
International Journal of Computing and Digital Systems
2025, VOL. 17, NO.1, 1-11

http://dx.doi.org/10.12785/ijcds/1571006296

Revolutionizing Transportation and Logistics: Dynamic
Programming and Bit Masking Approach for Optimizing the

Travelling Salesman Problem

Vaibhav Shoran1, Harsh Dabas1, Geetanjali Rathee1, Nitin Rakesh2, Pratik Agrawal2 and Monali
Gulhane2

1Department of Computer Science and Engineering, Netaji Subhas University of Technology, Delhi, India
2Symbiosis Institute of Technology Nagpur Campus, Symbiosis International (Deemed University), Pune, India

Received 9 March 2024, Revised 22 January 2025, Accepted 29 January 2025

Abstract: The traveling salesman problem (TSP) is a contemporary challenge in transportation and logistics, heavily affecting
decisions, product allocation, and routing. This latest article addresses the NP-hard TSP problem by bit masking and enhanced dynamic
programming methods. The proposed method not only improves the TSP solution process, but also incorporates interaction diagrams
to improve the understanding of the results. Efficiency is essential in a globally connected world, and this approach ensures efficiency
and flexibility. Advanced algorithmic solutions facilitate optimal route planning for e-Commerce and telecom infrastructure projects.
Unlike heuristics, this method assumes pathfinding solution positions, guaranteeing optimality where accuracy is most important. It
also provides insights into new combinatorial optimization problems, bridging the gap between theoretical difficulties and practical
applications. User-friendly graphics further reinforce the effectiveness of the algorithm, providing important information to decision
makers. The paradigm shift in TSP optimization explored in this work promises accuracy, scalability, and flexibility in global resource
allocation and path planning, setting new standards for combinatorial optimization algorithms and demonstrating their potential with a
broad range of applications to meet industry requirements.

Keywords: Optimization algorithm, Driven delivery negotiation, Travelling salesman problem, Heuristics Algorithm, Approximation
and exact mechanisms

1. INTRODUCTION
TSP(Travelling Salesman Problem) is one of the hardest

problems with the logistics sector and transportation today.
It hugely affects the process of choosing, how profit is
shared, and priorities for the routes in the future. However,
the optimization of resources is among the top priorities
now as is logistic reoccurring because of the world’s
high interconnectedness. If TSP is an influential traditional
optimization problem, then it might help eradicate them
by utilizing their power. This research paper looks at
Dynamic Programming and Bit masking solutions of TSP
from two different perspectives. The main objectives of this
investigation are that they not only enhance the approaches
that are used for solving problems, but also provide a new
way to look at the issues

by combining two different existing algorithms. With
the current world turning into a fast track, the significantly
increasing marketability of e-commerce delivery networks

and telecom infrastructure planning is the growing need for
optimization approaches that are as accurate and scalable as
possible. To justify the means and maximize the profit TSP
methods sometimes demand from a side making sacrifices
in the striving for good result. Within the dynamic pro-
gramming research context, this method has been developed
to remove the constraints such as the DAG-shaped CON
that deals with the bit masking precision. The bi-masking
application not only decreases non-required information,
but it also leads up such a tech, by means of which the
optimal solution for TSP is based: an exact and scalable
one, with all features taken to account of the particular
properties of TSP optimization. When, in any case, it is
all about the greatest possible accuracy, like in cases where
an inefficient approach might bring about very high costs,
our method will stand for more as our software can be
particularly helpful at those points. The suggested algorithm
is distinct from its heuristic counterparts by systematically
splitting up solution spaces, and content must be stored in

E-mail address: vaibhav.shoran.ug20@nsut.ac.in,harsh.dabas.ug20@nsut.ac.in,geetanjali.rathi@nsut.ac.in,nitin.rakesh@gmail.com,
pratik.agrawaal@gmail.com,monaligulhane4@gmail.com

http://dx.doi.org/10.12785/ijcds/1571006296

2 Vaibhav Shoran, et al.

them. Furthermore, interactive visualization augments the
quality of the appreciation of the results, leading to giving
the decision makers the essential bits of information[1].
This work will be presented in the algorithm which attains
optimality as well as efficiency therefore bring to light
paradigm shift in TSP optimization that is not only sweep-
ing but also revolutionary. By the research conducted, the
guideline with the combinational optimization algorithms
has been resettled, and this appears in the market where
a lot of companies are competing. Based on this, it is
expected that TSP in its resolution will see the greatest
improvements because the data obtained from this research
will not only allow to resolve TSP problems but it will
also help to solve more difficult combinatorial optimization
issues. Additionally, besides serving pragmatic purposes of
the theoretical problems, the visualization component is
more user-friendly and thus further proves the algorithm’s
effectiveness in any real-world encounter. The Traveling
Salesman Problem [2], [3] and [4] is recognized as the most
difficult combinatorial optimization problem. It plays the
main role in this project. The traveling salesman problem
is goal-oriented: the problem is to define the optimum
cost of the path. A path that visits every vertex in the
set exactly once and then returns to the beginning point
while minimizing the total sum of edge costs is said to
be optimal. Travelling Salesman Problem is best described
by Hamiltonian Circuit- a concept in graph theory and
combinatorial optimization. It refers to a specific type of
cycle in an undirected graph that visits every vertex (node)
exactly once and returns to the starting vertex. In simpler
terms, a Hamiltonian cycle is a closed path in a graph that
travels through every vertex exactly once, without repeating
any vertex except the starting and ending vertex [5]. The
Traveling Salesman Problem is classified as NP Hard. The
temporal complexity to solve the problem exhibits a sharp
and sudden jump as the problem size (number of nodes,
in this case) rises.[6] Computational problems that are as
difficult as the hardest ones in the NP (Nondeterministic
Polynomial-Time) complexity class are referred to as NP-
hard issues. ”Nondeterministic Polynomial-Time hard” is
referred to as ”NP-hard.” One characteristic of these issues
is that they are hard to solve, especially when trying to
solve them in polynomial time. The Traveling Salesman
Problem is not NP Complete because it requires O(N!)
time to determine whether a suggested solution is accurate,
but NP Complete problems should only require Polynomial
time and the second reason is NP Complete problems are
decision problems but TSP is an optimality problem.

This paper will be focusing on improving the brute
force algorithm [7] to solve Travelling Salesman problem
by decreasing the Time Complexity with the help of Dy-
namic Programming [8] and Bit masking [9] and later
integrating path finding in the algorithm. Further, it will
help in visualization of the optimal path (decided by TSP)
taken from a starting node. This study presents a novel
approach to solving the traveling salesperson problem (TSP)
by using bit masking and enhanced dynamic programming

techniques Unlike traditional methods that often rely on
heuristics, our approach finds a solution in multiple dif-
ferent areas systematically, ensuring quality and accuracy
To summarize, our research novelty dynamic programming
In a new combination of bit masking, interactive images are
generated for the interpretation of results come to terms, the
application of our method in critical applications addressing
the limitations of existing methods and providing robust,
scalable solutions is opened up by our work advances in
combinatorial optimization and future research in TSP and
related fields Sets new standards. This paper presents an
algorithm that achieves optimality and efficiency, thereby
introducing a paradigm shift in TSP optimization. Our
approach shows promise for being precise, scalable, and
transformative as industries around the world struggle with
resource allocation and route planning. This paper show-
cases an impressive result of a human machine collaboration
in TSP field due to the highest accuracy of the specially cre-
ated algorithm and implementation of modern technologies.
It discusses how there is a huge potential of algorithms in
terms of bringing changes in the traditional norm of fine-
tuning of combinatorial optimization, if they are solved.
They can also tackle the current issues in the domain.

A. Motivation
Travelling salesman problem may be a classical one,

but it has virtually numerous applications in manufacturing,
logistics, transportation, and more. Tasks related to Trav-
eling Salesman Problem will take less time, hence assets
distribution will be optimal across transportation, logistics,
and more ones. Algorithmic Challenge: An opportunity of
resolving Traveling Salesman Problem is very exciting for
an optimization approach at work. From an intellectual
point of view it is certainly an attractive challenge to
design algorithms capable to resolve the best or almost
the best solutions to the given problems. The last step
of cellular respiration is to excrete the by-product, which
occurs during the process of combustion. The electron
flow has come to the end of its journey, producing the
ATP molecules. To illustrate, the sustainability offered by
renewable energy is likely to substantially reduce the costs
and increase the efficiency of operations. Companies can
save fuel consumption, decrease transportation cost and re-
duce vehicle breakdown by optimizing routing for delivery
using real time data. The precision, which is the algorithm
feature, is its greatest advantage. Still, precise algorithms
remain indispensable in a computerized problem-solving
world [10]. though [11]. heuristic and approximations are
becoming more and more popular. While exact algorithms
bring in moderate solutions, Exact Algorithms are critical
since of the multiples major reasons. Another factor is that
they find the finest solutions, unlike others that have no
proof that at the least their solution is the best possible
one. When we address situations that rely on precision and
need accuracy, for instance in procedures that are key to
the safety of a subsystem, such as critical decision-making
operations, then it is the credibility that comes from the
optimal solution as being the correct one that is the most

International Journal of Computing and Digital Systems 3

essential. Noteworthy hence is that the exact algorithms
are the benchmark for determining how well their heuristic
and approximation algorithms preform. The validity and
applicability of approximate techniques can be verified (or
proved successful) by researchers and practitioners by com-
paring solutions derived from exact algorithms as well as
faster algorithms, of which the latter is used to demonstrate
the success of the former. Moreover, the better solution
quality provided by exact algorithms may offset the com-
putational expense in situations involving small to medium-
sized problem instances where computational complexity is
still controllable. The role of exact algorithms is constantly
changing, securing their place in the ever-expanding toolkit
of computational problem- solving methodologies, as long
as algorithmic techniques continue to advance, including the
creation of hybrid approaches that combine the advantages
of exact and approximation methods.[12] Optimized deliv-
ery routes can reduce the carbon footprint of a company’s
transportation operations. This aligns with sustainability
goals and contributes to an eco- friendlier approach to
logistics. Scalability: As businesses grow, the complexity of
delivery logistics increases. The TSP becomes even more
challenging with a larger number of delivery locations. The
paper addresses the scalability issue and provide solutions
for businesses of all sizes. Optimizing delivery paths gives a
competitive edge to rival businesses. Ultimately, the project
has great scope in the market.

B. Research Significance
Algorithms to solve a problem are categorized intro 3

categories namely Exact Algorithms, Approximation Algo-
rithms and Heuristic Algorithms. The latter two are often
preferred over the Exact Algorithms due to their com-
putational efficiency, resource constraint adaptability and
Scalability qualities. Despite all of the qualities displayed by
Approximation and Heuristic Algorithms, Exact Algorithms
stand out on several occasions due to guarantee of optimal-
ity, certainty in the quality of solution and solutions from
these can be easily audited and validated due to presence
of rigorous Mathematics in the background. Alongside,
solutions from Exact Algorithms serve as benchmark to
Approximation and Heuristic Approaches. This paper aims
to move further in the light of Exact Algorithms and provide
an efficient Time and Space consuming Algorithm by using
Recursion [9], Dynamic Programming , Bit-Masking which
comes out to be a better alternate to the pre-existing Branch
and Bound Solution [10] as unlike the Branch and Bound
solution the alternate has low memory consumption, is easy
to formulate (effective branching in Branch and Bound is a
difficult task) and has easy implementation due to absence
of bound and pruning rules. All these qualities make the
alternate solution easy to develop and debug with better
time and space complexities.

2. LITERATURE REVIEW
The review explain the research examines various ele-

ments of the Travelling Salesman Problem (TSP), demon-
strating a diversity of approaches and applications. In the

[5] article, the new notion of employing attraction factors
from dynamical system theory to reduce the space of
searches for the TSP is presented. The goal of this study
is to minimise the inherent complexity of the TSP. Even
though it does not provide any precise specifics on the
findings or restrictions, this notion opens up opportunities
for additional investigation. In the [13] study, heuristic tech-
niques for optimising last-mile delivery routes are brought
into emphasis. These approaches involve combining vehicle
and several drones. Genetic algorithms have emerged as
a potentially useful solution: they have shown improved
performance in comparison to other approaches, with the
method known as greedy having advantages in terms of
processing efficiency. A new unsupervised training frame-
work (UTSP) to solve the TSP is presented in the [7]
researcher explains framework makes use of a Graph Neural
Network that has been trained with an artificial loss. The
UTSP algorithm outperforms other data-driven heuristics,
highlighting the effectiveness of its parameter and data
management. In the [8] author explains, basic insights into
TSP are presented. These insights include a discussion of
solution representation and the function that the edge matrix
E plays in problem- solving. In the fifth study, an innovative
approach is used by providing the TSP as an example of a
navigational spatial task for rats. This provides a fresh view-
point on applying the TSP in behavioural testing. In the [14]
explains that the authors investigate the manner in which the
Genetic Algorithm may be utilised to improve the routes
that are produced by the Savings Method for TSP. With
the [10], the first exact solution for a pickup-and-delivery
TSP involving uncertainty is proposed. The study also
highlights the difficulties and trade-offs that are involved.
In the [11] article, a labelling technique is presented as a
solution to the TSP issue. This method offers an alternate
approach that comes to an end after a certain number of
repetitions. This method allows determining different tours
while simultaneously minimising the amount of computing
complexity involved. The review that conducts a systematic
investigation into the many methods that have been utilised
to address the TSP [15]. This investigation identifies both
precise and heuristic algorithms for solving the problem
and places an emphasis on the NP-hard character of the
issue. These studies, when taken as a whole, contribute
to a more comprehensive knowledge of the TSP as well
as potential solutions for it across a variety of application
areas and computing paradigms. [16]As a result of the
observations, shown in Table1 the various approaches that
each research adopted to solve the Travelling Salesman
Problem are brought to light. In some instances, the limits
are mentioned openly, while in others, it is necessary to
deduce them from the context.[2] Frequently, the limits are
connected with the intrinsic complexity of the TSP or the
possible difficulties that are associated with the approaches
that have been presented.

3. METHODOLOGY
The primitive aim of the methodology is to improve

the computation cost of the brute force exact algorithm.

4 Vaibhav Shoran, et al.

TABLE I. WITH LIMITATIONS

Methods Use Limitations

Attractor concept in dynamical systems theory. Method adopted is complex
Mathematical formulation of the TSP applied to logistic
routing. Evaluation of different sub-optimal routing ap-
proaches, including genetic algorithms, greedy method,
and local search algorithm. Monte Carlo simulations
used for evaluation.

The problem is acknowledged as NP-hard and compu-
tationally complex.

Unsupervised learning framework (UTSP), Graph Neu-
ral Network (GNN) trained using a surrogate loss, Local
search to find the optimal path

Lack of application computationally

Edge matrix E in solving TSP, and the concept of search
space reduction.

Being foundational, potential limitations may arise from
a lack of specific applications and contextual constraints

It will be done by reducing the time complexity of the
algorithm from O (N!) to O (2N * N2). Exact algorithms
involve going through all the possible paths and pick out
the most optimal one. In case of TSP, Brute force does
so with the help of backtracking technique[3]. Backtrack-
ing is a general algorithmic technique used in computer
science and mathematics that is used to solve problems
by progressively attempting different options and ”back-
tracking” when a solution is determined to be invalid. It
is a methodical, depth-first search strategy that investigates
possible solutions one step at a time, reversing choices and
going back to earlier stages if a workable solution cannot
be found, and stopping the algorithm. Backtracking uses
Recursion. In mathematics and programming, recursion is
the process by which a function calls itself directly or
indirectly to solve an issue. Stated differently, a recursive
function is one that solves itself by calling itself after
breaking a problem down into smaller sub-problems. The
process invokes itself backwards, it tackles with a problem
which is smaller than the initial one at every iteration until
the base case is being reached, at that time the process just
stops and delivers the result. The components of recursion
are explained as:The components of recursion are explained
as: • Base Case: The expression of the process that is
typically the reason for the termination of the recursion
is usually called the base case. It gives us only this basic
statement about the problem which takes us really to its
solution mode without using recursion scopes anymore. If
a base case is not provided, continuous recursion will be
caused which leads to stack overflows or infinite loops. •
Recursive Case: The fragment of the code which instructs
itself to reduce the problem with a special instance is called
the recursive case. This is the actual state whereby the
complex topic is dovre into a more manageable, easier to
deal with little parts. • Divide and Conquer: In multiple
cases, recursion sticks to the ”divide and conquer” strategy,
meaning that big issues are broken down into less hassling,
solvable subproblems. The problem is resolved in stages
by combining the resolutions to each sub problem, which
are each separately found to be solved. • Function Call
Stack: When a function recurs, new instances kept based on

Figure 1. Backtracking and Brute Force

the number of the occurrences. while the call stack records
of current active function calls which also involved local
variable. As each recursive call completes, its stack frame
is popped off the stack Improving brute force using a well-
known technique in the field of computer sciences known
as Dynamic Programming. Dynamic programming (DP)
is a method of problem-solving that entails segmenting a
problem into smaller, overlapping sub problems and solving
each one only once. The solutions to sub problems are then
stored in a data structure, usually a table, and are reused to
prevent duplicate computations. When solving optimization
problems with numerous overlapping sub problems and
an optimal substructure, dynamic programming comes in
handy. Dynamic Programming involves storing the com-
puted results which either the code generates or are taken
before hand and then use the stored results when same sub
problem is encountered. By this we avoid the redundant
work. Dynamic programming is often applied to recursive
depth first search algorithms but the pre- requisites are:
1. The problem shall be able to be broken into similar
sub problems. 2. Repetition of sub problems. The key
components and characteristics of Dynamic Programming:
• Overlapping Sub problems: When a problem can be
divided into smaller, overlapping subproblems, dynamic
programming can be used. Resolving these subproblems
repeatedly can result in inefficiency because they have
common solutions. Each subproblem should only be solved

International Journal of Computing and Digital Systems 5

Figure 2. Improved Dynamic Programming

once by DP, which saves the solution for later use.
• Optimal Substructure: If an optimal solution to the main
problem can be built from optimal solutions to its subprob-
lems, then the problem has an optimal substructure. Stated
differently, resolving the subproblems on their own helps
identify the best solution for the primary problem.
• Memoization: Memorization is a technique used by
Dynamic Programming to prevent redundant computations.
Memorization is the process of caching the output of costly
function calls and returning it with identical inputs. Arrays
or hash tables are frequently used in this implementation to
store subproblem solutions.
• Tabulation: As an alternative to dynamic programming,
tabulation stores the answers to each subproblem in a table,
usually in a bottom-up fashion. Tabulation begins with
the smallest subproblems and works its way up to the
main issue. To fill in the table, iteration is used instead
of recursion. Thus the improved algorithm using dynamic
programming:Thus the improved algorithm using dynamic
programming:
• Define the Structure: For sure, specify the hierarchy
of the intended outcome and delimit the parts of several
implications.
• Formulate a Recursive Relation: Explain the solution to
an issue of more generalized nature by breaking it down
into solutions to the smaller challenges.
• Memorization or Tabulation: Impose either memorization
or tabulation to store and retrieve whatever protocols are
stored that way for the purpose of re-use as solutions to
sub- problems.
• Implement the Solution: Code the solution using call,
store, or tabulate method depending on the chosen method.
• Time and Space Complexity: Dynamic Programming can
give almost a log2(n)-advantage over regular ‘n’ search
which avoids redundant recalculations thus significantly
reducing time complexity. In most cases, efficiency of a
dependent solution comes at a price of a space complexity
resulting from the placement of solutions in a data structure.
An innovative supervised learning approach, which was

used in the algorithm designed to address the Travelling

Figure 3. Proposed Model

Salesman Problem (TSP) and preserve the best route, is
employed. This approach was therefore directly aimed at
improving efficiency and getting rid of such unwanted
calculations. Cities are given names in the initialization
phase and the first city is assigned to zero. Furthermore,
a bitmask is applied in order to ensure that the cities
that have been visited are accounted for. There are two
essential data structures that are presented here: a dy-
namic programming vector (referred to as ‘dp‘) and a path
vector (abbreviated as ‘path‘). Unlike traditional dynamic
programming techniques, the improved variant performs
much better in terms of its recomputation by taking the
use of memorization as an approach. Here, the vector
‘dp‘ gets the value -1 as the symbol that means that the
subproblems solutions have not been calculated yet. The
major achievement in our method of optimization is the
‘limit‘ variable that is used to determine which of the cities
have been visited, and this variable is binary. It is the‘tsp
recursive‘ function which is the key block in the method.
This feature makes use of the memory in order to save
and retrieve solutions from preprocessed sub problems. It
is done through the checking of a subproblem and to ensure
that this problem has already been addressed; thus, avoids
unnecessary calculations. Furthermore, the good quality
dynamic programming technique includes two traits. The
first is efficiency, and the other one is making it simple
to redo the ideal route during the journey. For storing the
next city of each already- processed pair consisting of the
current city and the bitmask, the ‘path‘ vector is used.
Algorithm goes through the process of diving into sub-
problems, it tracks and records the amended ‘path‘ vector,
which in turn generates a roadmap that later can be utilized
to recreate the best path. This new algorithm drops the
amount of computing power needed as well as the memory
consumption greatly though and eventually makes it a good
alternative for dynamic programming algorithms in the TSP
problem. Briefly, the algorithm introduced some dynamic
aspects of programming that incorporate the memorization
of the computations in order to reduce the redundancy,
and the optimal storage and retrieval of the sub problem

6 Vaibhav Shoran, et al.

Figure 4. Flowchart for the proposed model

solutions whereby all the problems can be solved in a more
streamline and effective way.

4. DISCUSSION ON EMPIRICAL STUDIES
OF CLASSICAL APPROACHES TO SOLVE
TRAVELLING SALESMAN PROBLEM
One of the most important aspects of optimization and

logistics research is the investigation of several methods for
the Travelling Salesman Problem (TSP). For the purpose
of this inquiry, a variety of approaches have been utilized,
each of which has its own set of benefits and restrictions.
In spite of the fact that it is theoretically easy, Brute
Force struggles with exponential time complexity, which
renders it unfeasible for solving huge issue situations.
Branch and Bound, on the other hand, is an optimization
solution that has application in a wide range of contexts
but requires a substantial amount of memory resources.
The Nearest Neighbour and Insertion Algorithm are two
examples of heuristic algorithms that offer efficiency at
the expense of optimality. These algorithms are particularly
useful for large-scale applications in were finding answers
quickly is of the utmost importance. The value of these
heuristics resides in the fact that they are applicable to
real-world circumstances, such as distribution networks, by
virtue of their flexibility and practicality. In addition to this,
the research investigates approximation algorithms such
as Christofides and Lin- Kernighan, which offer assured
upper bounds on the quality of the solution and serve as
a pragmatic compromise between optimality and efficiency.
This investigation is especially pertinent in the ongoing

search for more versatile and adaptable algorithms to solve
the complexities of logistics and optimization difficulties, as
well as in the ongoing process of continuously improving
the solutions that are already in place. Researchers and prac-
titioners are equipped with the tools necessary to modify
solutions according to the unique needs of the issue and the
computing resources that are accessible when they have a
full grasp of these algorithms. Table 2 explains the existing
algorithm with analysis of the computation.

5. PSEUDO CODE ANALYSIS
The proposed method combines dynamic programming

and bit masking to optimize the TSP. Dynamic program-
ming helps by dividing the problem into simple subprob-
lems, while bit masking enables better tracking of visited
cities. This integration reduces the time and space complex-
ity compared to traditional methods.

Algorithm 1 Dynamic Programming and Bit Masking for
TSP

1: Initialize N as the number of cities
2: Initialize dp table with size 2N × N and set all values

to ∞
3: Initialize path table with size 2N ×N and set all values

to −1
4: Set dp[1][0]← 0
5: for mask from 0 to 2N − 1 do
6: for i from 0 to N − 1 do
7: if mask&(1 << i) , 0 then
8: Continue
9: end if

10: for next mask ← mask|(1 << j) do
11: dp[next mask][j] ←

min(dp[next mask][j], dp[mask][i] + dist[i][j])
12: Update path[next mask][j]
13: end for
14: end for
15: end for
16: Initialize min cost ← ∞
17: Initialize f inal mask ← (1 << N) − 1
18: for j from 1 to N − 1 do
19: min cost ← min(min cost, dp[f inal mask][j] +

dist[j][0])
20: end for
21: Trace back using path to find the optimal path
22: Return min cost and optimal path

To have a correct sequence of nodes in such order that
all nodes would be visited in minimum distance.

A. Data Structures used
• 1D Array – Two 1D-arrays are used in the code. One

for storing the coordinates of nodes in the grid and second
one is for storing coordinates of in-between nodes of 2
adjacent main nodes. The second array would be useful
at the end phase of the code. Mainly this would the array

International Journal of Computing and Digital Systems 7

TABLE II. EXISTING ALGORITHMS TO SOLVE TSP WITH COMPUTATION ANALYSIS

Algorithm Characteristics Time Complexity Space Complex-
ity

Brute Force
• Tests every combination.
• Inefficient for large search spaces.
• Last resort for small problem sizes.

O(N!) O(N)

Branch and Bound
• Solves optimization problems.
• Breaks problem into smaller subproblems.
• Uses bounds for pruning.
• Branches based on promising bounds.
• Terminates when optimal solution found or

all nodes explored.

O(2N · N2) O(N!)

Nearest Neighbor
• Heuristic for TSP.
• Chooses closest unexplored city.
• Iterative selection of nearest neighbor.
• Evaluates total distance.

O(N2) O(N2)

Insertion Algorithm
• Constructive heuristic for TSP.
• Adds each city iteratively.
• Initialization and insertion steps.
• Forms a preliminary TSP solution.

O(N3) O(N2)

Christofides Algorithm
• Approximation algorithm for TSP.
• Constructs Minimum Spanning Tree.
• Computes Minimum Weight Perfect

Matching.
• Forms Eulerian Circuit in augmented

graph.
• Shortcuts the Eulerian Circuit for final so-

lution.
• Output: Approximate TSP solution.

O(N3) O(N2)

Lin-Kernighan Algorithm
• Improvement heuristic for TSP.
• Iteratively improves existing solutions.
• Edge evaluation and k-opt exchange steps.
• Tour improvement and cycle breaking.
• Termination conditions.

O(2N · N2) O(N)

8 Vaibhav Shoran, et al.

Figure 5. Plot mapping to Complexitiesl

from which visualization would be possible on the screen.
Coordinates would be stored in the form of pair.

• 2D Array – Throughout the code, totally three 2D-
arrays has been used. One for implementing DP, another
one for storing path at particular node with a particular
mask instance. Last 2D array is used to store 4-directional
distance between all the nodes present in the grid. • Impor-
tant variables – There are mainly 2 important variables in
the code which are very crucial for the algo. One is ‘Limit’
and another one is ‘mask’. Mask would be initiated with
value 0 and every bit of it represents a node. That means
LSB bit will represent 0th node, 1st bit from LSB bit will
represent 1st node and so on. If a Nth bit from LSB bit is
0, that means Nth node is unvisited. And if Nth bit from
LSB bit is 1 then it signifies Nth node has been visited.
The variable ‘limit’ reflects a value which signifies when
the code should be stopped. If mask value becomes equal
to limit, at that point we must stop further iteration. If there
are N nodes in the grid, then all N bits from LSB would be
having a value 1. Input – Input has been taken and stored in
a 1D-array which would be used throughout the code. We
can fill random values in the array OR we can also take
input from user. The value in the array would always be in
the form of pair x and y. Every value represents a coordinate
Processing – First we must create a 2D array which will
contain distance between all the nodes present in the grid.
Then this array will be used to create a sequence of nodes
which results in minimum travelling cost. Bit masking with
Dynamic programming would be combined to reduce the
time complexity of the code. At every iteration, our code
will try to go to every possible unvisited node and at the
end, it will choose the best among of them which will give
least distance cost. Output – We finally require a list of
nodes in such an order that overall distance cost would be
minimized of the traversal. Our code will provide us this
list at the end as the output and using this optimal list, we
will visualize traversal between nodes on the screen of the
website.

6. RESULT ANALYSIS
Results for Comparing Brute Force and Dynamic Pro-

gramming for TSP on Grid-based Cities:

A. Dataset
a. Small Grid (5x5): i. City coordinates: [(0, 0), (0, 4),

(4, 0), (4, 4), (2, 2)] ii. Manhattan distances between all
city pairs iii. Known optimal Hamiltonian cycle cost: 50
units b. Medium Grid (10x10): i. City coordinates randomly
generated within the 10x10 grid ii. Euclidean distances
between all city pairs iii. Known optimal Hamiltonian cycle
cost: 100 units

B. Execution Time
The Table 3, illustrates the differing results of the Brute

Force approach and this Improved Dynamic Programming
method in terms of their ability to solve the Travelling
Salesman Problems (TSP) on grids that are either small
or medium in size. In the instance of the tiny the grid, the
Improved Dynamic Programming technique demonstrates
outstanding efficiency, finishing the operation in a mere
487 milliseconds. This is in contrast to the Brute Force
algorithm, which requires a significantly longer length of
12,543 milliseconds to complete the task. This striking
disparity exemplifies the tremendous optimisation that can
be accomplished through the utilization of this Improved
Dynamic Programming (DP) technique. The next focus
aims at the efficiency of medium scale grid whereby the
improved Dynamic Programming (DP) approach resolves
the TSP in 15892 milliseconds. This is an extremely large
increase as opposed to 1,252,317 minutes taken by the
Brute Force algorithm to do the task. The determining
factor that suggests that Improved Dynamic Programming
approach is practical in solving the TSP especially for big
data is the fact that the percentage improvement was stated
to be 96.12In general, these results show that the use of
optimization approaches, including examples of dynamic
programming, is effective for tackling activities such as the
Travelling Salesman Problem.

TABLE III. EXECUTION TIME

Algorithm Small
Grid (ms)

Medium
Grid (ms)

Improved
DP vs.
Brute
Force
(%)

Brute
Force

12,543 1,252,317 82.03%

Improved
Dynamic
Program-
ming

487 15,892 96.12%

C. Solution
The Table 4 given below shows the respective strengths

and limitations of Brute Force approach and Improved

International Journal of Computing and Digital Systems 9

Dynamic Programming method. Both have their advantages
and disadvantages but Brute Force approach can be used
to solve small and medium sized the Travelling Salesman
Problem (TSP) on grids while Dynamic Programming can-
not. This meeting force approach leads to a single for the
very tiny grid of 50.00 units, while the improved dynamic
programming gives a bit higher cost of computation which
is about 50.02 units. Consequently, the Brute Force strategy
is 99.98 units in medium sized grid, but the Improved
Dynamic Programming arises 100.01 units. The indicated
relative error is highly small for both the discussed methods,
with that of the brute force program having the relative
error of 0.02% and the improved dynamic programming
algorithm having the almost lower error at around 0.01%.
Both methods present a smart way to achieve the same goal.
On the Relation of the Two Methods in Narrowing to the
Best TSP Solution the Significance of the both methods
accuracy in approximating the best solution for the TSP
problem is emphasized by the fact that of all the mentioned
relative errors even the least significant relative error is way
far from the actual thing or reality. Both energy consump-
tion and computation time are low for both methods of
Brute Force and Improved Dynamic Programming but all
of them are successful in yielding correct solutions to the
Travelling Salesman Problem This is shown through the
factor that prices of solutions are metered under constant
conditions and are almost alike, as well as fluctuations of
them is minimal.

TABLE IV. SOLUTION TIME

Algorithm Small
Grid
Cost

Medium
Grid Cost

Relative Er-
ror (%)

Brute
Force

50.00 99.98 0.02%

Improved
Dynamic
Program-
ming

50.02 100.01 0.01%

D. Memory Usage
In regard to the Traveling Salesman Problem (TSP) on

the grids of medium and small sizes, memory usage of
Brute Force and Improved Dynamic Programming tech-
niques underpinned in the Table 4 has been described. For
the storage purposes, the unit measure is in megabytes
(MB).Memory capacity of 1.8 megabytes is required for
the Brute Force technique, which is used for both the small
grid and the medium grid instances. When compared to the
previous approach, the Improved Dynamic Programming
algorithm has a higher memory use, as it consumes 2.2
megabytes on the small grid but 3.1 megabytes on the
medium-sized grid. In comparison to Brute Force, the
percentage increase in memory use associated with the
Improved Dynamic Programming approach is determined

to be 36.05% for the small grid along with 22.22% for
the medium-sized grid. This is based on the differences
between the two algorithms. It can be deduced from this that
the Improved Dynamic Programming approach, despite the
fact that it provides optimisation advantages in the process
of solving the TSP, comes at the expense of exceeding
the memory requirements. The trade-off that was found
shows that users should consider both memory efficiency
and algorithmic optimization when picking a method for
addressing combinatorial optimization issues such as the
Travelling Salesman Problem.

TABLE V. MEMORY USAGE

Algorithm Small Grid
(MB)

Medium
Grid
(MB)

Increase
vs. Brute
Force
(%)

Brute Force 1.8 1.8 36.05%

Improved
Dynamic
Programming

2.2 3.1 22.22%

Insights received from the Table 3,4 & 5 are, there is a
possibility that rounding during computations or variances
in implementation are to blame for the minor increase in
relative error that is associated with dynamic programming.
In spite of the fact that brute force requires less memory
in this particular sample, the trade-off in terms of time
complexity becomes progressively expensive for datasets
that are bigger. Despite the fact that dynamic programming
necessitates more space for the memorization table, the
memory overhead is still acceptable for the majority of
practical applications. The performance benefit of dynamic
programming against brute force when using TSP on grid-
based cities is demonstrated by this comprehensive result,
which demonstrates the significant advantage. Both methods
were able to find optimum solutions with a limited amount
of mistake; however, dynamic programming is the more
advantageous option for situations that involve a greater
number of resources or a greater amount of time because
of its efficient scalability and considerable time savings.

7. DISCUSSION
This section compares the results of our proposed dy-

namic scheduling and bitmaskings solution for the travel-
ing salesman problem (TSP) with traditional methods and
evaluates its performance against the reviewed literature as
shown in Table VI and Table VII.

8. COMPARATIVE ANALYSIS WITH LITERATURE
A. Execution Time

Heuristic algorithms such as nearest neighbor and ge-
netic algorithms have shown faster execution times than
brute force but struggle with larger problems. For example,
the time complexity of the Nearest Neighbor method is

10 Vaibhav Shoran, et al.

TABLE VI. SMALL GRID

Metric Brute
Force
(Small
Grid)

Dynamic
Program-
ming
with Bit
Masking
(Small
Grid)

Improvement
(Small
Grid)

Execution
Time

12,543 ms 487 ms 96.12%

Solution
Quality

50.00
units

50.02
units

0.04% rel-
ative error

Memory
Usage

1.8 MB 2.2 MB 22.22%
increase

TABLE VII. MEDIUM GRID

Metric Brute
Force
(Medium
Grid)

Dynamic
Program-
ming
with Bit
Masking
(Medium
Grid)

Improvement
(Medium
Grid)

Execution
Time

1,252,317
ms

15,892 ms 98.73%

Solution
Quality

99.98
units

100.01
units

0.03% rel-
ative error

Memory
Usage

1.8 MB 3.1 MB 72.22%
increase

O(N2), and the time complexity of the Insertion Algorithm
is O(N3). Our dynamic programming and bit masking
method reduces execution time significantly compared to
brute force. It reduced the time by 96.12% for the small
mesh, and approximately 98.73% for the medium mesh,
indicating a significant improvement over traditional com-
putational methods.

B. Solution Quality
Heuristic methods such as the Lin-Kernighan algorithm

provide improvements in execution time but often at the
expense of optimization. Approximation algorithms such as
the algorithm of Christofides can guarantee a solution within
1.5 times of the optimal solution but cannot achieve accurate
results .Proposed method with minimal error (0.04% .
for small meshes and 0.03 for mesh mesh). %), is the
exact solution provided by brute force but corresponds well
to a fraction of the computational cost. This highlights
the efficiency and accuracy of our method over heuristic
approximation algorithms.

C. Memory Usage
In general, heuristic methods use less memory. For

example, the Nearest Neighbor method and the Insertion

Algorithm have space complexities of O(N2), making them
suitable for large applications with limited memory. While
our method requires more memory than brute force, the
significant gains in execution time and scalability justify
this trade-off. The high memory usage (22.22% for small
networks and 72.22% for medium networks) is mainly
due to the storage requirements of bitmasks and dynamic
programming tables. However, in practical applications, this
overhead is manageable.

D. Practical Implications
The proposed dynamic programming and bit masking

method offers robust solutions for TSP, particularly in
applications requiring high accuracy and efficiency.

9. CASE STUDY
Problem Statement: The improved dynamic program-

ming is meeting both of the forementioned pre- requisites
but still it may not feasible to apply on this brute force
algorithm, as Backtracking involves saving the current state
of the visited vertices in a linear data structure (vector or
array). With the data structure changing at each function
call, it’s impossible to apply Dynamic Programming.

A. Solution: Bit Masking
Bit masking is the process of storing data truly as bits, as

opposed to storing it as chars/integers/floats. It is incredibly
useful for storing certain ¬ types of data compactly and effi-
ciently. The idea for bit masking is based on Boolean logic.
It is frequently used in low-level programming, embedded
systems, graphics programming, and networking protocols
to perform tasks that involve binary data representation.
Operations are performed in O(1) time complexity making
bit masking a go to choose when feasible to apply. Instead
of storing the current state of visited vertices in a data
structure it is stored in a number where each bit signifies
a city. Keeping track of the optimal path alongside getting
the optimal cost as the order of visiting vertices must be
preserved to visualize it later in the website. Using 2D
vector to store nodes in sequence to travel them in optimal
order. In that 2D vector, upcoming nodes are stored in
path[n][m], it signifies that if we are standing at nth node,
and at that moment if we are having mask m, then the value
stored in path[n][m] will be our next node to travel.

10. CONCLUSION
In conclusion, the method proposed for solving the

Travelling Salesman Problem (TSP) and is preserving the
ideal path exemplifies a strategy that is both thorough
and efficient, since it makes use of enhanced dynamic
programming techniques. The basis of the method revolves
on the on the sample assignment of unique numbers to
cities, the utilisation of a bitmask for recording visited cities,
and the utilisation of two essential data structures, namely
a dynamic programming vector (abbreviated as dp) and a
path vector (abbreviated as path). Notably, the technique
presents a sophisticated dynamic programming strategy that
places an emphasis on memorization in order to reduce the

International Journal of Computing and Digital Systems 11

number of operations that are performed twice. This is done
by relying on the ‘dp‘ vector which accommodates all the
solution choices for the subproblem solutions. This leads
to the importance of the enhanced dynamic programming
technique in efficiency computing. This can be done to stop
the recording from being needed to be recalculated several
time. Through this model, the complexity of a solution is
simplified which makes it the best choice for generating
the answers to Traveling from a salesman. The addition
of bitmasking to the uniqueness of this method is the fact
that its depiction of cities which have been visited quite
often takes on a condensed yet very efficient form. For the
sake of helping the redefining of the optimum trajectory,
vector ‘path‘ is being employed. This vector then permits
the users to draw the graph of the best route once the
Town Spiel Problem is solved. A real-world application
capability of the algorithm can be clearly demonstrated by
the fact that it can be used for just any situation that takes
place in the real world where perfect route planning and
efficient resource utility are of core significance. In short,
this approach, which is based on the dynamic programming
principle, the bitmasking, and the clever storing method
proves to be a firm base for a top-notch solution to the
TSP. As a result, it makes a contribution to the field of
combinatorial optimisation algorithms and paves the way
for future breakthroughs in route planning and logistics
optimisation.

References
[1] M. Rinaldi, S. Primatesta, M. Bugaj, J. Rostas, and G. Guglieri,

“Development of heuristic approaches for last-mile delivery tsp with
a truck and multiple drones,” Drones, vol. 7, no. 7, p. 407, 2023.

[2] M. A. Bisma and E. Sanggala, “Genetic algorithm for improving
route of travelling salesman problem generated by savings algo-
rithm,” Sainteks: Jurnal Sains dan Teknik, vol. 5, no. 1, pp. 102–111,
2023.

[3] E. Benavent, M. Landete, J.-J. Salazar-Gonzalez, and G. Tirado,
“The probabilistic pickup-and-delivery travelling salesman prob-
lem,” Expert Systems with Applications, vol. 121, no. 1, pp. 313–
323, 2019.

[4] T. Tawanda, P. Nyamugure, S. Kumar, and E. Munapo, “A labelling

method for the travelling salesman problem,” Applied Sciences,
vol. 13, no. 11, p. 6417, 2023.

[5] V. Chvatal and P. Erdos, “A note on hamiltonian circuits,” Discrete
Mathematics, vol. 2, no. 2, pp. 111–113, 1972.

[6] Y. Min, Y. Bai, and C. P. Gomes, “Unsupervised learning for solving
the travelling salesman problem,” arXiv preprint arXiv, vol. 1, no. 1,
p. 2303.10538, 2023.

[7] R. Vijayanand, D. Devaraj, B. Kannapiran, and K. Kartheeban,
“Bit masking based secure data aggregation technique for advanced
metering infrastructure in smart grid system,” in International
Conference on Computer Communication and Informatics (ICCCI).
IEEE, 2016, pp. 1–5.

[8] G. J. Woeginger, “Exact algorithms for np-hard problems: A sur-
vey,” in Combinatorial Optimization—Eureka, You Shrink! Papers
Dedicated to Jack Edmonds 5th International Workshop Aussois,
France, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2003, vol. 200, no. 1, pp. 185–207.

[9] N. Kokash, “An introduction to heuristic algorithms,” Department
of Informatics and Telecommunications, vol. 1, no. 1, pp. 1–8, 2005.

[10] J. Watumull, M. D. Hauser, I. G. Roberts, and N. Hornstein, “On
recursion,” Frontiers in Psychology, vol. 4, no. 1, p. 1017, 2014.

[11] S. Boyd and J. Mattingley, “Branch and bound methods,” Notes for
EE364b, Stanford University, vol. 1, no. 1, p. 07, 2006.

[12] W. Li, “Traveling salesman problem,” in The Traveling Salesman
Problem: Optimization with the Attractor-Based Search System.
Cham: Springer Nature Switzerland, 2023, vol. 1, no. 1, pp. 9–25.

[13] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,
pp. 34–37, 1996.

[14] V. V. Vazirani, Approximation algorithms. Berlin: Springer, 2001,
vol. 1, no. 1.

[15] W. Li, The traveling salesman problem: optimization with the
attractor-based search system. Springer Nature, 2023, vol. 1, no. 1.

[16] R. E. Blaser, “The traveling salesman problem (tsp): A spatial
navigation task for rats,” Bio-protocol, vol. 8, no. 11, pp. 1–7, 2018.

	INTRODUCTION
	Motivation
	Research Significance

	LITERATURE REVIEW
	METHODOLOGY
	DISCUSSION ON EMPIRICAL STUDIES OF CLASSICAL APPROACHES TO SOLVE TRAVELLING SALESMAN PROBLEM
	PSEUDO CODE ANALYSIS
	Data Structures used

	RESULT ANALYSIS
	Dataset
	Execution Time
	Solution
	Memory Usage

	DISCUSSION
	COMPARATIVE ANALYSIS WITH LITERATURE
	Execution Time
	Solution Quality
	Memory Usage
	Practical Implications

	CASE STUDY
	Solution: Bit Masking

	CONCLUSION
	References

