
International Journal of Computing and Digital Systems
2025, VOL. 17, NO.1, 1-12

http://dx.doi.org/10.12785/ijcds/1571000399

Incorporating Transfer Learning Strategy for improving
Semantic Segmentation of Epizootic Ulcerative Syndrome

Disease Using Deep Learning Model

Anbang1 and Gede Putra Kusuma2

1,2Computer Science Department, BINUS Graduate Program - Master of Computer Science, Bina Nusantara University, Jakarta,
Indonesia, 11480

Received 22 February 2024, Revised 20 October 2024, Accepted 25 October 2024

Abstract: Automated fish disease detection can eliminate the need for manual labor and provides earlier detection of fish disease
such as EUS (Epizootic Ulcerative Syndrome) before it further spreads throughout the water. One of the problems that is faced on
implementing a semantic segmentation fish disease detection system is the limited size of the semantic segmentation dataset. On the
other hand, classification datasets for fish disease detections are more common and available in larger sizes, which cannot be used in
segmentation tasks directly since it lacks the necessary label for such tasks. In this paper, we propose a training strategy based on
transfer learning to learn from both ImageNet and classification dataset before being trained on the segmentation dataset. Specifically,
we first train the ImageNet pre-trained VGG16 and ResNet50 on a classification task, then we transfer the weights into a semantic
segmentation architectures such as U-Net and SegNet, and finally train the segmentation network on a segmentation task. We introduce
two different modified U-Net architectures to allow the respective pre-trained VGG16 and ResNet50 weights to be transferred into
the architecture. We used a classification dataset containing 304 images of fish diseases for classification task and a segmentation
dataset containing 25 images of EUS-affected fishes for the segmentation task. The proposed training strategy is then compared with
alternative training strategies such as training VGG16 and ResNet50 on ImageNet alone or classification dataset alone. When applied
to SegNet and U-Net, the proposed training strategy surpasses their respective architecture trained on ImageNet or classification dataset
alone. Between these two architectures with all compared training strategies, the U-Net+VGG16 architecture trained with our proposed
training strategy achieves the best performance with validation and testing mIoU of 57.80% and 60.43%, respectively. The training
code is available at https://github.com/RealOfficialTurf/FishDiseaseSegmentation.

Keywords: Fish Disease Detection, Semantic Segmentation, Transfer Learning, U-Net Model, SegNet Model

1. Introduction
Due to the geography of the country, fish has become

one of the major sources of income in Indonesia. According
to BPS, fish production has increased from 15.24-16.12
million tons in year 2017-2018 [1].

Like many other animals, most fish are susceptible
to fish diseases. One of the diseases is EUS (Epizootic
Ulcerative Syndrome), which is caused by Aphanomyces
invadans. This disease is easily identified by the red spots or
ulcers that appear on the fish body, hence this disease is also
known as Red Spot disease. Fish that are affected by EUS
will lose appetite, thus consuming less feed and growing
slower. The affected fish may also die, with a mortality
rate of around 20-80% [2]. Furthermore, EUS can spread
from the infected fish to other healthy fishes in the same

body of water. Therefore, early detection of fish disease can
potentially prevent further infections and mortalities in the
affected fishpond.

One conventional approach for detecting fish diseases is
to manually monitor the fish. A person observes the fish in
the tank and notices any anomaly visible on the fish skin.
However, this approach is time-consuming and requires an
individual that is capable of identifying fish diseases.

Computer vision is a study that tries to mimic the
human’s capability of recognizing images through the use
of a computer. While traditional computer vision methods
rely on algorithm selected to extract features from images
such as edge detection, more recent computer vision meth-
ods employ deep learning neural network to automatically
extract features from images, without the need to manually

E-mail address: anbang@binus.ac.id, inegara@binus.edu

http://dx.doi.org/10.12785/ijcds/1571000399


2 Anbang, et al.

select certain features.

There exists many works that are aimed at detecting
fish diseases through image classification from hand-crafted
features [3][4] and image classification using deep neural
network [5][6][7]. There are also other works that also
aims to detect fish disease through image segmentation
[8][9], although image segmentation approaches are far less
common than image classification approaches.

One of the problems faced by the previous work [8]
was the limited sample size of the semantic segmentation
dataset, which resulted in their model performing worse
on testing data split. Semantic segmentation datasets are
annotated with pixel-level labels. That is, the label is applied
to each individual pixel by creating a mask of different
classes in the image. Due to the complexity and level of
expertise required to annotate pixel-level labels, they are
more costly to annotate. Thus, they are less common and
available in smaller sample sizes.

One common method used to overcome the dataset small
sample sizes is to employ data augmentation. While data
augmentation can increase sample sizes and reduce overfit-
ting, the synthetic data created from data augmentation is
limited in variety. As such, the performance improvement
gained from data augmentation may be limited.

On the other hand, classification datasets are more
common and available in larger sample sizes. In contrast to
segmentation datasets, classification datasets are annotated
with image-level labels. That is, the label is applied to
the whole image rather than the individual pixels. image-
level labels are easier to annotate than pixel-level labels.
However, image-level datasets are incompatible with seg-
mentation models which produce pixel-level outputs and
cannot be directly used in segmentation tasks. Therefore,
incorporating the features from the more abundant image-
level datasets into segmentation models can be seen as a
challenge.

An approach for a model to learn both image-level and
pixel-level features is to build an architecture with one
shared encoder and two outputs, one for classification, and
another for segmentation. The shared encoder learns from
input data by summing the losses from the respective label
output. This approach is also known as Multi-task learning.
Several works have proposed Multi-task learning architec-
tures for classification and segmentation tasks [10][11][12].
Such architectures are more complicated to build.

On the other hand, there are several works that have
applied transfer learning based on ImageNet for semantic
segmentation problems [13][14][15]. Transfer learning is a
method of reusing the knowledge on a different yet related
domain to the target domain. This is done by transferring the
weights from a pre-trained network to another compatible
network. The network is then trained with the dataset related
to the target domain.

The idea of this work stems from our observation
that most previous works related to transfer learning and
semantic segmentation problems make use of ImageNet
pre-trained networks, which are classification networks on
their own. By training the classification network on an
image-level dataset to create a pre-trained network, it is
possible to incorporate features from image-level datasets
into segmentation models. The pre-trained network can then
be transferred into a segmentation network to be trained
on semantic segmentation dataset, allowing for better per-
formance in segmentation tasks. Furthermore, ImageNet
pre-trained network weights can be transferred into the
classification model to also incorporate ImageNet features,
which could further improve the model performance.

It should be noted that the idea of multi-step transfer
learning is not completely new and has previously been
explored by at least one study [16]. In their work, they
proposed a two-stage transfer learning method, where an
ImageNet pre-trained FCN-8 network is transferred into a
FCN-8 network for training in a broad-scale segmentation
dataset, then transferred into another FCN-8 network for
training in narrow-scale segmentation dataset.

Therefore, this work proposes a training strategy based
on two-stage transfer learning in the context of fish disease
semantic segmentation to overcome the limited segmenta-
tion dataset sample size previously faced by [8]. Note that
the difference between the proposed method used in this
work and [16] lie in the tasks that the network is trained
on. Our method trains the network on classification task
in the first stage and segmentation task in the second stage,
while their method trains the network on segmentation tasks
in both stages. Following the previous work, we use the
same fish EUS segmentation dataset as [8] and compare
our results with their results. The main contributions made
in this work are as follows:

1) A proposed training strategy involving training the
network on classification data to overcome the scarce
segmentation data. The proposed training strategy
allows semantic segmentation models to be trained
with both segmentation data and classification data
without the need of a complicated architecture.

2) A comparison of the effectiveness between our pro-
posed training strategy, which uses both ImageNet
and fish disease classification dataset, and the al-
ternative training strategies, which only uses either
ImageNet alone or fish disease classification dataset
alone.

The rest of the work is structured as follows. In Section
2, various related works for fish disease detection and trans-
fer learning are presented. The proposed training strategy
and network architectures used on this work are shown in
Section 3 as well as the datasets used. Section 4 presents
the comparison and results of various training strategies
including our proposed training strategy. We discuss our



International Journal of Computing and Digital Systems 3

findings based on the results we presented in Section 5.
Finally, we conclude our findings in Section 6.

2. RelatedWorks
A. Fish Disease Detection

Chakravorty et al. [9] was one of the earliest that
suggested the use of semantic segmentation to detect fish
disease from fish images. Their work implemented a system
to segment diseased areas in images of fish using PCA
(Principal Component Analysis) and k-Means clustering.
The dataset they use are collected from taking images from
real fish and identified by human expert, but the sample
size of the dataset is not described in their work. The
results indicate that the implemented algorithm can work
with above 90% accuracy. The authors suggested that more
sophisticated approaches such as neural networks or SVM
(Support Vector Machines) should be used for this problem.
Continuing from their work, Rachman [8] proposed and
compared four different deep learning semantic segmenta-
tion models with backbone networks for detecting EUS.
They used a dataset of 26 images of fish that contracted
EUS, which are augmented to increase the sample size
to 1056 images. Although the performance was heavily
affected by the limited dataset, the U-Net with ResNet50
backbone network achieved the highest test score out of
the four tested models with an mIoU (mean Intersection
over Union) of 59.33%.

Ahmed et al. [3] proposed a method of classifying in-
fected salmon fish using SVM. Their work utilized statisti-
cal features and GLCM (Grey-Level Co-occurrence Matrix)
as the features to be extracted from image from salmon, and
SVM to classify the image based on the extracted features.
They used a dataset of 266 images containing infected and
healthy salmon fishes, which are augmented to increase
the sample size into 1326 images. The highest accuracy
obtained by the SVM classifier is 94.12% with Area Under
ROC (Receiver Operating Characteristic) Curve value of
96.71%. Similarly, Mia et al. [4] proposed an expert system
based on feature extraction of statistical feature and GLCM
to detect fish diseases. Unlike the previous work, their
work experimented with eight different machine learning
algorithms, among of them are SVM. Their work also uses
10-fold cross-validation technique to evaluate the models.
They used a dataset of 485 images containing fish with
EUS and Tail Fin Rot diseases as well as healthy fishes.
The Random Forest model performed the best with 88.87%
accuracy and an Area Under Curve of 89.71%, while SVM
achieved 77.04% accuracy with an Area Under Curve of
78.25%.

Waleed [17] proposed a system based on Raspberry Pi to
recognize different fish diseases using the deep learning ap-
proach. Their work experimented with training and testing
combinations between four different CNN (Convolutional
Neural Network) models and three different color spaces.
They used a dataset of 45 images collected online, which
are preprocessed and augmented to increase the sample

size into 2400 images. The best performing combination
of model and colorspace, AlexNet with XYZ color space,
achieved 99.04% accuracy in recognizing the disease of the
diseased fish. Gupta et al. [5] proposed a modified CNN
model based on VGG16 for classifying lice and wound on
salmon fish. They captured 239 images from live fishes in a
fish tank to create their dataset, which are then preprocessed
and augmented to 3289 images. The proposed CNN model,
VGG16, and VGG19 are trained and tested in their work.
The proposed CNN model reached 96.7% accuracy in
detecting salmon fish diseases, which is 3.89% and 5.5%
higher than VGG19 and VGG16, respectively. Y.P. Huang
and Khabusi [6] proposes an architecture based on atten-
tion mechanism, multilayer fusion, and online sequential
extreme learning machine to classify five different fish
diseases. Their work experimented with training and testing
various CNN models as well as their proposed models.
The dataset used in this work is composed of 649 images
collected online, which are preprocessed and augmented to
5165 images. Their proposed architecture reached 94.28%
accuracy in classifying various fish diseases, which is 2.24%
higher than the second best performing model, VGG19.

B. Transfer Learning
Pravitasari et al. [13] proposed the UNet-VGG16 ar-

chitecture and applied the transfer learning method for
segmentation of brain tumor. The proposed architecture
UNet-VGG16 was modified so that the encoder resembles
the VGG16 network and the decoder to match the encoder
layers. Imad et al. [15] proposes the use of transfer learning
to semantically segment 3D objects from LiDAR (Light
Detection and Ranging) data. The proposed network, which
shape was inspired by the U-Net architecture, receives the
pre-trained MobileNetV2 weights before being trained on
pre-processed bird-eye view images from raw point clouds.
Sakurai et.al. [16] proposed a two-step transfer learning for
semantic segmentation of plants. The FCN-8s network was
first pre-trained on ImageNet, then trained on a broader
plant dataset, and lastly trained on a narrower plant dataset.

3. Materials andMethods
A. Proposed Training Strategy

The training strategy we propose is as follows. First, we
obtain the ImageNet pre-trained network. As the network
was previously trained on a different dataset, the number of
classes on the network output will differ from the number
of classes on our dataset. Therefore, the classifier layer in
the pre-trained network is replaced with a new classifier
layer with the matching classes in our classification dataset.
The pre-trained network is then trained on the classification
task with the fish disease classification dataset until the
validation loss is at minimum. The pre-trained weights on
the network are not frozen and allowed to change during
training.

After the pre-trained network has been trained on the
classification dataset, we transfer the network weights from
the pre-trained network into the compatible layers of the



4 Anbang, et al.

Figure 1. Our proposed training strategy.

segmentation network. This segmentation network is then
trained on a segmentation task with the segmentation dataset
until the validation loss is at minimum. The transferred
weights on the network are not frozen and allowed to
change during training. Figure 1 shows the process of our
training strategy.

B. Network Architectures
To evaluate our proposed training strategy, we chose

VGG16 as the classification network along with SegNet and
U-Net to be evaluated as the segmentation networks. The
VGG16 network was primarily chosen due to the network
being easy to adapt and transfer into the chosen segmen-
tation networks. Additionally, we evaluated ResNet50 as
the classification network with U-Net to further test the
proposed training strategy on different networks.

The U-Net architecture is composed of two sections,
the encoder layers, and the decoder layers. Except for the
last encoder layer, the encoder layers are connected to the
respective decoder layers using skip connections. However,
the VGG16 weights cannot be directly transferred into the
U-Net architecture as the encoder layers do not match the
VGG16 network. Therefore, we modify the encoder layers
to adapt the VGG16 convolutional layers. This modified
architecture will be referred to as U-Net+VGG throughout
this paper. Unlike the architecture proposed in [13], we do
not modify the decoder layers to match the encoder layers.
The U-Net+VGG architecture is illustrated in Figure 2. In
the figure, the number above the boxes indicate the number
of channels of each layer in the same block, while the
number at the leftmost side indicates the layer width and
height for all the layers in the same row.

The ResNet50 network modification of U-Net is also
tested. To adapt the encoder, we forward the outputs of
the first convolutional layer and residual blocks into the
respective skip connections. Due to the stride convolution
in the first convolution layer in the ResNet50 network,
the output width and height of the first skip connection
is halved, resulting in the decoder layers outputting smaller

output than the input image. In order to match the output
size with the input size, we upsample the output with a
linear upsampler to double the width and height.

The SegNet architecture resembles the U-Net archi-
tecture with the main difference in the skip connection,
which only transfers max-pool indices into the respective
decoder layers rather than feature maps [18]. Another
difference of SegNet architecture is the use of VGG16 and
inverted VGG16 networks in both encoder and decoder
layers, respectively. Since the encoder layers of the SegNet
architecture already matches with the VGG16 network,
no modifications were necessary. We directly transfer the
VGG16 weights into the encoder layers.

All architectures are adjusted to receive images with
an input size of 448×448 to preserve the pixel sizing
between datasets. Batch normalization is applied after every
convolutional layer and before the ReLU (Rectified Linear
Unit) layer.

C. Datasets
1) Classification Dataset

The classification dataset is a fish disease classification
dataset obtained from Kaggle [19]. This dataset contains
460 images of fish that contracted various fish diseases, as
well as pictures of healthy fish. The images in this dataset
are labeled by being put into different folders, where each
folder represents a class, and the folder name represents its
class name. The dataset contains seven classes, one class
of it represents healthy fish and the rest of the classes
representing six different fish diseases.

We discovered that the dataset contains several dupli-
cated images within the same classes and between different
classes. Additionally, the dataset overlaps with the segmen-
tation dataset. To prevent leaking testing data to the model,
image deduplication is performed. We utilize a Python
library to easily detect potentially duplicate images within
the dataset and the segmentation dataset. The detected
potentially duplicate images are then manually selected by
a human to eliminate the possibility of false positives. The
filtered duplicate images are removed from the dataset,
prioritizing eliminating duplicate images from the largest
class. This image deduplication process resulted in 304
images left in the dataset. The deduplicated dataset is split
into training data, validating data, and testing data. Table I
shows the composition of each data splits produced from
the deduplicated dataset.

To match the segmentation network’s input size, image
pre-processing was applied to the entire dataset by resizing
and stretching every image to 448×448 pixels.

2) Segmentation Dataset
The segmentation dataset is a fish EUS segmentation

dataset obtained from Roboflow [20] that were used on the
previous work [8]. This dataset contains 26 images of fish
that contracted EUS. The images in this dataset are labeled



International Journal of Computing and Digital Systems 5

Figure 2. The U-Net+VGG architecture

TABLE I. The classification dataset composition

Class Total Train Test Valid

Bacterial diseases - Aeromoniasis 33 23 5 5
Bacterial gill disease 29 20 5 4
Bacterial Red disease 22 15 4 3
Fungal diseases . Saprolegniasis 34 24 5 5
Healthy Fish 128 90 19 19
Parasitic diseases 30 21 5 4
Viral diseases White tail disease 28 20 4 4
Total 304 213 47 44

by their respective segmentation masks that are included in
the dataset. The dataset contains one class of EUS disease
and background class, totaling in two classes.

Similar to the classification dataset, we also deduplicate
the image using the same method applied to the classifica-
tion dataset, resulting in 25 images left in the dataset. The
dataset is then split into training data, validating data, and
testing data containing 15, 5, and 5 images respectively.

The segmentation dataset contains images with varying
sizes. The simple method of stretching the image to fit might
skew the segmentation dataset in favor of images with wider
aspect ratio and thus cannot be used. Instead, the images
are pre-processed by rescaling the image equally in width
and height, while scaling the image to have the same new

width. We chose the new width to be fixed at the median
width of the segmentation dataset of 374 pixels.

Next, we employ a method to extend the height of the
image to increase the number of features in the image. The
method involves extending the original image by mirroring.
The segmentation masks are also extended the same way
as the image, increasing the mask area. This method is
only applied to the training data, as validation and testing
data should be kept unaltered. Therefore, for validation and
testing image data, we employ a different method in which
the image is extended by padding with black pixels. To
further illustrate the method used, an example is given in
Figure 3.

The resulting image size of this dataset is 374×374
pixels. To fit the image with the model input size, we further
resize and stretch the images to 448×448.

D. Data Augmentation
During the training process in both classification and

segmentation tasks, image augmentations are applied to
images right before being fed into the network. The image
augmentations are only applied to the training data splits.
The validation and testing data splits do not receive any
image augmentation at all. Image augmentations are applied
to all training strategies equally.

Following the previous work of Rachman [8], we
adopt their augmentation methods and improve upon these



6 Anbang, et al.

Figure 3. An example of the image processing method used for
squaring images. A: Original image and mask. B: Padding with black
pixels. C: Mirroring the original image

methods. We introduce batch-level augmentations such as
CutMix [21], MixUp [22], and Mosaic [23], as we found
out during testing that these augmentation techniques have
an effect in improving the model performance. Batch-level
augmentation techniques differ from usual augmentation
techniques in that they are applied to a batch of images
rather than single images. This allows for the augmented
image to contain other images within the batch, increasing
the variety of synthetic data. The image augmentations used
for this work are as follows, in the order of application.

1) Random choice. We apply different augmentation
methods depending on the tasks. In classification
tasks, the image is applied one of the following aug-
mentations with equal probability: CutMix, MixUp,
or none. In segmentation tasks, the image is applied
either a Mosaic augmentation or no augmentation,
also with equal probability.

2) Gaussian noise. The image is added by a noise
image generated from zero-mean gaussian noise with
standard deviation of 0.0125.

3) Blur. The image is applied a gaussian blur with
a random kernel size of 9 px, 5 px, or 0 px (no
blurring).

4) Horizontal and Vertical flipping. The image is flipped
on the horizontal and vertical axis, with equal flip-
ping probability on each axis.

5) Color shifting. The brightness and saturation of the
image is shifted by a random value between -25%
and 25%.

6) Elastic deformations. The image is deformed by
warping the image elastically [24].

7) Random rotation. The image is rotated to a random
value between -15° to 15°.

E. Evaluation
To help in evaluating the proposed training strategy,

we first introduce the training strategies used. The training
strategy used to train a model is indicated by a suffix in the
model’s name. The four suffixes and the training strategies
associated are as follows.

1) No suffix: The model is initialized with random
weights and trained.

2) -I: The model is loaded with the weights from the re-
spective classification model trained with ImageNet-
1K and trained.

3) -C: The model is loaded with the weights from the
respective classification model with no suffix and
trained.

4) -IC: The model is loaded with the weights from
the respective classification model with -P suffix and
trained. This is our proposed training strategy.

We also introduce and train classification networks that
will be used for transfer learning. The networks are as
follows.

1) VGG16: VGG16 network initialized with random
weights and trained on classification dataset.

2) VGG16-P: VGG16 network initialized with
ImageNet-1K VGG16 weights and trained on
classification dataset.

3) ResNet50: ResNet50 network initialized with ran-
dom weights and trained on classification dataset.

4) ResNet50-P: ResNet50 network initialized with
ImageNet-1K ResNet50 weights and trained on clas-
sification dataset.

Lastly, we experiment on different semantic segmen-
tation architectures to see the effects of our proposed
training strategy on different architectures. The semantic
segmentation architectures that will be evaluated in this
work are as follows.

1) U-Net: Unmodified U-Net architecture.
2) U-Net+VGG16: Modified U-Net architecture with

encoder layers replaced by VGG16.
3) U-Net+ResNet50: Modified U-Net architecture with

encoder layers replaced by ResNet50.
4) SegNet: Unmodified SegNet architecture, with en-

coder layers already containing VGG16.

To measure the improvement between training strate-
gies, we use mIoU as a metric. The metric mIoU is
widely used for evaluating the performance of semantic
segmentation models. The mIoU is calculated by taking the
statistical mean of all the IoU (Intersection over Union)
values across all the classes (excluding the background
class) and across all the images in the data split. Note that
since there is only one non-background class in our dataset,
we only compute the mean across all the images. The IoU of
a class of an image is computed by the following equation,



International Journal of Computing and Digital Systems 7

IoU =
P ∩G
P ∪G

=
T P

T P + FP + FN
(1)

Where P is the predicted pixels in the image that belong
to the class, and G is the ground truth pixels in the image
that belong to the class. TP, FP, and FN stand for true
positive, false positive, and false negative, respectively.

4. Results
A. Experimental Setup

The training setup was implemented using PyTorch 2.3.1
library and written in Python programming language. The
pre-trained VGG16 and ResNet50 models were obtained
from PyTorch Hub. The data augmentation pipeline was
implemented with TorchVision library that comes with
PyTorch itself. The training is performed on a single Nvidia
RTX 3080 GPU with 10 GB of Video RAM (Random
Access Memory).

All random weights are initialized using Kaiming initial-
ization with normal distribution [25]. Each training strategy
was repeated 8 times with the same data split distributions,
producing 8 models per training strategy. Out of the 8
models produced, the model with the best validation mIoU
score is chosen to represent the result for the training
strategy. The chosen models are then checked with testing
data to produce the testing mIoU scores, which shows the
actual model performance on unseen data.

B. Classification Task
We train all four classification networks with the SGD

(Stochastic Gradient Descent) optimizer with 0.9 momen-
tum. The learning rate is fixed at 0.0001 with no weight
decay for both VGG16 and VGG16-P. From testing, we
observed that ResNet trained better with weight decay.
Therefore, for ResNet50 and ResNet50-P, the learning rate
is fixed at 0.001 and weight decay is set at 0.0001. The
batch size for training is set at 8 to allow for training
to fit entirely in GPU. Weighted cross-entropy loss was
used for calculating losses, with each loss weight for each
class set to the mean class output frequency divided by
individual class output frequency. This is done to address
the class imbalance over-representing the healthy fish class
in the classification dataset. Additionally, we apply an early
stopping technique in which the networks are trained until
there are no improvements in validation loss for the last 100
epochs. For both VGG16-P and ResNet50-P, the networks
are trained until there are no validation loss improvements
in the last 10 epochs instead of 100 epochs, since both
networks have been pre-trained and converged quicker.
Table II shows the performance results of VGG16 networks
on the classification dataset.

C. Segmentation Task
Similar to the classification task, we use SGD optimizer

to train all the segmentation networks. We base the learning
rate and momentum from the paper [24] and search for

TABLE II. Accuracy scores of classification networks tested across
all data splits in the classification dataset

Classification Networks Epoch Train Valid Test

VGG16 87 68.08 34.04 45.45
VGG16-P 73 88.26 61.70 61.36

ResNet50 40 39.91 34.04 40.91
ResNet50-P 50 98.51 68.09 63.64

TABLE III. mIoU scores of segmentation networks tested across all
data splits in the segmentation dataset

Segmentation Networks Epoch Train Valid Test

U-Net 305 49.39 48.13 52.77
U-Net+VGG16 159 46.59 46.74 48.92
U-Net+VGG16-C 265 49.67 46.26 52.87
U-Net+VGG16-I 206 62.68 59.99 57.89
U-Net+VGG16-IC 197 63.76 57.80 60.43
U-Net+ResNet50 265 51.46 46.91 43.69
U-Net+ResNet50-C 506 48.95 47.53 46.13
U-Net+ResNet50-I 458 54.62 50.42 52.28
U-Net+ResNet50-IC 172 51.52 50.93 54.48
SegNet 215 68.69 48.51 51.26
SegNet-C 243 63.79 44.38 51.39
SegNet-I 264 74.98 61.73 58.22
SegNet-IC 252 73.91 61.25 58.71

the optimal learning rate. We found that a fixed learning
rate of 0.0003 and momentum of 0.99 is optimal for
training U-Net+VGG16 model, and so we apply these
training hyperparameters for U-Net, U-Net+VGG16, and U-
Net+ResNet50. We do not include weight decay in training,
as from our testing we discovered that adding weight decay
causes the model training to worsen. For SegNet, we base
the learning rate and momentum from the paper [18] and
search for the optimal learning rate. We found that a fixed
learning rate of 0.01 and momentum of 0.9 is optimal for
training SegNet. In order to eliminate variations in training,
batch size is set to the highest number that accommodates
the largest model while still allowing for training to fit
entirely in GPU. We set the batch size to 5 for all models.
Focal Tversky loss was used for calculating losses, as
we found out that training with Focal Tversky loss gives
better result than training with Dice loss. We also apply
early stopping technique to segmentation task as well, in
which the training strategies are trained until there are no
improvements in validation loss for the last 50 epochs.

Table III shows the performance results for each training
strategy employed at the end of training, with the perfor-
mance calculated at the epoch when the model achieves
its lowest validation score. The number of epoch when the
model achieved its lowest validation mIoU score is shown
in the table.



8 Anbang, et al.

Figure 4. Training loss curves of the U-Net+VGG16 training strate-
gies

From the results shown, all the models with the -IC
prefix achieved the highest testing mIoU score in their
respective architectures. The U-Net+VGG16-IC performed
the best among other architectures with a testing mIou score
of 60.43%. SegNet-IC performed very well and achieved
second in testing with a mIoU score of 58.71%. While the
U-Net+ResNet50-IC did not perform as good as most of the
other models, it still manages to outperform the other model
in its architecture, with a testing mIoU score of 54.48%.
This suggests that our proposed training strategy, indicated
with the -IC prefix, can improve the model’s performance.

We show the training loss curves for each training
strategy in their respective architecture to show how the
training progresses in each training strategy. For clarity,
all the training loss curves we show in this section are
smoothed using a moving average calculated from the
training loss scores from the 6 last epochs. The training
loss curve shows how the loss of the model converges. Note
that some models have curves that end at shorter epochs as
these models were cut short in their training due to the early
stopping technique we applied.

Figure 4 shows the training loss curves of various
training strategies applied to the U-Net+VGG16 archi-
tecture. The curve clearly shows that U-Net+VGG16-
I and U-Net+VGG16-IC converges the best among the
other training strategies. Between these two training strate-
gies, U-Net+VGG16-IC converges slightly better than U-
Net+VGG16-I. This might suggest that the additional train-
ing from classification data causes the training to converge
better.

Figure 5 shows the training loss curves of various
training strategies applied to the U-Net+ResNet50 archi-
tecture. It appears that U-Net+ResNet50 converges faster
than the other training strategies, despite achieving the
worst testing score. We suspect this might be caused by
the model overfitting due to the scarcity of segmentation
data. U-Net+ResNet50-C also converges as fast as U-
Net+ResNet50 but only performs slightly better, possibly
due to the same reason as U-Net+ResNet50. Lastly, U-

Figure 5. Training loss curves of the U-Net+ResNet50 training
strategies

Figure 6. Training loss curves of the SegNet training strategies

Net+ResNet50-IC converges slightly better and has a better
testing score than U-Net+ResNet50-I.

Figure 6 shows the training loss curves of various
training strategies applied to the SegNet architecture. Seg-
Net training progress appears to have plateaued initially
as the model was having difficulty in converging before
it eventually started converging normally. While SegNet-
IC performed slightly better than SegNet-IC, both models
appear to converge nearly the same.

To further validate the results, we also show two difficult
segmentation cases, image A and B, in Figure 7. The
areas marked in yellow show the EUS-diseased area, while
the background class is marked in purple. As seen in the
segmentation masks, some of the models, most notably U-
Net+VGG16 and U-Net+ResNet50, performed poorly and
produced splotchy segmentation masks as these models
struggle to differentiate between the fish skin features and
the fish ulcers. However, the models prefixed with -I and -IC
performed well and produced cleaner masks. The models
prefixed with -IC performed better than the -I models
in their respective architecture and produced even cleaner
segmentation masks.

5. Discussion
We trained VGG16 and ResNet50 classification net-

works on a fish disease classification dataset to acquire the



International Journal of Computing and Digital Systems 9

Figure 7. Comparison of segmentation maps produced by each training strategies

weights for testing different training strategies. We used U-
Net, U-Net with VGG16, U-Net with ResNet50, and SegNet
architectures for segmentation network. We then formulate
13 different training strategies, with varying methods of
training, to compare between our proposed training method
with alternative training methods. The training strategies are
trained and compared their training results to each other
training strategies. We showed the training loss curves for
different strategies to see how the model loss converges
during training. We showed the mIoU scores of each
training strategy in three different data splits.

The modified U-Net with VGG architecture achieves a
slightly worse performance compared to the unmodified U-
Net architecture, only achieving a testing mIoU score of
48.92%. The convolutional layers of VGG16 are closely

similar to the encoder layers in U-Net, with the only
differences being that an extra block is added to layer 3
to 5, and the number of channels in the final layer being
half compared to the U-Net ones. This might suggest that
the reduction in the number of channels in the final layer
has negatively affected the performance of U-Net+VGG16.

The training strategy that we propose, which makes
use of both ImageNet and classification dataset, are also
compared with alternative strategies which only make use
of either ImageNet or classification dataset. This was done
to confirm our findings that the inclusion of both ImageNet
and classification dataset improves the performance of the
network more than either ImageNet or classification dataset
alone.



10 Anbang, et al.

TABLE IV. mIoU scores comparison between our work and Rach-
man’s work

Segmentation Networks Epoch Train Valid Test

U-Net 305 49.39 48.13 52.77
U-Net+VGG16 159 46.59 46.74 48.92
U-Net+VGG16-C 265 49.67 46.26 52.87
U-Net+VGG16-I 206 62.68 59.99 57.89
U-Net+VGG16-IC 197 63.76 57.80 60.43
U-Net+ResNet50 265 51.46 46.91 43.69
U-Net+ResNet50-C 506 48.95 47.53 46.13
U-Net+ResNet50-I 458 54.62 50.42 52.28
U-Net+ResNet50-IC 172 51.52 50.93 54.48
SegNet 215 68.69 48.51 51.26
SegNet-C 243 63.79 44.38 51.39
SegNet-I 264 74.98 61.73 58.22
SegNet-IC 252 73.91 61.25 58.71
fcn_32_mobilenet - 87.28 57.97 52.82
resnet50_unet - 89.64 59.74 59.33
mobilenet_segnet - 93.77 65.35 53.69
mobilenet_unet - 98.75 62.33 55.33

We evaluated the training strategies on both U-Net and
SegNet to study the effectiveness of our training strategy
in two different semantic segmentation architectures. Fur-
thermore, we also applied our proposed training strategy
onto a different classification network such as ResNet to
study the effectiveness of our training strategy on a different
network. As we have shown in the results section, the
models that were trained with our proposed training strategy
achieved the highest testing mIoU score in their respective
architectures. This suggests that the proposed training strat-
egy can be applied to various classification networks and
semantic segmentation architectures to improve the model
performance.

We compare our model results with [8] in Table IV. Both
our work and their work uses the same segmentation dataset
in [20]. In their work, the dataset was split from 26 images
into 20, 4, and 2 images before various augmentation
methods were used to increase the number of images into
960, 64, and 32 images for training data, validating data,
and testing data respectively. In contrast to our work, we
deduplicate the dataset from 26 images into 25 images
before splitting it, and data augmentations are only applied
to the training data split during training phase instead of
being applied to all data splits during image pre-processing
phase. The reason that we do not apply augmentation in the
validation and testing data is because the models should be
evaluated on natural data and not synthetic data. We also
split the dataset in favor of the validation and testing data
splits, resulting in 15, 5, and 5 images for training data,
validating data, and testing data, respectively.

As seen on the comparison table, their best perform-
ing model is resnet50_unet with a testing mIoU score of

59.33%, which has a similar architecture to ours named U-
Net+ResNet50. However, even with our proposed training
strategy, our model performs worse than theirs. We believe
that this might be caused by the difference in the method
of sampling and splitting the dataset between both their
and our works. Their data splits are composed of 20, 4,
and 2 images while ours are composed of 15, 5, and 5
images for training data, validating data, and testing data,
respectively. Furthermore, our work also makes use of data
deduplication, pre-processing the image with aspect ratios
preserved, and data augmentation applied only on training
data rather than the entire dataset. Despite the difference
between the methods used on both works, our model U-
Net+VGG16-IC managed to perform better than their best
model resnet50_unet with a testing mIoU score of 60.43%.

Some of our models such as U-Net+VGG16-C, U-
Net+VGG16 and U-Net appear to have testing scores that
are higher than their training scores. While it is abnormal for
a model to achieve higher scores in testing than in training,
we do not think that this anomaly is caused by a fluke,
as we repeated each training strategy 8 times and found
the score to be consistent between repetitions. Instead, we
suspect that this is caused by the poor distribution of our
dataset, which was caused by the limited sample size of
the dataset. Despite our best efforts, we were unable to
procure larger fish disease semantic segmentation public
datasets online, as the other datasets found online appear
to be either poorly annotated or lacking documentation.
Nevertheless, the other models that we evaluated appear
normal and achieve reasonable training and testing scores.

This work has shown that our proposed training strategy,
which was closely based on the two-stage transfer learning
method by [16], is effective in improving the performance
of the fish disease semantic segmentation model. Despite
the limited number of samples in segmentation dataset this
work is facing, our proposed training strategy that makes
use of both pre-trained network and classification dataset
still managed to perform better than alternative training
strategies that only either make use of pre-trained network
or classification dataset. We have also tested the training
strategies on different architectures, and the results also
shows that each architecture trained with our proposed
training strategy performed better than alternative training
strategies. Therefore, our work suggests that the two-stage
transfer learning method can be more effective than the
conventional one-stage transfer learning method, even when
applied at various architectures.

6. Conclusion and Future work
We have proposed a training strategy based on transfer

learning to improve the semantic fish EUS segmentation.
The proposed training strategy involves training the classi-
fication network on both ImageNet and classification dataset
before being transferred into the segmentation architecture.
To evaluate the proposed training strategy, we chose VGG16
and ResNet50 as the classification network along with U-



International Journal of Computing and Digital Systems 11

Net and SegNet as the segmentation architectures. Two
datasets were used for the experiment, one for classification
task, and another for segmentation task. We modified the
architecture to include a VGG16 and ResNet50 encoder
layer in order for the pre-trained weights to be transferred.
To compare and show the effectiveness of the proposed
training strategy, we train the proposed training strategy
along with the alternative training strategies.

The results between the training strategies are then
compared. The models that were trained with our proposed
training strategy performed better than the alternative train-
ing strategies in their respective architecture classes, which
shows the effectiveness of our proposed training strategy.
The best performing training strategy is U-Net+VGG16-
IC with validation and testing mIoU score of 57.80% and
60.43%, respectively.

In the future, more recent semantic segmentation models
can be researched to improve the segmentation quality
of fish diseases. We will also look into exploring object
detection networks and region-level labeled datasets that are
less difficult to annotate than pixel-level labeled datasets.

References
[1] BPS, “Produksi perikanan budidaya menurut komoditas utama,”

Tech. Rep., 2022.

[2] L. O. Haslan, Buku Saku Hama dan Penyakit Ikan, 2017.

[3] M. S. Ahmed, T. T. Aurpa, and M. A. K. Azad, “Fish disease
detection using image based machine learning technique in aquacul-
ture,” Journal of King Saud University - Computer and Information
Sciences, vol. 34, no. 8, pp. 5170–5182, 9 2022.

[4] M. J. Mia, B. R. Mahmud, M. S. Sadad, A. H. Asad, and R. Hossain,
“An in-depth automated approach for fish disease recognition,”
Journal of King Saud University - Computer and Information
Sciences, vol. 34, no. 9, pp. 7174–7183, 10 2022.

[5] A. Gupta, E. Bringsdal, K. M. Knausgård, and M. Goodwin,
“Accurate wound and lice detection in atlantic salmon fish using
a convolutional neural network,” Fishes, vol. 7, no. 6, p. 345, 11
2022.

[6] Y.-P. Huang and S. P. Khabusi, “A cnn-oselm multi-layer fusion
network with attention mechanism for fish disease recognition in
aquaculture,” IEEE Access, vol. 11, no. June, pp. 58 729–58 744,
2023.

[7] N. Hasan, S. Ibrahim, and A. Azlan, “Fish diseases detection using
convolutional neural network (cnn),” Int. J. Nonlinear Anal. Appl,
vol. 13, no. November 2021, pp. 2008–6822, 2022.

[8] F. Rachman, M. Akbar, and E. Putera, “Fish disease detection of
epizootic ulcerative syndrome using deep learning image processing
technique,” vol. 8, no. 1. The International Institute of Knowledge
Management, 1 2023, pp. 23–34.

[9] H. Chakravorty and R. Paul, “Image processing technique to detect
fish disease,” International Journal of Computer Science & Security,
vol. 9, no. 2, pp. 121–131, 2015.

[10] A. Amyar, R. Modzelewski, H. Li, and S. Ruan, “Multi-task deep
learning based ct imaging analysis for covid-19 pneumonia: Clas-
sification and segmentation,” Computers in Biology and Medicine,
vol. 126, no. October, p. 104037, 11 2020.

[11] S. Hong, J. Oh, H. Lee, and B. Han, “Learning transferrable knowl-
edge for semantic segmentation with deep convolutional neural
network,” vol. 2016-Decem. IEEE, 6 2016, pp. 3204–3212.

[12] Y. Sun, S. Liao, C. Gao, C. Xie, F. Yang, Y. Zhao, and A. Sagata,
“Weakly supervised instance segmentation based on two-stage trans-
fer learning,” IEEE Access, vol. 8, pp. 24 135–24 144, 2020.

[13] A. A. Pravitasari, N. Iriawan, M. Almuhayar, T. Azmi, I. Irhamah,
K. Fithriasari, S. W. Purnami, and W. Ferriastuti, “Unet-vgg16
with transfer learning for mri-based brain tumor segmentation,”
TELKOMNIKA (Telecommunication Computing Electronics and
Control), vol. 18, no. 3, p. 1310, 6 2020.

[14] S. Baressi Šegota, I. Lorencin, K. Smolić, N. And̄elić, D. Markić,
V. Mrzljak, D. Štifanić, J. Musulin, J. Španjol, and Z. Car, “Semantic
segmentation of urinary bladder cancer masses from ct images: A
transfer learning approach,” Biology, vol. 10, no. 11, p. 1134, 11
2021.

[15] M. Imad, O. Doukhi, and D.-J. Lee, “Transfer learning based
semantic segmentation for 3d object detection from point cloud,”
Sensors, vol. 21, no. 12, p. 3964, 6 2021.

[16] S. Sakurai, H. Uchiyama, A. Shimada, D. Arita, and R.-i. Taniguchi,
“Two-step transfer learning for semantic plant segmentation,” vol.
2018-Janua, no. Icpram. SCITEPRESS - Science and Technology
Publications, 2018, pp. 332–339.

[17] A. Waleed, H. Medhat, M. Esmail, K. Osama, R. Samy, and T. M.
Ghanim, “Automatic recognition of fish diseases in fish farms.”
IEEE, 12 2019, pp. 201–206.

[18] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 12, pp. 2481–2495, 11 2015.

[19] S. Biswas, “Freshwater fish disease aquaculture in south asia
dataset,” 2022.

[20] Roboflow, “Fish disease 2 dataset,” Roboflow Universe, 8 2022,
visited on 2024-02-21.

[21] S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo, and J. Choe, “Cutmix:
Regularization strategy to train strong classifiers with localizable
features,” vol. 2019-Octob. IEEE, 10 2019, pp. 6022–6031.

[22] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” 6th International Conference
on Learning Representations, ICLR 2018 - Conference Track Pro-
ceedings, pp. 1–13, 10 2017.

[23] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” 4 2020.

[24] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” IEEE Access, vol. 9,
pp. 16 591–16 603, 5 2015.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:



12 Anbang, et al.

Surpassing human-level performance on imagenet classification,” vol. 2015 Inter. IEEE, 12 2015, pp. 1026–1034.


	Introduction
	Related Works
	Fish Disease Detection
	Transfer Learning

	Materials and Methods
	Proposed Training Strategy
	Network Architectures
	Datasets
	Classification Dataset
	Segmentation Dataset

	Data Augmentation
	Evaluation

	Results
	Experimental Setup
	Classification Task
	Segmentation Task

	Discussion
	Conclusion and Future work
	References

