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Abstract: In the recent era of the modern world, Android malware continues to escalate, and the challenges associated with its usage
are growing at an unprecedented rate. This causes rapid growth in Android malware infections, which points to an alarming and swift
rise in their prevalence, signaling a cause for concern. Traditional anti-malware systems, reliant on signature-based detection, prove
inadequate in addressing the expanding scope of newly developed malware. Various strategies have been introduced to counter the
escalating threat in the Android mobile field, with many leaning towards machine learning (ML) models limited by a constrained set
of features. This paper introduces a novel approach employing a deep learning (DL) framework, incorporating a significant number of
diverse features. The proposed framework uses Deep Neural Network (DNN) techniques on a static OmniDroid dataset, comprising
25,999 features extracted from 22,000 Android Package Kits (APKs). Of these, 16,380 features are meticulously selected for analysis,
encompassing Permission, Opcodes, Application Programming Interface(API) calls, System Commands, Activities, and Services.
Additionally, the data is partitioned feature-wise and subjected to feature selection on each feature set to ensure equitable consideration
of all features. A comparative analysis is presented by comparing the framework accuracy with the accuracies produced by the existing
ML models. The presented framework demonstrates notable enhancements in detection accuracy, achieving 89.04% accuracy, attributed
to the incorporation of a substantial number of features.
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1. Introduction
Technology integration makes smartphones an essential

part of everyday life and a significant factor in the mobile
security landscape. The development of Android malware
is a global issue that needs to be resisted. This paper
focuses on developing a detection framework based on
DNN. A study reports that 450,000 new malware programs
and potentially unwanted apps targeting individual hand-
held devices emerge daily [1]. Security professionals are
encountering many malware attacks targeting smartphones,
including banking trojans, spyware, adware droppers, etc.
[2]. Notably, the Google Play Store alone hosts approxi-
mately 3.55 million Android applications of various types
[3]. Despite that users can also install applications from
third-party sources on the Android platform, increasing the
risk of downloading malicious apps from hostile servers.

To develop an Android app, developers must include
specific files in the package format with a .apk exten-
sion. One crucial file, AndroidManifest.xml, contains in-
formation about the app, such as the package version,

required permissions, intents, actions, and services. The
classes.dex file encapsulates the complete bytecode that
defines the application’s functionality. Android employs a
permission-based security model, granting applications only
those permissions explicitly allowed by the user, which
enhances the overall security framework. However, these
security measures have not eliminated the diverse range of
attacks targeting Android, highlighting ongoing challenges
in protecting the platform against evolving cybersecurity
threats.

Most antivirus detection systems rely on signature-
based detection, which malware writers can easily obfuscate
by altering the malicious application’s signature. Minimal
obfuscation of malware code can also evade detection. Zhan
et al. [4] demonstrated a patching technique in which a piece
of code is appended at a nonfunctional location, enabling
the malware to evade detection. Detecting Android malware
is crucial for users, and numerous researchers have proposed
various solutions to mitigate these attacks, reflecting con-
tinuous efforts to enhance the platform’s resilience against
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malicious threats.

The effectiveness of detection models may be compro-
mised if they do not incorporate a diverse set of features
during the training process, emphasizing the importance of
exploring a wide range of characteristics for robust model
development. The literature survey in this study reveals
that although many detection frameworks are available,
they often train on a limited number of features to reduce
model complexity. This limitation can affect the detection of
malicious applications whose features are discarded during
the feature selection process in a given dataset. Overlooking
such features can lead to errors in the detection model.
Instead, considering a substantial number of features as
input for training a model may increase the likelihood of
detecting malicious applications. Addressing this problem,
the proposed framework presents a solution in the following
sections. This research aims to develop a supervised deep
learning framework using DNN techniques, leveraging an
array of static features identified through an extensive
review of diverse research works. Comparative analysis is
conducted through several experiments using a substantial
number of input features.

The subsequent sections cover: the related literature sur-
vey in Section 2, the methodology of the proposed system
in Section 3, the proposed framework in Section 4, the
experimental setup in Section 5, the results and discussion
in Section 6, a comprehensive comparative analysis in
Section 7, and a summary of the work in Section 8.

2. Literature Survey
Gopinath et al. [5] surveyed the efficiency of deep

learning in the field of malware detection and stated that
models based on deep learning are robust and offer solutions
to the shortcomings of traditional detection models.

Wang et al. [6] proposed a Multi-Network (MN) based
classification model with multilevel permission extraction.
They extracted 135 permissions and applied Principal com-
ponent analysis (PCA) on permissions to eliminate redun-
dant features and finally used 25 features for classification.
They compared MN with Support Vector Machines (SVM),
Decision Tree (DT), and Random Forest (RF) algorithms
and found that MN performed better with over 95.8%
accuracy.

ALTAİY et al. [7] In their study, utilized three deep
learning methods, namely Convolutional Neural Network
(CNN), DNN, and Long-Short-Term Memory Network
(LSTM), focusing on a dataset comprising network traffic
of botnet samples. Their experimental results indicated that,
among the three methods, LSTM demonstrated superior
performance.

Bai et al. [8] in their study introduced a framework
aimed at Android malware family classification through
the analysis of permissions, API calls, and Intents. Their
research included a comparative evaluation of multiple ma-

chine learning models, including SVM, DT, RF, K-Nearest
Neighbor (KNN), and Multi-Layer Perceptron (MLP), with
findings indicating that MLP outperformed the other models
in terms of classification accuracy.

Le et al. [9] proposed a machine learning-based ap-
proach on three different feature sets such as APIs, per-
missions, and other characteristics of APK files such as the
size of the application, the number of classes included in
the application, the number of User Interfaces (UIs) created
by the application that refers to the total count of distinct
screens, pages, or interactive components designed for user
interaction within the application. They used RF, Stochas-
tic Gradient Boosting (SGB), and AdaBoost classification
methods. They extracted 65 features; 62 features about
behavior and permissions and three features about the size
of the application, the number of classes in the application,
and the number of User Interface of the application. They
achieved 98.66% accuracy using the RF among all other
models.

Rodrigo et al. [10] introduced a hybrid detection model
utilizing the Omnidroid dataset. Employing Pearson Corre-
lation for feature selection, they narrowed it down to 840
features. The model underwent training and validation using
a neural network, yielding an initial accuracy of 85.8%.
Subsequent refinement involving threshold relabeling led to
a notable accuracy boost, reaching 92.9%.

Oliveira et al. [11] introduced a hybrid detection ap-
proach combining the results of different models employing
DNN techniques. One model utilizes 200 static features, the
second model uses images, and the third model uses system
call sequences. The final classifier produced 90.9% accuracy
on a combination of all features.

Gao et al. [12] proposed a framework using DNN and
generative adversarial network(GAN) for malware family
classification against packed malware. They considered two
datasets of packers from 10 different malware families.
One dataset contains malware packed by a single packer,
and the other dataset contains malware packed by multiple
packers. They used DNN for malware detection and family
classification. The detection accuracy of the packed mal-
ware achieved 98.20% and for family classification of the
malware they achieved 91.66% accuracy which is elevated
to 97.8% after using GAN. Hence they concluded that their
framework is a solution to the packed malware.

Li et al. [13] in their proposed framework addressed
the issue that, models trained on outdated datasets often
result in suboptimal decision-making, particularly when
confronted with contemporary malware types. Instead of
using DNN for prediction and classification, they used
the misclassifications or uncertainties done by the model.
They trained another model called the correction model
that evaluates whether a sample has been accurately or
inaccurately predicted by the DNN model, providing crucial
insights into the model’s performance and identifying areas
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TABLE I. Dataset Feature Distribution Overview

Name of the
Features

Considered number
of Features

Permissions 5501
Opcodes 224

API Calls 2129
System Commands 103

Activities 6089
Services 2334

for improvement. Then they used the outcomes of the
Correction Model to refine and optimize the performance
of the DNN model, thereby improving its accuracy and ef-
fectiveness in predicting malware instances. Their proposed
model achieved 94.38% accuracy.

Aamir et al. [14] introduced a framework using CNN for
Android malware detection. They used the Drebin dataset
for their experiment. As CNN works on image data they
converted the APK files into images using techniques like
Spectrogram or Scalogram and trained the model using
CNN and achieved an accuracy of 99.92%.

Nasser et al. [15] proposed a deep learning-based de-
tection model called DL-AMDet. Their model performs the
detection in stages. In the first stage, the model performs
static analysis using permission and API calls trained on the
CNN-BiLSTM model. If the application is detected as mal-
ware in the static analysis stage the model does not perform
the dynamic analysis otherwise if the application is detected
as non-malicious then the application again has to go for
dynamic analysis. The used system calls as input feature
for an anomaly detection model using deep autoencoders.
They evaluated the model on different datasets and achieved
99.93% higher accuracy in the anomaly detection model.

3. ProposedMethodology
For detection, the proposed framework uses six im-

portant features such as permissions, opcodes, API calls,
system commands, activities, and services. The static Om-
niDroid dataset [16] offers an extensive array of features, in-
cluding 5501 permissions, 224 opcodes, 2129 API calls, 103
system commands, 6089 activities, 4365 services, 6415 re-
ceivers, 212 API packages, and 961 FlowDroid outputs, all
derived from 11,000 benign and 11,000 malicious samples.
In this paper, the experiments utilize 16,380 distinct features
from the 25,999 available, comprising 5501 permissions,
224 opcodes, 2129 API calls, 103 system commands, 6089
activities, and 2334 services. These features are identified
based on a comprehensive literature survey conducted for
this study, with detailed explanations provided in Table I.

Permissions: Permissions are nothing but the safeguards
that control the access rights of the apps to the features
and data of the device. The permissions are declared under
the <uses-permission> tag of the AndroidManifest.xml file
in the APK. Permissions play a crucial role in malware

Figure 1. Example of Normal and Dangerous Permissions

detection. It brings the user’s consent towards the app’s
access to sensitive data by seeking an explicit grant
for the requested access. Permissions are categorized
into normal, dangerous, and signature. Figure 1 lists
some permission extracted from a malicious app of
Trojan type. It contains both normal and dangerous
permission. As shown in Figure 1 the app asks
for INTERNET, and ACCESS NETWORK STATE
permissions, which are commonly asked by most
applications and considered normal permissions whereas
the other permissions such as; READ PHONE STATE,
WRITE EXTERNAL STORSGE,
MOUNT UNMOUNT FILESYSTEM,
READ SETTINGS and WRITE SETTINGS are the
dangerous permissions that may authorize access to
external data and resources beyond the application’s
controlled environment, in most cases putting user data
and system integrity at risk. Various studies have been put
forth to date aimed at detecting Android malware through
the analysis of permission features [17] [18].

Opcodes: these are the human-readable instructions in a
program that the Dalvik Virtual Machine (DVM) executes.
With Android’s shift to the Android Runtime (ART), these
programs are now executed by the ART instead. These
opcodes are generated during the compilation process that
represents the operations to be performed within the ap-
plication. Figure 2 is an example that shows the opcodes
that is extracted from Android applications. Many studies
with good performance have been conducted so far utilizing
opcodes [19][20].

Services: services are one of the primary components
that every Android app has to have. Services do not need
a visible interface instead they seamlessly operate in back-
ground for the tasks like downloading a large file, uploading
a large data, playing music, etc. Inter-process Communi-
cation (IPC) also happens through services between the
apps. Figure 3 shows an example of the services listed by
a malicious app in its AndroidManifest.xml file.

Activities: activities in Android applications are another
component that operates in individual User Interfaces (UI)
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Figure 2. Example Of Opcodes

Figure 3. Example Of Services

within an app. They are the entry points for user in-
teraction like the main() method in other programs. The
code initiation by OS happens by a callback method in an
activity instance and it corresponds to stages of lifecycle
to accomplish a single task. Activities manage the user
interface, handle user input events, and facilitate interaction
between the app and the user. They play a crucial role in
the Android app lifecycle, transitioning between different
states such as creation, pausing, resuming, and destruction
based on user interaction and system events. Figure 4 is an
example to show the activities in an application.

API Calls: API calls in Android refer to the services,
resources, or functionalities the applications access from
remote servers or web services. Any action that needs
interaction with the remote server such as data fetching, user
authentication, sending notifications, etc. is done by making
API calls. These calls are made using HTTP requests by
the API of the service provider. Figure 5 shows the API

Figure 4. Example Of Activities

Figure 5. Example Of API Calls

calls of an application mentioned in its classes.dex file.
The API calls involve; constructing the request, sending
the request, handling the response, parsing the response,
and finally performing the requested action or updating the
user interface (UI). The HTTP request contains the method,
URL, header, and body. Then the constructed request is sent
using any of the libraries like Retrofit, Volley, etc. Once the
request is processed by the server, the application receives
a response. This response may include data or the status
of the request such as success or failure. Then the received
response is parsed to extract the relevant information and
based on it the application performs the specific required
action. The API call is another extensively utilized feature
for Android malware detection, with numerous researchers
incorporating it into their studies [21][22].

System Commands: system commands sometimes mod-
ify the installed applications, which can potentially cause
unintended damage to the device. Some common system
commands are; logcat, reboot, install, and uninstall, etc.

A. Data Pre-processing and Feature Selection
In this study data cleaning process involves a row

reduction technique to eliminate duplicate entries. Rather
than conducting feature selection on the entire dataset as
a whole, the data is partitioned feature-wise, and feature
selection is subsequently carried out using the Information
Gain (IG) algorithm on each feature set separately. The
IG algorithm computes a value, referred to as the IG
score, for each feature in the feature set. This IG score
indicates the information content of the respective feature
within the dataset. Each feature’s IG score is determined by
subtracting the individual feature’s entropy from the entropy
of the output column, where entropy signifies uncertainty in
this context. The calculation of IG scores for each feature
follows Equation (1).

IG ( fi) = H(y) − H ( fi) (1)

In Equation (1), IG( fi) is the score calculated using the
IG technique for each feature that reflects the amount of
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Figure 6. Ranking Of The Permissions In Descending Order.

Figure 7. Ranking Of The Services In Descending Order.

information each feature contributes to the dataset; here,
’i’ denotes the feature’s column index. H (y) represents
the entropy of the output column, and H(fi) is the entropy
of each feature. In this proposed work individual features
(Permissions, Opcodes, API calls, System Commands, Ac-
tivities, and Services) are separated from the whole dataset.
Then using the IG technique the features are evaluated
and scored to understand the information content of in-
dividual feature types such as; the impact of permission
in malware detection, the impact of API calls in malware
detection, and likewise for other features. Figures 6 through
11 provide a comprehensive insight into the information
content of various feature types. Figure 6 represents the
information content of permissions concerning the target
variable. Figure 7 represents the information content of
services concerning the target variable. Figure 8 represents
the information content of opcodes concerning the target
variable. Figure 9 represents the information content of ac-
tivities concerning the target variable. Figure 10 represents
the information content of API calls concerning the target
variable and Figure 11 represents the information content
of system commands concerning the target variable.

Figure 8. Ranking Of The Opcodes In Descending Order.

Figure 9. Ranking Of The Activities In Descending Order.

Figure 10. Ranking Of The API Calls In Descending Order.
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Figure 11. Ranking Of The System Commands In Descending Order.

Upon individual feature evaluation, it becomes evident
that each feature makes a distinct contribution to the
prediction of the output. When multiple feature types are
considered within a single dataset, there exists a possibility
that during feature selection, the algorithm might disregard
one feature type entirely due to its lower information gain
score compared to another feature type. For instance, in
scenarios where features of opcode type demonstrate higher
information gain values than those of permission types, per-
mission type features may probably be entirely overlooked
during the feature selection stage. To address this scenario,
feature selection is applied individually to each feature type
ensuring equal importance is given to all considered feature
types. Based on the observation, 40% of features from each
feature type are selected and subsequently combined into
a single dataset. Following feature selection, the dataset
now comprises 6552 features, including 2200 permissions,
90 opcodes, 852 API calls, 41 system commands, 2436
activities, and 933 services. Subsequently, IG is reapplied to
the selected feature data to evaluate the IG scores. Figure
12 represents the IG score of the features and those are
plotted based on the score in descending order as shown in
Figure 13.

4. Proposed Framework
This segment presents a framework using the DNN

approach for Android malware detection. The proposed
system architecture, illustrated in Figure 14, involves col-

Figure 12. Exemplary Representation of Features and their IG Score

Figure 13. Features Plotted In Descending IG Score

lecting raw data, selecting the desired subset from the
entire dataset, performing feature selection, and conducting
various experiments using the DNN model. The details
about the dataset and the feature selection process have
already been explained in Section III. The DNN architecture
encompasses the arrangement of an input layer, hidden
layers, and an output layer. The data is computed through
forward propagation, and the back-propagation algorithm is
employed to fine-tune the efficient parameters at each layer.
The input is given to the network in batches for processing.
The hidden layers within the network process the input
and the neurons in the output layer generate the final
predictions. The output computed by the model is expressed
in a simplified form by equation (2). The model incorporates
the rectified linear activation unit (ReLU) for non-linear
transformations on each hidden layer. It addresses the
vanishing gradient problem as denoted in equation (3). The
computation at the output layer by the sigmoid activation
function is shown in equation (4).

Figure 14. Proposed System Architecture
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TABLE II. The Final Set Of Model Parameters For The Proposed
System

Hyper-Parameters
in the Network Values

Number of epochs 400
Number of hidden layers 13

Dropout 0.2
Batch size 128

Loss optimization function Binary crossentropy

Zn = fsigmoid

(
( frelu (lhidden))p

i=1

)q
j=1

(2)

where, frelu = max (0,Zn) ,∀n ∈ N (3)

and, fsigmoid =
1

1 + e(−z) (4)

In equation (2), ’i’ varies from 1 to p, where ’p’
represents the number of neurons within a given hidden
layer, ’j’ spans from 1 to q, where ’q’ denotes the total
number of hidden layers in the network, and ’Zn’ signifies
the output score produced by the model.

Efficiently training a DNN demands significant effort in
exploring and identifying optimal parameters that enhance
the model’s performance. Instead of employing a trial-
and-error approach to determine efficient parameter values,
the experiments utilized the RandomSearch optimization
algorithm. This algorithm identifies a suitable combination
of hyperparameters, encompassing variables such as the
number of hidden layers, the number of neurons in each
hidden layer, and the learning rate, among others. In this
study, several parameters are configured for the Random
Search algorithm to perform hyperparameter optimization.
For instance, the number of layers is set within a range of
2 to 20, meaning the network will have at least 2 and at
most 20 hidden layers. Similarly, the number of neurons
per layer is specified to be between 32 and 512, ensuring
that each layer will contain a minimum of 32 neurons and a
maximum of 512 neurons. Details about the hidden layers
and neurons are provided in Table II. Several experiments
were performed with epoch (number of times the network
performs learning) numbers (i.e., 50, 100, 200, 400, 500),
with 5 values for the dropout rate (0.0, 0.1, 0.2, 0.3, 0.5).
Based on the results obtained in different experiments 400
as the epoch no and the dropout rate of 0.2 as best values
are considered for all the experiments. In this study, the
considered hyper-parameters are explained in Table II.

In this proposed framework regularizers are used at
different levels of the model such as kernel level, bias level,
and output layer with L2 regularization penalty to deal
with the overfitting problem during model training. The
loss calculation by the model using the L2 regularization
technique is represented in Equation (5) which says the sum
of the squares of the entire feature weights are added to the

original entropy and the penalty is calculated based on it.

Loss with regularizaion = E + λ
n∑

k=1

w2
k (5)

In equation (5); E is entropy (the loss generated by the
model),λ is a regularization constant (λ > 0),Wk represents
the weight of the kth parameter of the model.

5. Experimental Setup
All experiments conducted in this study utilized a ”Tesla

T4” GPU, with TensorFlow 2.8.0 [23] as the backend
and Keras [24], provided by Google Colaboratory. The
experimental setup employed a system running Microsoft
Windows 10 Professional (64-bit) with a 1.80 GHz In-
tel Core i5 processor and 8.00 GB of memory. Dataset
preprocessing was facilitated using the Scikit-learn [25]
Python library. Model performance was evaluated using
key metrics, including True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN), which
are essential components in computing the mean accuracy
derived using Equation (6).

Accuracy =
T P + T N

T N + T P + FP + FN
(6)

6. Result and Discussion
Multiple experiments are conducted on the proposed

system to generate a comprehensive comparative analysis,
shedding light on various aspects of the study. It includes
evaluating the impact of feature selection versus without
considering feature selection, as well as contrasting the per-
formance of machine learning algorithms with the proposed
DNN-based model using a substantial number of features.
The accuracy and loss are monitored in all the experiments
on both the train and test dataset. The framework’s effec-
tiveness is determined through the analysis presented in the
subsequent sections.

A. Analysis Based on the Data Without Feature Selection
This is the first set of experiments performed on the

framework without performing feature selection. A total
of 16,380 distinct static features, including permissions,
opcodes, API calls, system commands, Activities, and Ser-
vices, are taken into account for analysis. The dataset
is partitioned, with 75% allocated for training, 15% for
testing and 10% for validation. The model is trained and
tested using DNN techniques. Keras TensorFlow is used to
deal with the overfitting of the model. To ensure a valid
comparative analysis, the model parameters, as outlined in
Table II, remain consistent across all experiments conducted
in this study.

The experiments are done on the dataset without per-
forming any feature selection mechanism on it. Accuracy
and loss are monitored as they are crucial metrics for
evaluating the performance of a model, particularly in the
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Figure 15. Model Accuracy Score Without Feature Selection

Figure 16. Model Loss Score Without Feature Selection

context of supervised learning. The model undergoes 400
iterations through the entire train dataset in batches of 128,
followed by evaluating its performance on a test dataset
after each epoch. The training and testing accuracy at each
epoch is presented in Figure 15 and the loss is presented
in Figure 16. The x-axis of all the model accuracy and
model loss plots represents the number of epochs the model
executed, the y-axis of the model accuracy represents the
accuracies generated at each epoch, and the y-axis of the
model loss plots represents the loss generated at each
epoch. The model’s performance in initial epochs fluctuates
significantly as it starts learning and adjusting the weights
which can distort the overall performance. To mitigate the
impact of this noise and based on the observations from
the accuracy and loss plots the mean accuracy and mean
loss are calculated from 50th epoch onwards. The model
achieves a mean accuracy of 87.22% while demonstrating
a mean loss of 0.71 on the testing set.

B. Analysis Based on the Data With Feature Selection
This is another set of experiments performed on the

framework with the same model parameters, but here fea-

Figure 17. Model Accuracy Score With Feature Selection

ture selection is performed on the dataset using the IG
method. Based on the IG ranking of the features it is
observed that near about 40% of the total features have more
or less contribution to the dataset and the remaining features
have very less or zero contribution to the dataset. Therefore,
out of 16380 features 6552 features are considered for
classification purposes. The accuracy and loss for training
and testing at each epoch are presented in Figure 17 and
Figure 18 respectively and based on the observations the
mean accuracy and mean loss are calculated from 50th

epoch onwards. The findings reveal a mean accuracy of
89.04% and a decreasing mean loss of 0.61 on the feature-
selected test dataset containing 6552 features.

In addition to the mean, the standard deviation (SD) for
accuracy and loss is also calculated for both the training and
test sets of the feature-selected data, starting from the 50th

epoch onwards. The SD of model accuracy is 0.015 on the
training set and 0.010 on the test set of the feature-selected
data. Similarly, the SD of model loss is 0.061 on the training
set and 0.047 on the test set of the feature-selected data.
A confusion matrix is generated on the validation set of
the feature-selected dataset, providing scores for precision,
recall, and F1 scores. The model gives 88% precision, 88%
recall, and 89% F1 score which signifies the model is
consistent.

7. Comparison Analysis
This section performs the comparison between the re-

sults obtained by performing feature selection and without
considering feature selection. A detailed breakdown of the
comparative analysis, focusing on evaluation metrics such
as accuracy and loss, is presented in Figure. 19 and Figure.
20. Accuracy and loss are monitored at each epoch in both
the train and test dataset.

In Figure 19, train accuracy represents the accuracy
monitored on the feature-selected train dataset contain-
ing 6552 features, and the comparison is made between
the accuracies obtained from the test dataset with 16,380
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Figure 18. Model Loss Score With Feature Selection

Figure 19. Comparison Of Model Accuracy Score

Figure 20. Comparison Of Model Loss Score

features and the feature-selected test dataset with 6,552
features. Similar to the previous experiments, the mean
accuracy in this experiment is also calculated from the 50th

epoch onwards. Figure 19 clearly illustrates that the model’s
accuracy increases from 87.22% to 89.04% on the feature-
selected test dataset. 87.22% is the mean accuracy obtained
by the model on the test dataset without performing any
feature selection on it and 89.04% is the mean accuracy
obtained by the model on the feature selected test dataset.
Similarly, in Figure 20, train loss is the loss generated by
the model on the training set of the feature-selected dataset.
The comparison is drawn between the loss generated by
the model on the test set of feature-selected data and non-
feature-selected data at each epoch, and it is observed that
the mean loss generated by the model on the non-feature-
selected test set is 0.71 which is reduced to 0.61 on the test
set of feature-selected data. The mean loss is also calculated
from 50th epoch onwards.

A. Time Comparison Between Both the Experiments
Based on the experiments, it is observed that model

training time is significantly reduced when feature selection
is applied compared to when it is not. Although the feature
selection process itself takes a bit of additional time, it is
a one-time process and can be disregarded in the overall
model evaluation. In our experiment, training the model
with all 16,380 features took 250 seconds. In contrast, the
feature selection process took 10 minutes, but subsequently,
training the model with 6,552 selected features only took
174 seconds. Our experiment incorporates a sufficient num-
ber of features compared to other existing models in the
literature, as shown in Table IV, ensuring comprehensive
coverage of potential vulnerabilities for effective malware
detection.

B. Comparison With Other Machine Learning Models
In the assessment of the proposed system, the model’s

performance is compared with the performance of other
machine learning methods on the feature selected dataset
that contains 6552 features. Among the existing ML models
RF, KNN, SVC, and DT are used for performance compar-
ison. For the above ML models, the RandomizedSearchCV
hyperparameter tuning algorithm is employed to perform a
random search over a specified parameter grid and cross-
validate the results. For RF, RandomizedSearchCV eval-
uated 100 different sets of hyperparameters using 5-fold
cross-validation, achieving an accuracy of 86.58% on the
test set of non-feature-selected data and 87.37% on the test
set of feature-selected data. In SVM, RandomizedSearchCV
uses 5-fold cross-validation and achieves 85.30% on the
test set of non-feature-selected data and 85.44% on the
test set of feature-selected data with regularization param-
eter c=100. In DT the parameters provided to Random-
izedSearchCV allowed for the selection of the criterion
between ’gini’ and ’entropy’, offered options for ’max-
depth’ including (None, 5, 10, 15), and provided choices for
’min-samples-split’ among (2, 5, 10). It produced 83.94%
accuracy on the test set of the non-feature-selected dataset
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TABLE III. Comparison With Other Machine Learning Models
Based On Accuracy

Classifier Accuracy (without
feature selection)

Accuracy (with
feature selection)

RF 86.58% 87.37%
KNN 82.32% 83.57%
SVC 85.30% 85.44%
DT 83.94% 84.44%

DNN 87.22% 89.04%

and 84.44% accuracy on the test set of the feature-selected
dataset using the parameters criterion as ’entropy’, max-
depth as None, and min-samples-split as 2. Similarly, KNN
also used RandomizedSearchCV and produced 82.32% ac-
curacy on the test set of the non-feature-selected dataset and
83.32% on the test set of the feature-selected dataset with
the number of nearest neighbors as 10, Weight function used
in prediction as ’distance’ and the algorithm used in com-
puting the nearest neighbors is ’brute’. The performance
comparison, outlined in Table III, which provides insights
into the efficacy of the approach relative to other machine
learning classifiers.

The results presented in Table III indicate that all
classification models employed in our research effectively
detect malware apps, with only marginal differences in
performance. The RF classifier achieves higher accuracy
compared to the other ML classifiers. Nevertheless, the
proposed DNN model outperforms the RF classifier, as
neural networks tend to deliver superior detection accuracy
when trained on large datasets.

C. Comparison With Similar Work
To show the effectiveness of the framework the accuracy

obtained by our proposed framework is compared with other
related static approaches based on the same OmniDroid
dataset [16] listed in the literature survey section. Rodrigo
et.al [10] and Oliveira et.al [11] also used the OmniDroid
dataset. Rodrigo et.al [10] produced a static OmniDroid
simplified dataset using various selection methods and
obtained 85.8% accuracy using 3359 features. Oliveira et
al. [11] similarly obtained impressive results with their
static detection models. In comparison, our proposed model
demonstrates superior performance, achieving an accuracy
of 89.04%, given it is trained on an adequate number of
features as illustrated in Table IV. It is believed that when
the dataset is bigger enough, it would be more representative
and consequently the resulting classifier is more effective
in detecting malicious content. Therefore, the experimental
results affirm the assertion that the proposed model yields
substantial improvement in the realm of malware detection.

8. Conclusion
In response to the escalating infection rate of Android

malware, a critical need for gateway-level malware de-
tection has emerged. This study introduces a framework
that employs DNN techniques, on static features such as

TABLE IV. Comparison With Similar Works In Terms Of Number
Of Features

Other Similar Works Number of Features used
Wang et.al. [6] 25

Le et.al [9] 65
Rodrigo et.al [10] 3359
Oliveira et.al [11] 200

Proposed framework 6552

permissions, Opcodes, API calls, Activities, Services, etc.
extracted from Android applications. Feature selection is
independently carried out on each feature set to prevent
overlooking any specific type of feature. The proposed
framework demonstrates a remarkable 89.04% accuracy,
leveraging an extensive feature set for model training. This
not only signifies a more precise malware detection capa-
bility but also outperforms frameworks trained on limited
feature sets. Comparative analysis with existing literature
and studies utilizing the static OmniDroid dataset reveals
that the proposed system is validated on a substantial
number of features, surpassing the accuracy achieved by
models with fewer features. As part of future work, we aim
to enhance malware detection accuracy further by exploring
additional DL methods.
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