and
lighting condition are significant, it is necessary to check the
interaction between the tilting angle and lighting condition.

Figure 4 showcases the interaction of tilting angle and
lighting conditions. The tilting angle and lighting condition
have significant interaction as the two lines do not exhibit
a similar line behavior. Therefore, having different slopes
indicating an intersection in the lines is a means of verifi-
cation.

Figure 5. Optimization chart for the Grayscale Values
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TABLE IV. Multiple Response Prediction

Variable Setting
Titling Angle 90°

Lighting Condition Indoor
Response Fit SE Fit 95% CI 95% PI
Grayscale 172.26 7.25 (156.5, 188.1) (137.0, 207.6)

E. Optimizing the factors
To optimize the factors by giving the appropriate

RGB values and then converted to a grayscale value,
the Minitab® can determine the optimal combination and
values of the factors. Table 4 and Figure 5 summarize
and depict the optimal tilting angle and lighting condition
values. The optimal tilting angle should be 90°, and the
optimal lighting condition should be indoors under a 95%
confidence interval between 156.5 and 188.1 and a 95%
prediction interval between 137.0 and 207.6.

5. Conclusion
The Design of Experiments explores the logical combi-

nation of factors governed by the titling angle and lighting
condition for the grayscale values. Thus, its utilization in the
optimization of the appropriate determination of the levels
of soil nitrogen is substantially beneficial. The exploration
of the interaction of the factors was allowed by it as
well. The optimization process is geared towards enhanced
accuracy and precision in the analysis, improved overall
quality, and time-saving and cost-efficient experimentation.
Furthermore, the success of using the Design of Experi-
ments depends on the appropriateness of the experimental
protocol, the data quality, and the accurate interpretation
of results. They are using Minitab® as computer-aided
software that allows scientists and engineers to efficiently
explore the factors and their corresponding interactions,
thus allowing them to determine the optimal conditions and
combinations of factors effectively.
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