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Abstract: In crowd analysis, video data incurs challenges due to occlusion, crowd densities, and dynamic environmental conditions. To
address these challenges and enhance accuracy, we have proposed Behavioral Crowd Counting (BCC), which combines the Congested
Scene Recognition Network (CSRNet) with Unet in video data. The CSRNet combines two networks: (1) a frontend for feature
extraction and (2) backend for generating a density map. It effectively tallies individuals within densely populated regions, solving
the high crowd density constraints. The Unet builds the semantic map and refines the semantic and density map of CSRNet. The
Unet unravels complex patterns and connections among individuals in crowded settings, capturing spatial dependencies within densely
populated scenes. It also offers the flexibility to incorporate attention maps as optional inputs to differentiate crowd regions from the
background. We have also developed new video datasets, namely the Behavioral Video Dataset, from the fine-grain crowd-counting
image dataset to evaluate the BCC model. Datasets include standing vs. sitting, waiting vs. non-waiting, towards vs. away, and violent
vs non-violent videos, offering insights into posture, activity, directional movement, and aggression in various environments. The
empirical findings illustrate that our approach is more efficient than others in behavioral crowd counting within video datasets consisting
of congested scenes as indicated by metrics MSE, MAE, and CMAE.
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1. INTRODUCTION
Crowd counting assesses the number of individuals

in a designated area through images or video. In con-
trast, crowd behavior focuses on studying and interpreting
individuals actions, movements, and interactions within a
crowd. The study of crowd behavior has evolved signifi-
cantly due to the demand for detailed crowd analysis in
fields such as Retail Analysis, Law Enforcement, DineSpace
Analytics, Pedestrian Flow Monitoring, Traffic surveillance,
and Public Safety [1]. Vibha et al., [2] explored methods
for eliminating background elements to recognize moving
objects in videos featuring a static background. Vibha et
al., [3] developed a background registration method for
detecting moving vehicles. Traditionally, crowd-counting
algorithms have primarily focused on quantifying the num-
ber of individuals within an image. However, this count-
only approach is inadequate in providing deeper insights
into crowd dynamics and behaviors, which are critical for
various practical applications. Hence, there is a growing
research interest in the detailed analysis of crowd videos.

Analyzing crowds using video technology is increas-

ingly important, given the vast amount of crowd-related
information in video form. Traditional methods are inade-
quate for comprehensive understanding and interpreting the
data in videos. Therefore, it is essential to focus on the
immense potential of video data for in-depth crowd analysis.
It goes beyond merely quantifying crowd counts in images
and categorizing crowds in videos based on the action.

This work primarily analyzes crowd behavior in Retail,
Law Enforcement, DineSpace Analytics, and Pedestrian
Flow Monitoring applications. The transition from image
to video analysis has become crucial in these applications,
reflecting the current trend where most crowd data is now
captured through video. Traditional retail analysis relies
solely on static head counts. In contrast, video-based be-
havioral insights offer a dynamic perspective, providing a
deeper understanding of specific sub-categories, such as
individuals in queues or leisurely browsing. Additionally,
in law enforcement, challenges faced in crowd manage-
ment are resolved in crowd behavioral video analysis by
distinguishing violent and non-violent individuals within a
crowd. Similarly, in restaurant or cafeteria settings, video
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analysis becomes an indispensable tool for distinguishing
between standing and sitting people, enhancing the depth
and precision of DineSpace analysis. In Pedestrian Flow
Monitoring, our emphasis lies in leveraging video analysis
to improve crowd control strategies by moving beyond
traditional static observations, empowering the distinction
and management of the flow of pedestrians with greater
depth and precision, and addressing critical challenges in
crowd dynamics.

The proposed approach has various applications, such
as aiding violence detection and crowd control in intelligent
city environments, ensuring operational efficiency in event
management, optimizing transportation, and enhancing pub-
lic space safety.

A. Challenges/Motivation
Enhanced Crowd Analysis: The growing need for

in-depth crowd analysis in video data drives increasing
demand across various real-world contexts, such as retail,
surveillance, and public safety. Traditional approaches to
crowd counting have limitations when offering thorough
insights into crowd behaviors, which are vital for ad-
dressing practical challenges in these domains. The de-
mand drives the development of more sophisticated crowd-
analysis techniques that extend beyond the scope of basic
crowd-counting methods to incorporate behavioral crowd-
counting.

B. Contributions
1) Development of BCC Architecture: The introduction

of the Behavioral Crowd Counting (BCC) architec-
ture to integrate the Congested Scene Recognition
Network (CSRNet) with the Unet.

2) Adaptability to Congested Scenes: The CSRNet ef-
fectively counts individuals in densely populated
areas, addressing the challenge of adapting to dense
crowd densities.

3) Efficient Spatial Dependency Capture: The Unet
deciphers intricate patterns and relationships among
individuals in crowded environments to capture spa-
tial dependencies within crowded scenes.

C. Organizational Structure
The rest of the paper is as follows. Section 2

provides insights into existing research in the Related Work.
Section 3 discusses the Background, Problem Definition,
Objectives, and details of the BCC Architecture. Section 4
discuss experimental setup. Section 5 presents the results
and discussions. Section 6 contains the Conclusion and
Future Work.

2. RelatedWork
Related work on Crowd Behavior Analysis Models

is presented in TABLE 1. Cem et al., [4] have distinguished
normal and abnormal crowd behaviors in surveillance
videos using Motion Information Images (MIIs) derived
from optical flow data. The merit is that the optical flow
data improves the accuracy of identifying panic and escape

behaviors. The demerit is that the real-time application is
not explored in this work due to the resource-demanding
nature of MII generation. Guo et al., [5] have introduced a
crowd anomaly detection method for video service robots,
combining mean shift and k-means to identify abnormal
behavior in crowded scenarios. The merit is that the tech-
nique classifies categories with similar motion patterns
and improves anomaly detection accuracy. The demerit is
that the computational parameters for domain and spatial
bandwidth require precise tuning.

Junyu et al., [6] have developed Multi-level Feature-
aware Adaptation (MFA) and Structured Density map
Alignment (SDA) to address challenges in supervised learn-
ing for crowd counting and pixel-wise density estimation.
The advantages are that it overcomes data scarcity issues
and outperforms existing methods in cross-domain crowd
counting. The challenge arises in distinguishing between
background and foreground areas with similar textures,
leading to inaccuracies in the estimated crowd count.

Hyojun et al., [7] have addressed wildlife monitoring
issues by introducing automated multi-class object counting
for endangered animal species. This work presents a fine-
grained multi-class object counting dataset known as KR-
GRUIDAE. The advantage is that EcoCountNet’s network
contributes to accurate and efficient counting processes.
The disadvantage is that the network requires additional
computational resources, and researchers have not explored
real-time applications due to its complexity. Yongtuo et
al., [8] have presented crowd counting model adaptability
across different domains by combining two modules, Crowd
Region Transfer (CRT) and Crowd Density Alignment
(CDA). The merit is that the model exhibits promising
performance in various adaptation scenarios. The drawback
is that the point-level crowd-counting annotations for crowd
images are still challenging problems and expensive.

Savchenko et al., [9] have presented an efficient frame-
level facial emotion analysis model that combines embed-
dings and scores from the EfficientNet architecture pre-
trained on AffectNet. The merit is that the model out-
performs the baseline on multiple tasks, including facial
expression recognition and valence-arousal estimation. The
demerit is that generalizing the model to real-world scenar-
ios is a challenging problem. Justin et al., [10] discussed
fine-grained counting using crowd-sourced annotations to
estimate individuals in crowded scenes and classify at-
tributes. The merit is that The Seal Watch dataset contains
eight fine-grained classes that advance research in animals.
This work has not implemented detection-based methods
for behavior analysis. Pierre et al., [11] have designed
crowd behavior by exploring various approaches such as
microscopic, macroscopic crowd modeling, motion-based
crowd behavior analysis, and optical flow utilization. Crowd
analysis offers the advantage of being applicable in areas
such as public safety, market analysis, urban planning, and
entertainment. However, it also generates large volumes of
data, which are challenging to store, process, and analyze
efficiently.

Shenjian et al., [12] have presented a bi-level alignment
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TABLE I. Summary of Crowd Counting Models, Datasets, Advantages, and Disadvantages

Author/Year Algorithm/Model Dataset Advantages Disadvantages
Cem et al., [4] 2020 MIIs from optical

flow
UMN and
PETS2009

Improved accuracy Computational inten-
sity

Shuqiang et al., [5]
2019

Mean shift & k-
means

UMN dataset Improved accuracy Parameter tuning

Junyu et al., [6] 2020 MFA and SDA ShanghaiTech Part
B, WorldExpo’10,
Mall, UCSD

Overcoming data
scarcity

Error in similar tex-
tures

Hyojun et al., [7]
2021

EcoCountNet KR-GRUIDAE
(fine-grained object
counting)

Accurate counting Additional resources
and not real-time

Yongtuo et al., [8]
2023

CRT and CDA GCC, ShanghaiTech
Part A

Promising adaptation Annotation costly

Savchenko et al., [9]
2022

EfficientNet AffectNet Outperforms
baseline

Generalization chal-
lenge

Justin et al., [10]
2022

Crowd-sourced fine-
grained

Seal Watch dataset Enhanced crowd
management

Lack of size discus-
sion

Pierre et al., [11]
2019

Various approaches The UCSD Anomaly
Detection Dataset

Applicable in diverse
areas

Large data challenge

Shenjian et al., [12]
2022

Bi-level alignment GTAS Crowd Count-
ing (GCC) dataset

Addresses domain
adaptation

Increased complex-
ity

Sachin et al., [13]
2023

MCNN ShanghaiTech
dataset

Enhanced crowd
management

Size and resolution
challenges

Zhikang et al., [14]
2019

Count attention ShanghaiTech
dataset

Improved accuracy Future applicability

Ye et al., [15] 2019 DFFnetSeg Test dataset from
CNDnet2014

Handles
modification

Increased computa-
tional complexity

Adel et al., [16] 2021 U-ASD Net Haramain, with three
different scenes

Adapts to scenarios More computational
resources

Elizabeth et al., [17]
2021

Integrated approach Crowd datasets Early detection Data availability
challenges

Xiaohegn et al., [18]
2020

DANet and ASNet ShanghaiTech
Part A, UCF CC
50, UCF-QNRF,
WorldExpo’10

Alleviates density
differences

More accurate count-
ing

Naveed et al., [19]
2021

CNN-based model ShanghaiTech (Part-
A, Part-B), Venice

Improved accuracy Semantic segmenta-
tion expansion

Yadi et al., [20] 2023 AI-based analytics Video records from a
platform scenario

Accurate pedestrian
counting

Advanced
technology required

Reem et al., [21]
2023

Enhanced abnormal
detection

Diverse Hajj dataset Impressive results
with scalability

Model complexity

framework for enhancing synthetic-to-real Unsupervised
Domain Adaptation (UDA) crowd counting. The merit is
that the model addresses domain adaptation problem, while
demerit is that it involves increased computational complex-
ity. Sachin et al., [13] have predicted crowd behavior using
a Multicolumn Convolutional Neural Network (MCNN) on
the ShanghaiTech dataset. Merit is enhanced crowd man-
agement in various real-world scenarios, and demerit is that
diverse image sizes and resolutions need to be addressed in
this work. Zou et al., [14] have presented adaptive model to
allocate different capacities to different regions in an image
based on crowd density. The merit is that it improves crowd-

counting accuracy in various scenarios. The broader range
of scenarios, like videos, has not been experimented with
in this work.

Ye et al., [15] have presented the foreground / back-
ground segmentation method DFFnetSeg for video analysis.
The merit is that the model handles both unseen and
changes in scene, making it suitable for diverse video
scenarios. The drawback is the increase in computational
complexity due to multiple frames. Adel et al., [16] have
proposed U-ASD Net concatenating U-Net and Adaptive
Scenario Discovery to address perspective distortions and
scale variations in crowd counting. It adapts to complex
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scenarios, making it suitable for dense and sparse datasets.
The demerit of the model is that it requires more com-
putational resources due to the number of parameters and
training time.

Elizabeth et al., [17] have explored crowd behavior
analysis by integrating psychology theories, IoT, and cog-
nitive computing for predictive crowd management. The
advantages are that it enables early detection of crowd
disasters and the potential for real- time data processing.
However, there are challenges in data availability. Xiao-
heng et al., [18] have addressed the challenges of crowd
counting using Convolutional Neural Networks (CNNs) by
combining two networks, namely Density Attention Net-
work (DANet) and Attention Scaling Network (ASNet). It
improves counting performance differences in regions with
varying crowd density patterns, leading to more accurate
crowd counting. Naveed et al., [19] have proposed a CNN-
based model comprising of three main modules viz., a back-
bone network for general features, Dense Feature Extraction
Modules (DFEMs) with dense connections, and a Channel
Attention Module (CAM) for class–specific responses. It
improves counting accuracy in scenes with significant per-
spective variations and varying density levels. This work
does not explore semantic segmentation.

Yadi et al., [20] have presented a comprehensive AI-
based model for crowd analytics in rail transit stations,
focusing on flow volume, crowd density, and walking
speed analysis. It successfully achieves accurate pedestrian
counting and practical applications, requiring advanced
technology and calibration equipment. Reem et al., [21]
have enhanced abnormal behavior detection in large crowds
using the diverse Hajj dataset. While achieving impressive
results, it faces challenges in real-world scalability and
model complexity. Ahmed et al., [22] have developed a
cloud-based deep learning framework for early detection
of crowding in event entrances. It demonstrates 87% ac-
curacy but encounters real-time implementation challenges
and environmental influences. Ganga et al., [23] have
proposed a crowd-counting method combining Unet and
GAN architectures to generate crowd-density maps with
minimized feature loss. Ganga et al., [24] have presented
AnomalyDetectNET for video anomaly detection. Ganga
et al., [25] have discussed crowd counting and behavioral
analysis by examining CNN-based methods, particularly
CSRNet and UNet, which enhance accuracy and efficiency
in these tasks. Ganga et al., [26] [27] have utilized a UNet
GAN for accurate crowd counting and a CNN for density
classification, improving stability and density evaluation
for behavioral analysis and categorizes crowd behavior
as violent or non-violent by analyzing density maps and
individual actions.

Rongyong et al., [28] have developed an enhanced
MCNN for precise pedestrian head recognition and crowd
mass evaluation, focusing on dynamic crowd stability anal-
ysis and accident detection. Aliyu et al., [29] have investi-
gated computer vision techniques for analyzing abnormal
crowd behavior, emphasizing attribute identification and
optimal detection methods in dynamic settings. Yamin et

al., [30] have proposed SSODTL-CD2C for crowd den-
sity detection and classification, utilizing optimization and
transfer learning for dense crowd environments such as
HAJJ. Skander et al., [31] have introduced MILP-MPCT
for improved crowd tracking and UAV deployment opti-
mization. Faisal et al., [32] have developed a real-time
framework using semantic segmentation and deep learning
for crowd-tracking and anomaly detection in diverse out-
door environments. Maria et al., [33] have developed deep
convolutional neural networks for human crowd detection
in drone imagery, emphasizing lightweight architectures for
distinguishing crowded and non-crowded scenarios in drone
protection. Manu et al., [34] have introduced the IMFF
framework for crowd behavior analysis, enhancing crowd
management through multi-level feature fusion and local
region classification.

3. Background
The fine-grained crowd-counting [1] method features a

two-branch architecture consisting of density-aware feature
propagation and complementary attention mechanisms. In
the density-aware feature propagation phase, the model
iteratively propagates features to capture contextual infor-
mation, explicitly focusing on high-density areas and pre-
dicting the overall crowd density map. The complementary
attention mechanisms exchange information between the
two branches, and individual pixels are categorized effec-
tively. Furthermore, during training, the model combines
three loss functions, counting loss, segmentation loss, and
fine-grained loss, to optimize its performance. The method
shows high accuracy of crowd counting in scenarios where
fine-grained categorization of crowd segments is necessary.
Ground-truth density maps Y j are generated by convolving
dot maps D j with a 2D Gaussian kernel K as shown in
equation (1).

Y j = D j · kσ (1)

Ground-truth segmentation maps S j is obtained from the
ground-truth density maps as shown in equation (2).

S j =
Y j

η +
∑k

j=1 Y j
(2)

Here is a small number to prevent division by zero, and
background segmentation S (K+1) is defined by regions with
low density. The soft cross-entropy loss given in equation
(3) is used for segmentation.

so f tCELoss = −
1
N

N∑
i=1

C∑
j=1

(
Yi j log Ŷi j

)
(3)

Where Yi j represents the ground truth class probability,
is the predicted class probability for class, N is the total
number of data points, and C is the number of classes.

A. Problem Definition
Given a video clip/data consisting of images of a certain

length and situations, the objective is to explore Behavioral
Crowd Counting (BCC) by combining CSRNet and Unet.
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Figure 1. The Architecture of Behavioral Crowd Counting (BCC

TABLE II. Frontend Network (Feature Extraction)

Layer Input
Channels

Output
Channels

Kernel
Size

Stride Padding Activation
Function

Size

Convolutional Layer 1 1 64 5x5 1 2 Leaky
ReLU
(0.1)

Varies

Max-Pooling Layer 1 64 64 2x2 2 0 None Varies
Convolutional Layer 2 64 128 5x5 1 2 Leaky

ReLU
(0.1)

Varies

Max-Pooling Layer 2 128 128 2x2 2 0 None Varies
Convolutional Layer 3 128 256 5x5 1 2 Leaky

ReLU
(0.1)

Varies

Max-Pooling Layer 3 256 256 2x2 2 0 None Varies
Additional Convolutional
Layer

Varies Varies Varies Varies Varies Varies Varies

B. Objectives
1) BCC Architecture: To design and construct the Be-

havioral Crowd Counting (BCC) architecture by in-
tegrating the CSRNet and Unet to enable behavioral
crowd counting in video data.

2) Enhanced Accuracy and Segmentation: To improve
the accuracy of crowd counting and crowd segmenta-
tion by accurately distinguishing crowd regions from
the background and analyzing crowd behaviors in
video data.
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TABLE III. Backend Network (Density Map Estimation)

Layer Input Chan-
nels

Output
Channels

Kernel Size Dilation Activation Function

Convolutional Layer 1 512 512 3x3 Optional None
Convolutional Layer 2 512 256 3x3 Optional None
Convolutional Layer 3 256 128 3x3 Optional None
Convolutional Layer 4 128 64 3x3 Optional None
Output Layer 64 1 1x1 None None

TABLE IV. Unet Architecture

Layer Operation Input Chan-
nels

Output
Channels

Kernel
Size

Stride Padding

Encoder Conv1 Conv2d,
LeakyReLU,
Conv2d, LeakyReLU

i cn 64 3x3 1 1

Max Pooling 1 MaxPool2d 64 64 2x2 - -
Encoder Conv2 Conv2d,

LeakyReLU,
Conv2d, LeakyReLU

64 128 3x3 1 1

Max Pooling 2 MaxPool2d 128 128 2x2 - -
Decoder Upconv1 ConvTranspose2d 128 64 2x2 2 0
Decoder Conv1 Conv2d,

LeakyReLU,
Conv2d, LeakyReLU

128 64 3x3 1 1

Decoder Upconv2 ConvTranspose2d 64 o cn 2x2 2 0
Refinement Layer Conv2d 64 o cn 1x1 1 0

3) Optional Attention Map Integration: To integrate
optional attention maps into BCC to focus on specific
areas of interest within the crowd to refine density
predictions.

C. Architecture of Behavioral Crowd Counting (BCC)
The Behavioral Crowd Counting (BCC) architecture, as

shown in Figure 1, concatenates Congested Scene Recog-
nition Network (CSRNet) and Unet to achieve better crowd
counting by including behavior in video data. CSRNet
is renowned for its precision in estimating crowd density
within congested scenes, offering a deep understanding of
the intricate details in densely populated areas. The merit of
CSRNet is that it excels in capturing contextual information,
allowing it to comprehend the spatial relationships among
individuals within a crowd. The CSRNet comprises two
major components: a frontend and a backend network. The
frontend network consists of several convolution and max-
pooling operations for feature extraction. The backend net-
work incorporates dilated convolutions for feature extraction
and comprises a series of convolution layers that process
features extracted by the frontend network, producing the
estimated crowd density map. TABLES II and III show
the Frontend Network (Feature Extraction) and Backend
Network (Density Map Estimation) layers for their input
and output channel dimensions, kernel sizes, stride values,
padding, and activation functions.

The CSRNet is initialized with weights, and the front

end can be pre-trained optionally on ImageNet. The fron-
tend has the following methods: forward method, make
layers, and initialize. The forward method processes input
images, extracts features to produce crowd density and
semantic segmentation maps. The make layers methods
generate sequential layers based on the provided config-
uration, including convolution layers, batch normalization,
and ReLU activations. The initialize method is responsible
for initializing the weights of the network modules, viz.,
convolution layers and batch normalization. Overall, the
architecture employs VGG16-inspired features for effective
feature extraction in crowd analysis, explicitly focusing on
counting and semantic segmentation. The backend with
dilated convolutions efficiently processes input images to
produce accurate crowd density and segmentation maps.

The Unet incorporates a two-tiered structure namely,
encoders serve as feature extractors and decoders for
processing input features for segmentation, as shown in
TABLE IV. The encoder consists of two convolution lay-
ers, LeakyReLU activation and Max-pooling. Leaky ReLU
activation functions follow the convolution layers in its
two blocks. Leaky ReLU activation functions initiate non-
linearity in the network, which allows a slight, non-zero
gradient for negative inputs, preventing dead neurons and
facilitating the learning of more complex relationships
in the data. Max-pooling operations follow each encoder
block to down-sample and capture hierarchical and spatial
information. The down-sampling is pivotal for progressive
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abstracting and concentrating relevant information from the
input images, enabling the network to learn hierarchical
representations while maintaining computational efficiency.

The decoder has transposed convolution layers, used to
up-sample the feature maps, with two such layers in each
decoder block. These layers contribute to the reconstruction
of spatial details lost during the down-sampling process,
aiding in the precise localization of features. The transpose
convolution layers refine the feature representations, main-
taining symmetry with the encoder, and the final refinement
occurs through a 1x1 convolution layer in the refinement
block. The Unet benefits are particularly effective in tasks
such as image segmentation, where the accurate spatial
delineation is essential. It also effectively performs image
segmentation tasks, and its emphasis on accurate spatial
delineation makes it potent in applications where precise
localization of features is vital, such as medical image
analysis, autonomous vehicle navigation, and satellite image
processing.

D. Algorithm
Algorithms 1 to 6 explains Pre Processing, Segmentation

of video, and Crowd Counting. The Pre Processing function
is designed to handle video data. It takes a video path as
input and performs the following tasks: frame extraction,
saving frames to an output directory, and reading annotation
data from a corresponding JSON file. The function utilizes
OpenCV to read and store frames, organizing them based
on the video number in a specified directory structure. The
preprocessing output is the total number of frames, the
path to the frame outputs extracted annotation data, and
the video number. The segmentation function focuses on
video segmentation. It calls the processing results function
to obtain a result and then iterates through each frame. The
data is prepared for each frame, and the RefineSegmentation
function is applied to refine the segmentation using an Unet
model. The function returns the final segmented result for
each frame in the video. It takes input data containing fea-
tures and an attention map, concatenates them if an attention
mechanism is used, initializes the Unet model, and performs
segmentation refinement. The refined segmentation result is
then returned.

In the Crowd Counting function, the video undergoes
crowd counting processing. It first calls the IntegratedPro-
cessing function to obtain a processing result. The function
then iterates through each frame, prepares the data, and
uses the PredictCrowdCount function to estimate the crowd
count. The final result represents the crowd count informa-
tion for each frame in the video. The PredictCrowdCount
function estimates crowd counts in images. It takes an image
as input, initializes a CSRNet model for crowd counting,
processes the image through its frontend and backend, and
predicts the crowd count using the output layer of the
model. The result is the expected crowd count for the given
image.

The algorithm Enhanced Behavioral Crowd Counting
(EBCC) accurately counts individuals in crowded scenes
by considering their behavior, such as the direction of

movement (towards or away), posture (standing or sitting),
state of people (waiting or non-waiting), and nature of
the activity (violent or non-violent). It preprocesses video
frames to extract and refine segmentation data and then
employs a combination of Unet and CSRNet models to
analyze these frames. The process counts the number of
people by integrating behavioral analysis, leading to a
more comprehensive understanding of crowd dynamics. The
versatility of EBCC allows it to be adapted for other ap-
plications, such as monitoring public safety and enhancing
surveillance systems for behavioral anomaly detection. The
algorithm’s time complexity is O(n), with n representing the
total frames in a video, as it processes each frame separately.
The space complexity is O(m), where m is the memory
requirements of the Unet and CSRNet models during the
algorithm’s runtime.

E. Case Study
1) Smart city environments: Optimizing bus routes with

real-time pedestrian flow data in bustling city centers
improves transport efficiency and reduces conges-
tion. Challenges include integrating with existing
infrastructure and addressing data privacy concerns.

2) Event management: During festivals, real-time
crowd monitoring improves event safety by detecting
overcrowding and enabling swift responses to en-
sure smooth operations. Challenges include manag-
ing real-time data effectively, scaling for significant
events, and maintaining attendee’s privacy.

3) Public safety: At large protests, violence detection
algorithms swiftly identify aggressive behavior, aid-
ing law enforcement in maintaining peace and secu-
rity by enhancing crowd control. Challenges include
ensuring algorithm accuracy, addressing ethical con-
cerns, and gaining public acceptance of surveillance
methods.

Figure 2. Segmentation Results of Four Video Dataset

4. Experiments Setup
The loss functions such as Mean Squared Error (MSE)

and Mean Absolute Error (MAE) are the metrics used for
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Algorithm 1 PreProcessing

1: function PreProcessing(video path, file name)
2: Input: video path, file name
3: Output: total frames,output path, annotation data, video num
4: dataset path ←
5: D:/Final yr project/Final dataset frames/
6: file name ← video path
7: video num ← substring(1, file name)
8: frames dir ← frames + video num
9: output path ← Call join(dataset path, frames dir)

10: if not exists(output path) then
11: mkdirs(output path)
12: end if
13: video ← VideoCapture(video path)
14: total frames ← int(video.get(CAP PROP FRAME COUNT))
15: frame count ← 0
16: for frame count = 0 to total frames do
17: success, frame ← read video
18: if not success then then
19: break
20: end if
21: frame path ← output path + frame count
22: Call imwrite(frame path, frame)
23: frame count ← frame count + 1
24: end for
25: release(video)
26: Print “Video extraction complete!”
27: annotation file ← open D:/Final yr project/annotations/video {video num}.json
28: annotation data ← json.load(annotation file)
29: return total frames, output path, annotation data, video num
30: end function

Algorithm 2 Segmentation of Video

1: function Segmentation(video path)
2: Input: video path
3: Output: Segmentation result
4: processing result ← video path
5: Extract information from processing result
6: for frame index = 0 to total frames do
7: frame path←join(output path,
frame index)

8: input data←PrepareData(frame path)
9: segmentation result←RefineSegmentation
(input data)

10: Process segmentation result
11: end for
12: return Segmentation result
13: end function

evaluation. TABLE V shows details of four behavior video
datasets, such as frame rate in seconds, length of video in
seconds, and resolution of the videos.

Algorithm 3 RefineSegmentation

1: function RefineSegmentation(InputData)
2: Input: InputData
3: Output: RefinedSegmentation
4: fea ← [‘fea’]
5: att ← [att’] ▷ Assuming att is the attention map
6: if att is not None then
7: fea ← torch.cat((fea, att), 1)
8: end if
9: unet model ← Unet Model(input channels,
output channels)

10: RefinedSegmentation ← unet model(fea)
11: return RefinedSegmentation
12: end function

A. Datasets
The Behavioral video dataset comprises four distinct

datasets derived from fine-grained image datasets. Each
dataset focuses on specific behavioral distinctions: stand-
ing vs. sitting, waiting vs. non-waiting, towards vs. away
movement, and violent vs. non-violent actions. These videos
are categorized based on criteria such as posture, activity
type, and directional movement, offering a detailed analysis
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Algorithm 4 EBCC: Enhanced Behavioural Crowd Count-
ing

1: function EBCC(video path)
2: Input: video path
3: Output: Crowd Count
4: Call PreProcessing(video path)Function 1:

Preprocessing
5: Call Segmentation(video path)Function 2:

Segmentation
6: crowd count ← CrowdCounting(video path)

Function 3: Crowd Counting
7: return crowd count
8: end function

Algorithm 5 Crowd Counting

1: function CrowdCounting(video path)
2: Input: video path
3: Output: Crowd Count
4: processing result←
IntegratedProcessing(video path)

5: Extract information from processing result
6: for frame index = 0 to total frames do
7: frame path←join(output path,
frame index)

8: input data ← PrepareData(frame path)
9: crowd count ← Process(input data)

10: end for
11: return Crowd Count
12: end function

of human behaviors in urban settings. Each dataset includes
labeled videos with statistics on the number of videos, dura-
tion, and distribution across categories, providing valuable
resources for behavioral analysis and model training.

1) Standing vs Sitting Video Dataset: The dataset
presents videos derived from a fine-grained image
dataset, illustrating individuals either standing or
sitting in various urban settings. It is valuable for

Algorithm 6 PredictCrowdCount

1: function PredictCrowdCount(x)
2: Input: Image x
3: Output: Predicted crowd count (dmap)
4: i cn ← number of input channels
5: o cn ← number of output channels
6: csrnet model ← CSRNet(i cn, o cn)
7: x← csrnet model.frontend(x) Frontend Processing
8: dmap fea ← csrnet model.backend(x) {Density

Map Feature Extraction
9: dmap← csrnet model.output layer(dmap fea)Density

Map Prediction
10: return dmap
11: end function

Figure 3. Mask Results of Four Video Dataset

analyzing and distinguishing between static postures
in different environmental contexts.

2) Waiting vs. Non-Waiting Video Dataset: The dataset
presents videos built from a fine-grained image
dataset capturing the people waiting (e.g., at bus
stops) versus non-waiting those engaged in other
activities. It’s an excellent tool for studying patterns
of stationary and transient behaviors in public spaces.

3) Towards vs. Away Video Dataset: The dataset
presents videos built from a fine-grained image
dataset featuring people walking towards or away
from the camera. It aids in understanding directional
movement and pedestrian dynamics, offering insights
into approach and departure behaviors in various
settings.

4) Violent vs Non-Violent Dataset: The dataset presents
videos built from a fine-grained image dataset with
violent and non-violent video scenes. This resource
differentiates aggressive and non-aggressive behav-
iors in different contexts.

TABLE V. Details of Four Behaviour Video Dataset

Dataset Name Frame
Rate
(sec)

Length
(sec)

Resolution
(dpi)

Violent vs Non-
violent

1 1 96

Towards vs Away 1 1 96
Standing vs Sitting 1 1 96
Waiting vs Non-
Waiting

1 1 96

B. Metrics
1) Mean Square Error (MSE): MSE is calculated as the

average error between the predicted density values
and the ground-truth density values, as shown in
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equation (4).

MS E =
1
N

N∑
i=0

(Yi − Ŷi)2 (4)

Where Yi represents the ground truth density map, is
the predicted density map, and N is the total number
of data points.

2) Mean Absolute Error (MAE): MAE is calculated
as the average error between the predicted density
values and the ground-truth density values as shown
in equation (5).

MAE =
1
n

∑
i

∣∣∣∣∑Yi j −
∑

Ŷi j

∣∣∣∣ (5)

Where n is the total number of test images, yi j
represents the ground-truth density map for the i and
j, represents the predicted density map for the ith test
image and the jth category.

C. Performances

TABLE VI. Video Information

Property Value
Frames per second 1
Total frames 6
Video created at 2023-06-29 20:39:56

TABLE VII. Frame Extraction Results

Extracted Frame Details
Extracted frame: 1/6 Extracted frame: 4/6
Extracted frame: 2/6 Extracted frame: 5/6
Extracted frame: 3/6 Extracted frame: 6/6

Extraction complete!

TABLE VIII. Frame Analysis Results

Frame Number CMAE
Frame Number: 1 CMAE: 2.21
Frame Number: 2 CMAE: 1.78
Frame Number: 3 CMAE: 2.21
Frame Number: 4 CMAE: 1.64
Frame Number: 5 CMAE: 2.21
Frame Number: 6 CMAE: 2.21

Figure 2 shows the Segmentation results of the four
video datasets with segmentation masks generated. A seg-
mentation mask is a pixel-wise labeling of an image,
where each pixel is assigned a category or class based on
specific characteristics. The segmentation mask is generated
to highlight specific regions of interest within images,
guided by annotated points provided in the annotation
data. The resulting segmentation mask provides a spatially
detailed representation of the annotated features within
the image, effectively delineating these features from the
background. Figure 3 shows the mask results of the four

TABLE IX. Waiting vs Non Waiting

Metric Value
Frames per second 1
Total frames 2
Video created at 2023-11-20 19:25:06
Average Speed 60.44 pixels per frame
Total no of people 12.50
Avg no of people in Channel1 10.50
Avg no of people in Channel2 2.00
CMAE 4.12
MAE 2.56
MSE 9.63
PATCH 5.78 × 10-6

TABLE X. Standing vs Non Standing

Metric Value
Frames per second 1
Total frames 7
Video created at 2023-11-20 19:16:18
Average Speed 129.92 pixels per frame
Total no of people 56.57
Avg no of people in Standing 39.43
Avg no of people in Sitting 17.14
CMAE 5.06
MAE 3.64
MSE 15.12
PATCH 3.85 × 10-5

video datasets with the binary masks generated. Each mask
isolates specific regions of interest within the corresponding
images by assigning binary values to pixels. The regions of
interest are determined by annotated points obtained from
the annotation data associated with the images. The masks
are created to selectively highlight and distinguish particular
features within the images, as dictated by the annotated
points. The grayscale intensity in the mask corresponds to
the binary values assigned to pixels, where white (or lighter
shades) typically represent annotated regions (binary value

TABLE XI. Violent vs Non Violent

Metric Value
Frames per second 2
Total frames 10
Video created at 2023-11-20 19:19:40
Average Speed 0.56 pixels per frame
Total no of people 21.10
Avg no of people in Towards 12.60
Avg no of people in Away 8.50
CMAE 3.16
MAE 3.09
MSE 6.20
PATCH 0.0005573
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Figure 4. Results of BCC architecture with four Dataset

TABLE XII. Towards vs Away Data

Metric Value
Frames per second 1
Total frames 6
Video created at 2023-11-20 19:21:44
Average Speed 20.18 pixels per frame
Total no of people 28.67
Avg no of people in Violent 21.67
Avg no of people in Non Vio-
lent 7.00

CMAE 4.25
MAE 3.26
MSE 10.64
PATCH 0.0003048

1), and black (or darker shades) represent non-annotated 10
areas (binary value 0). The binary masks play a vital role in
the precise examination of object detection, segmentation,
and feature analysis.

Figure 5. Bar Graph Results of CMAE for each Cate-
gory

5. Results and Discussions
In TABLE VI, the video information details the video,

including the frames per second (1 FPS), total frames (6),
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TABLE XIII. Comprehensive overview of BCC Architecture metrics across four datasets

Model Standing/Sitting Waiting/NonWaiting Towards/Away Violent/NonViolent
BCC (Proposed Model) 5.06 4.12 3.16 4.25

Jia (Base Paper) [1] 8.01 2.99 2.29 4.35
TABLE XIV. CMAE Results on four Video Datasets
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Standing
vs
Sitting

1 7 2023-
11-20

19:16:18 129.92 56.57 39.43 17.14 5.06 3.64 15.12 3.85

Waiting
vs Non
Wait-
ing

1 2 2023-
11-20

19:25:06 60.44 12.50 10.50 2.00 4.12 2.56 9.63 5.78

Towards
vs
Away

2 10 2023-
11-20

19:19:40 0.56 21.10 12.60 8.50 3.16 3.09 6.20 5.57

Violent
vs Non
Violent

1 6 2023-
11-20

19:21:44 20.18 28.67 21.67 7.00 4.25 3.26 10.64 3.04

and timestamp. The frame extraction results in TABLE
VII show the extraction of each frame. In TABLE VIII,
the Frame Analysis Results displays frame numbers and
their respective Comparative Mean Absolute Error (CMAE)
values. Lower CMAE values indicate more accurate predic-
tions. TABLES VI to VIII offer a comprehensive overview
of the video-to-frame conversion process, presenting critical
metadata, analytical outcomes, and converting a video into
frames. TABLES IX, X, XI and XII provide a comprehen-
sive summary of video analysis metrics, such as processing
speed (Frames per Second), total frames, video creation
time, average object speed, total number of people, aver-
age count of people moving towards and away, Compara-
tive Mean absolute Error (CMAE), Mean Absolute Error
(MAE), Mean Squared Error (MSE), and a PATCH metric
for all four datasets. These metrics offer insights into the
dynamics, accuracy, and characteristics of crowd behavior
across diverse scenarios and dataset.

Figure 4 presents the experimental results for four
datasets i.e., Towards/Away, Standing/Sitting, Waiting/ Non
Waiting and Violent/Non-Violent, using four separate fig-
ures for each dataset. In the Towards/Away dataset, the
figures visualize crowd movement direction featuring an-
notated ground truth, crowd frames, and the number of
people moving towards and away. For the Standing/Sitting
dataset, the results focus on postures (standing or sitting),
displaying annotated ground truth, crowd frames, and the
number of people standing and sitting. In Waiting/Non
Waiting dataset figures show the annotated ground truth,
crowd frames, and number of waiting and non waiting

people. The Violent/Non-Violent dataset figures illustrate
instances of violence, showcasing annotated ground truth,
crowd frames,and the number of violent and non-violent
actions within the crowd.

Table XIII presents the Comparative Mean Absolute
Error (CMAE) results of the proposed BCC model com-
pared with the fine grain crowd counting model of Jia [1]
across diverse video datasets. Across various human be-
haviors such as Standing/Sitting, Waiting/Non-Waiting, To-
wards/Away, and Violent/Non-Violent categories, the BCC
model consistently outperforms the base paper, with lower
CMAE values. For instance, in the Standing/Sitting cat-
egory, the BCC model achieves a CMAE of 5.06, ex-
celling the base paper’s 8.01. This trend persists across
Waiting/Non-Waiting, Towards/Away, and Violent/Non-
Violent categories, with the BCC model demonstrating
CMAE values of 4.12, 3.16, and 4.25 respectively, com-
pared to the base paper’s 2.99, 2.29, 2.29 and 4.35.

TABLE XIV presents a comprehensive overview of key
metrics with crowd behavior analysis across four datasets.
Each row corresponds to a specific category: Standing
vs. Sitting, Waiting vs. Non-Waiting, Towards vs. Away,
and Violent vs Non-Violent. The provided metrics include
frames per second, total frames, the date and time of video
creation, average object speed, total people count, counts
in two designated channels, and several evaluation metrics
(CMAE, MAE, MSE, and PATCH). These metrics present
insights into crowd behavior’s characteristics, accuracy, and
dynamics within diverse scenarios and behavioral cate-
gories. A contributing factor to the BCC model’s enhanced
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Figure 6. Results of MAE, CMAE, MSE Metric of Four Datasets

Figure 7. CMAE between BCC and JIA models

accuracy lies in incorporating the Unet architecture. The
Unet captures spatial dependencies and intricate patterns
in crowd behavior. Its features such as a contracting path
for context capture and an expansive path for precise
localization, identify even slight differences in scenes with
many people. Integrating the Unet with CSRNet architecture
boosts the BCC model’s ability to analyze complex spatial
relationships, emphasizing the importance of an advanced
neural network for superior performance in crowd analysis
applications.

Figure 5 shows the Comparative Mean Absolute Error
(CMAE) results across four categories, each representing
different aspects within the visual data. The x-axis denotes
the individual categories, while the y-axis the corresponding
CMAE values. Lower CMAE values on the graph sig-
nify higher accuracy in the model’s predictions for each
category. The graph compares and highlights the model
behaviors within each category based on the calculated

CMAE values. Figure 6 illustrates the outcomes of three key
metrics—Mean Absolute Error (MAE), Comparative Mean
Absolute Error (CMAE), and Mean Squared Error (MSE)
across four distinct video datasets. The x-axis corresponds
to the individual datasets, while the y-axis corresponds
to each dataset’s metric values. The data points visually
represent the model performance based on MAE, CMAE,
and MSE, with lower values indicating more accurate
predictions. The visual summary enables a comparison of
model effectiveness across the various video datasets con-
cerning these specific evaluation metrics. Figure 7 presents
the performance between the BCC (Proposed Model) and
Jia (Base Paper) in predicting crowd behaviors. In Stand-
ing/Sitting, BCC boasts a CMAE of 5.06 compared to Jia’s
8.01. For Waiting/Non-Waiting, BCC records a CMAE of
4.12, surpassing Jia’s 2.99. In Towards/Away, BCC achieves
a CMAE of 3.16 against Jia’s 2.29. Lastly, in Violent/Non-
Violent, BCC demonstrates a CMAE of 4.25, outperforming
Jia’s 4.35. These numerical comparisons prove the BCC
model’s accuracy over the Jia model across diverse crowd
behavior categories.

6. Conclusions and FutureWork
The Behavioral Crowd Counting (BCC) architecture

combines a Congested Scene Recognition Network (CSR-
Net) with an Unet for enhanced behavioral crowd counting.
The CSRNet consists of a frontend and a backend network
for feature extraction and generation of a crowd density
map. The Unet produces a density map and refines an
attention-based map. It operates on video features and
attention maps, refining the density map through several
iterations. The refined density maps provide behavior-based
crowd segmentation, separating crowd regions from the
background with improved accuracy. The experimental re-
sults validate the effectiveness of the approach in behaviour
crowd counting in video data consisting of congested
scenes. This synergy empowers the system to perform
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behavioral crowd counting, offering unprecedented insights
into crowd dynamics within video datasets.

Extending BCC to recognize and analyze emotions or
sentiments within the crowd enables marketing, entertain-
ment, and event management applications. Incorporating
multi-modal inputs from different data sources, such as
audio, text, or social media data, provides a more com-
prehensive understanding of crowd behavior and improves
analysis accuracy.
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