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Abstract: The growing use of cloud computing and increasing popularity of digital technologies have made it essential to store and
process personal data in cloud environments. As organizations and individuals continue to adopt cloud services, the security of sensitive
personal information in this dynamic environment has become a top priority. Ensuring the confidentiality, integrity, and availability of
personal data in the cloud is critical for mitigating the risks associated with cyber threats. This study examines security issues related
to personal information in cloud systems and proposes a new approach that leverages machine learning (ML) classification and data
tokenization techniques using serverless and secret vault services provided by cloud service providers (CSPs). Supervised learning
algorithms, including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN), and Multilayer Perceptron (MLP),
are used for data label prediction. Notably, we found that the CNN achieved a remarkable 100% accuracy on a large dataset, ensuring
perfect classification with double validation using pattern matching. In addition, natural language processing (NLP) techniques are
employed to clean and prepare data content, whereas data tokenization is used to ensure data confidentiality and integrity. Furthermore,
an analysis of both model overhead and cloud performance revealed that our model is scalable, and data handling using our approach
has no major significant impact on time costs. This study also provides an overview of cloud computing, its service models, and the
main security threats inherent in the cloud infrastructure. The experimental design and results based on specific datasets validate the
effectiveness of the proposed hybrid approach in enhancing the protection of sensitive personal information in cloud storage.
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1. INTRODUCTION
Finding sufficient storage space to accommodate data

is a significant challenge for many IT professionals, re-
searchers, and individuals [1]. Cloud storage services enable
individuals and organizations to embrace a digital paradigm
characterized by flexibility, efficiency, and accessibility [2].
By exploiting the capabilities of cloud storage solutions,
they can overcome the limitations of traditional data man-
agement, thereby opening a wide range of possibilities [3].

Globally, the adoption of cloud storage systems is on
the rise as organizations and individuals seek efficient
solutions for storing and retrieving their data [4]. However,
this escalating reliance on cloud storage has introduced
significant concerns regarding data security. The suscep-
tibility of cloud storage systems to diverse cyber threats
poses a critical challenge, particularly in safeguarding the
confidentiality, integrity, and availability of all stored data
[5][6] [7]. Achieving the right combination of effectiveness
and practicality is a key challenge in the design of cloud
storage security approaches [8]. It is crucial to build a

model that can accurately differentiate normal data from
sensitive data [9] while maintaining sufficient simplicity and
performance for realistic deployment in a cloud environ-
ment rather than becoming either too complex or consuming
resources [10] [11]. To address these security challenges,
our research introduces a novel approach that integrates
machine-learning (ML) classification algorithms with data-
masking techniques to enhance the protection of sensitive
data in cloud environments.

Considering the above challenges, the primary objective
of this study is to examine the security issues associated
with personal information in cloud systems and suggest a
proactive approach to mitigate these risks. By adhering to
machine-learning (ML) classification algorithms and using
data-masking techniques. Our approach aims to simplify
design complexity while ensuring scalability and practical
implementation, with potential applications across various
industries, such as healthcare, finance, and government.
This framework not only addresses current security con-
cerns but also sets the stage for future improvements and
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refinements.

ML approaches offer sophisticated ways of classifying
sensitive data by relying on algorithms to systematically
identify patterns and features that indicate sensitive infor-
mation. A popular approach is supervised learning [12]
[13], in which models are trained on labeled datasets to
classify data into predefined categories, such as sensitive
and insensitive [14]. Supervised learning algorithms such
as random forests (RF), support vector machines (SVM),
or neural networks rely on historical data patterns and
features to predict the sensitivity of new data [15] [16]
[17]. In addition, unsupervised learning methods such as
clustering can be used to group similar data items together,
potentially revealing clusters of sensitive information [18].
Natural language processing (NLP) techniques can also play
a key role in allowing the analysis of textual data to identify
sensitive content [19] [20].

Data masking techniques may also help protect sensitive
data [21]. They are often used in data management and data
leakage prevention systems (DLPs) to prevent data breaches
and unauthorized access [22]. Common techniques include
substitution, encryption, and tokenization [23]. These tech-
niques preserve data confidentiality and integrity, making it
possible to protect sensitive data while making them usable
for legitimate purposes in a cloud environment.

The upcoming sections are structured as follows. Section
2 provides the context and background of this study. In
Section 3, the related literature is reviewed. Section 4
describes the proposed framework by delineating the main
elements of the system. Section 5 presents the datasets used,
as well as the experimental design and results, and Section
6 contains the conclusion and outlines future work.

2. BACKGROUND
In this section, we offer an overview and a general back-

ground on the topic explored in this paper. By examining the
context in detail, we aimed to establish a solid foundation
for further discussion and analysis.

A. Cloud Computing

Figure 1. Types of Cloud Services

Cloud computing is a model that provides computing re-
sources over the Internet on a pay-as-you-go basis. It allows
customers to access servers, storage, databases, networks,
and software applications without the need to possess or
manage physical infrastructure. This flexible and scalable

concept ensures cost-effective and efficient use of resources
[24].

Cloud service models, including Software as a Service
(SaaS), Infrastructure as a Service (IaaS), and Platform as
a Service (PaaS), offer varying levels of abstraction and
control. As depicted in Fig. 1, IaaS provides basic com-
puting resources on demand, PaaS abstracts infrastructure
to simplify development, and SaaS offers fully managed
applications accessible over the Internet. Cloud storage
services, which exemplify the Infrastructure as a Service
(IaaS) model, provide scalable storage solutions managed
remotely by third-party providers, enabling users to store
and access data over the internet.

The adoption of cloud storage has introduced significant
security challenges. The confidentiality of sensitive infor-
mation becomes compromised as it becomes vulnerable to
unauthorized access and breaches. Ensuring data integrity
is equally critical, with risks such as data tampering or
corruption during transmission or storage. Furthermore,
maintaining data availability is essential to mitigate the op-
erational impacts and financial losses caused by disruptions
or downtime. These challenges highlight the importance
of robust security measures, including encryption, access
control, authentication mechanisms, and continuous moni-
toring, to secure sensitive data against evolving cyber threats
in dynamic cloud environments.

TABLE I. Cloud Main Threats

Category Threats

Authentication - Weak or compromised credentials.
- Inadequate authentication mechanisms.

Data Security - Data breaches and leaks.
- Insecure storage configurations.

Network Security - Weak firewall rules.
- Man-in-the-middle attacks.

Apps Security - Inadequate input validation.
- Exposed APIs.

Human Factor - Insider threats.
- Social engineering attacks.

Cloud environments are susceptible to a wide range of
security threats and attacks originating from different risk
categories. These risks cover a spectrum of threats inherent
to cloud infrastructure, as shown in Table I.

B. Machine Learning
Machine learning is a field of artificial intelligence (AI)

that allows learning and improvement from experience with-
out requiring explicit programming. It comprises algorithms
that analyze data, identify patterns, and make predictions
or decisions based on these patterns. The goal is to build
models that can be generalized from data to solve problems
or make specific predictions [12] [13].

As illustrated in Fig. 2, each machine-learning model
operates separately, targeting specific problem areas. When
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Figure 2. Machine Learning Models

combined, they achieved a better performance than the other
models. Hybrid models also minimize the limitations of
individual basic models and exploit their different gener-
alization mechanisms.

• Supervised Learning: These algorithms are trained
using labeled data to create a mapping between the
input and output variables. This enables them to make
predictions based on the new data. Examples of the
common algorithms in this category include linear
regression, decision trees, and neural networks.

• Unsupervised Learning: These algorithms are trained
on unlabeled data to discover hidden patterns or
structures within a dataset. Clustering algorithms such
as K-means are commonly used for this purpose.

• Reinforcement Learning: This technique involves
training agents to interact with an environment by
taking action and receiving feedback. The goal is to
maximize the cumulative rewards over time. Rein-
forcement learning has applications in fields, such as
robotics, games, and autonomous systems.

C. Data Masking
Data Masking is a vital data security measure that

aims to obscure sensitive information in order to protect
it from being accessed by unauthorized parties [24]. This
process usually involves substituting the original data with
non-realistic, fictitious values, while maintaining the format
and integrity of the data. Techniques such as tokenization,
encryption, and hashing can be employed to protect masked
data.

3. LITERATURE SURVEY
A. Related Work

Several studies addressed the issue of data security in
cloud computing. They fall into two categories: securing the
container, which is a storage service in different contexts,
namely public, private, and hybrid clouds. Securing content
refers to the data in three states : transit, at rest, and in use.

The authors of [25] developed a data protection strategy
for cloud storage that integrates machine learning-driven
encryption and anomaly detection. A comprehensive survey
conducted by Patel et al. [26] explored machine-learning
techniques, including neural networks and clustering, to
enhance cloud data security. Chen et al. [27] reviewed
encryption algorithms and access control mechanisms in
cloud computing to improve data security. Sun et al. [28]
proposed methods for preserving data privacy in cloud
environments by discussing differential privacy and feder-
ated learning techniques. The implementation of machine-
learning algorithms, such as decision trees and support
vector machines [29], focuses on efficient and secure data
storage in the cloud. Wu et al. [30] ensured secure and
privacy-preserving cloud data storage by utilizing homo-
morphic encryption and blockchain technology. A machine-
learning approach that incorporates deep learning and rein-
forcement learning [31] addresses real-time threat detection
and mitigation in cloud storage. Li et al. [32] propose
advanced encryption techniques and data masking methods
using machine learning for protecting sensitive data in cloud
storage. Patil et al. [33] explored anomaly detection and
data obfuscation techniques to enhance data privacy and
security in cloud environments. Kim et al. [34] effectively
managed data security and privacy in cloud storage by
employing cryptographic protocols and machine-learning-
based intrusion detection systems.

In [35], the author introduced a new secure cloud storage
service designed to improve data security by implementing
access control lists (ACLs), key rotation, and metadata
tagging. The author of [36] proposed a multilayered defense
mechanism to protect the sensitive data stored in the cloud.
Techniques include Elliptic Curve Cryptography (ECC),
advanced encryption standards (AES), and blockchain. The
study in [37] introduced a user-side encrypted file system
designed for cloud storage. It utilizes an identity-based en-
cryption scheme (IBE) and implements transparent encryp-
tion on a per-file basis using per-file keys. This approach
enhances data security by encrypting files at the end of
the user before storing them in the cloud. Reference [38]
proposed a framework that combines Ethereum blockchain
technology with ciphertext-policy attribute-based encryp-
tion (CP-ABE) to create a secure cloud storage solution.

The authors of [39] proposed a new approach to guar-
antee data security using machine learning classification
algorithms. The Reuters-21578 dataset was trained using
natural language processing (NLP) with four classifiers to
evaluate the data. In [40], the author suggested a new
model in which cloud data are categorized based on their
sensitivity, encrypted, randomized, and anonymized. Refer-
ence [41] proposed a differential approach for a privacy-
preserving machine learning model (DA-PMLM) that en-
sures robust privacy protection for both data and classifiers.
Experimented with a Naive Bayes classifier across multiple
datasets, the model involves four entities: Data Owners
(DOid), Classifier Owner (CO), Cloud Service Provider
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TABLE II. Comparison of techniques used in other models

Reference Confidentiality Integrity Scalability ML Based Cloud Based
[25] X X - X -
[26] X X X X -
[27] X - - X -
[28] X X - X -
[29] X X - X -
[30] X X X X -
[31] X - X X X
[32] X X - X -
[33] X X X X X
[34] X X - X -

(CSP), and Request Users (RUid).

In [42], the authors presented a novel three-dimensional
CCDC sensitive information security storage algorithm that
integrates advanced techniques such as feature combination
for sensitive information filtration and encryption. More-
over, it implements a three-dimensional storage principle to
ensure secure data storage. The system proposed in [43]
utilizes JavaScript injection techniques and deep learning
methods to sanitize sensitive on-premise data before upload-
ing them to cloud storage. It consists of five components:
an interceptor, parser, classifier, sanitizer, and packer. The
Interceptor intercepts the HTTP/HTTPS traffic, while the
parser parses the application protocols and extracts the file
content. The Classifier categorizes sensitive data and the
sanitization module detects and sanitizes sensitive infor-
mation. Finally, the Packer assembles redacted data into
web requests, which are then sent to the cloud storage.
The work in [44] introduced a Scale-based Secure Sensitive
Data (SSSD) cloud storage technique, aiming to provide
personalized security levels for user data through a pri-
vacy score. The model utilizes Likert-scale assignment and
Dichotomous Response Matrix generation to simplify the
data classification. Privacy scores identify common sensitive
attributes across users, whereas association rule mining
identifies user-specific sensitive attributes.

B. Discussion
Researchers, presented in Table II including Yang et al.

[25], encountered several challenges in dynamic cloud envi-
ronments that affected scalability and operational complex-
ity, which could limit the applicability of their solutions to
large-scale deployments. Similarly, Patel et al. [26] pointed
out practical complexities in implementing various machine
learning techniques across diverse cloud infrastructures,
hindering widespread adoption. Chen et al. [27] emphasized
the importance of strong cryptographic algorithms, but they
also acknowledged the scalability concerns associated with
computational efforts in large-scale cloud deployments. Sun
et al. [28] faced difficulties in integrating their privacy-
preserving techniques with existing cloud architectures.
Zhou et al. [29] achieved significant performance benefits
but required adaptation to evolving cloud infrastructures.
Wu et al. [30] emphasized the importance of security

but required scalable management solutions. Khan et al.
[31] developed deep learning models for threat detection,
which needed further validation for broader scalability. Li
et al. [32] proposed advanced encryption and data masking
techniques that required integration with existing cloud
frameworks. Patil et al. [33] enhanced anomaly detection
capabilities but needed improvements in scalability. Kim
et al. [34] employed cryptographic protocols that required
adaptation to evolving threats in diverse contexts.

Although models [35]-[38] present distinct advantages,
such as effective access control, cryptographic strength,
and distributed architectures, they also encounter technical
challenges, such as management complexity and scalability
limits. Nevertheless, the research outlined above requires
secure management mechanisms to prevent exposure to
cryptographic materials. In contrast, the referenced ap-
proaches [39]-[41] offer promising methods to increase data
security and privacy in cloud environments. However, these
approaches lack comparative analyses, detailed evaluations,
scalability considerations, and explicit discussions of the
threat models. Although the models proposed in [42]-
[44] offer promising solutions for enhancing data secu-
rity in cloud storage, they encounter challenges related to
performance, resource consumption, and practical imple-
mentation. Further research and comprehensive evaluations
are required to address these concerns and validate the
effectiveness of these techniques in real-world scenarios.

Current security measures in cloud storage, such as en-
cryption, access controls, multifactor authentication, mon-
itoring, and redundancy, are utilized to guarantee data
integrity, availability, and confidentiality. However, ongoing
challenges include evolving encryption standards, managing
access policies, resource-intensive monitoring, and depen-
dencies on third-party providers. Existing literature empha-
sizes the widespread adoption of encryption techniques and
the use of external tools for preprocessing, classifying, and
manipulating data before storage in the cloud. Despite this,
research often lacks comprehensive studies utilizing cloud
services to propose secure data-storage frameworks. Based
on Table II, which compares various approaches previously
proposed by the community that partially resemble our own,
we can assert that our work makes a significant contribution,
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as highlighted by the findings discussed in the experimental
and results section. Our approach integrates hybrid tech-
niques, combining data tokenization and classification algo-
rithms with existing cloud services offered by CSPs. This
strategy is designed to simplify design complexity while
ensuring scalability and practical implementation in real-
world scenarios, leveraging infrastructure-as-code (IaaC)
tools to facilitate its deployment.

4. PROPOSED MODEL
A. Dataset

TABLE III. Dataset Sources

PII SOURCE ROW

EMAIL mailing list dataset / pastebin.com 2500
CREDIT CARD credit card data / kaggle.com 800
PASSPORT passport synthetic data / protecto.ai 2498
IP ADDRESS ip address blocks / nirsoft.net 2336
BIRTHDATE indian women dataset / kaggle.com 2500

In this research, as shown in Table III, we only pro-
cess personally identifiable information (PII) for reasons of
dataset availability, which is defined as any data that can be
used to identify a specific person. This includes information
such as full name, social security number, date of birth,
address, telephone number, e-mail address or bank account
number. PII are considered sensitive because their exposure
or unauthorized access can lead to a range of privacy and
security risks, including identity theft, fraud, phishing, ha-
rassment, bullying, and discrimination. Protecting sensitive
data is crucial for maintaining the privacy and security of
individuals in the cloud computing context.

B. General Overview

Figure 3. Macro View of the Proposed Model

As illustrated in Fig. 3, the proposed model is designed
to guarantee the confidentiality and security of data sent
to the cloud by individuals and companies. Once the data
are uploaded to the cloud, a data gateway is set up to
capture the request and transfer it to the proposed processing
framework. Once this is complete, the output data are
forwarded for storage.

TABLE IV. Cloud Data Storag Offers

Microsoft
Azure

Amazon
AWS

Oracle
OCI

Google
GCP

File Azure File
Storage

Amazon
EFS

OCI File
Storage

Google
Cloud

Filestore
Block Azure Blob

Storage
Amazon

EBS
OCI Block

Volume
Cloud

Persistent
Disk

Object Azure Blob
Storage

Amazon
S3

OCI Object
Storage

Google
Cloud

Storage

The cloud offers a wide range of storage for different
data types: structured, semi-structured, or unstructured. Ta-
ble IV shows the types of data storage services provided by
cloud service providers.

• Object storage: Data are arranged into objects that can
be files, images, videos, or other unstructured data.

• Block storage: This splits data into blocks and stores
them individually. It was employed for the structured
data.

• File storage: This offers a file system gateway through
which data can be stored and accessed.

The proposed approach is divided into two modules: the
first handles the upload flow, and the second handles the
download flow, both of which operate in serverless mode,
a service provided by the cloud service provider. Serverless
computing enables code to run without managing the un-
derlying servers. Cloud service providers manage infrastruc-
ture, including provisioning, auto-scaling, and maintenance,
offering cost-effectiveness, scalability, flexibility, and ease
of use. Table V shows some serverless services offered by
the CSPs.

TABLE V. Cloud Serverless Offers

CSP Serverless Offer

Microsoft Azure Azure Functions
Amazon AWS AWS Lambda

Oracle OCI OCI Functions
Google GCP Google Cloud Functions

Serverless computing in the cloud enables event-driven
execution, that is, in a serverless environment, code is
initiated by specific events, such as HTTP requests (REST
calls), file updates, and file downloads.

C. Components
1) Upload Module

The proposed upload module serves as the access
point for cloud-loaded data and features three essential
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Figure 4. Upload Module

elements, as illustrated in Fig. 4. It seamlessly integrates
with internal resources, such as the Secrets Vault and Data
Gateway, ensuring secure interactions. Strong authentication
mechanisms enhance data security in transit, whereas their
modular architecture efficiently handles a wide range of
data formats and volumes. In summary, the upload module
comprises the following.

a) NLP Processor

Figure 5. NLP Processor

NLP utilizes computational methods to extract mean-
ingful words from text by breaking them down into to-
kens, filtering out noise such as punctuation and stop-
words, and employing advanced techniques such as part-of-
speech tagging and named entity recognition. This process
is fundamental to tasks such as sentiment analysis and
information retrieval. In our context, the NLP Processor
implements Spark NLP, an open-source library that provides
simple, high-performance, and accurate NLP annotations
for machine-learning pipelines. It supports most NLP tasks

and provides transparent modules. As shown in Fig. 5,
Spark NLP processes data using pipelines, a structure that
includes all the steps to be carried out on the given input
data.

b) ML Classifier

Figure 6. ML Classifier

Two techniques are employed in the classification phase,
as shown in Fig. 6. Pattern matching validates sensitive data
collected using predefined patterns or regular expressions.
Machine learning techniques are used to apply trained
models to predict the category of sensitive information
based on certain contextual features and characteristics of
the data itself.

TABLE VI. Proposed PII and Patterns

PII PATTERN

EMAIL
ˆ[\w\.-]+@[a-zA-Z\d-]+(\.[a-zA-Z\d-]+)+$

CREDIT
CARD \b(?:\d[ -]*?){13,16}\b

PASSEPORT
ˆ[A-Za-z0-9]{6,15}$

IP
ADDRESS - (IPv4) : \b(?:\d{1,3}\.){3}\d{1,3}\b

- (IPv6) : \b(?:[0-9a-fA-F]{1,4}:)

{7}[0-9a-fA-

BIRTHDATE
ˆ(19|20)\d{2}-(0[1-9]|1[0-2])-(0[1-9]|

[12]\d|3[01])$

In the classification phase, as shown in Fig. 6, two
techniques were employed, and five types of sensitive infor-
mation were evaluated. Pattern matching validates sensitive
data collected using predefined patterns and regular expres-
sions, ensuring accuracy and consistency. As depicted in ex-
perimental design sub-section, machine learning techniques
use trained models to predict the categories of sensitive
information. These approaches are combined to accurately
categorize sensitive information and improve the security
and overall performance of the classification process. As
indicated in the dataset section, we focus on sensitive
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personal information, as listed in Table III. We employed
a dataset to train the model using a set of algorithms.
This methodology facilitates the evaluation of performance,
enabling us to determine the most appropriate algorithm for
a given context.

c) Anonymizer

Figure 7. Data States during the Upload Process

In this phase, we employ a tokenization technique to
replace the sensitive information with randomly generated
tokens. These tokens are stored in a separate mapping table,
referred to in Fig. 4 as the Secret Vault. As depicted in Fig. 7
the original information is substituted by a token, ensuring
that the original value can be retrieved when necessary by
referencing the secret vault.

TABLE VII. Cloud Secret Vault Offers

CSP Secret Vault Offer

Microsoft Azure Azure Key Vault
Amazon AWS AWS Secrets Manager

Oracle OCI OCI Vault
Google GCP Cloud Key Management Service

As shown in Table VII, most cloud service providers
offer secret vault services under different names. This
service provides centralized management and access control
for secrets, thereby ensuring confidentiality and integrity.
Additionally, it facilitates secure interaction among cloud
services, applications, and users while offering features such
as versioning and auditing.

Token = MD5(sensitive information) (1)

During Tokenization step, symmetrical hashing with the
MD5 algorithm is employed, as shown in (1), generating a
token that serves as an identifier for sensitive information
and replacing it in the stored data. MD5 is a cryptographic
hash function known for its pre-image resistance property,
which makes it practically impossible to reverse the hashing
process and recover the original input from the hash value.
This property ensures a robust security and data integrity
using data tokenization. The process and the result of each
step during the upload are illustrated in Figure 7 .

2) Download Module

Figure 8. Download Module

The proposed download module serves as an output
point for secured data, ready to be served to the end
user, and comprises three essential elements, as shown in
Fig. 8. The download module facilitates the deserialization
of the stored data, performs sentence segmentation, and
recovers sensitive information encrypted in the secret vault.
It operates in three distinct phases to efficiently accomplish
these tasks.

a) Deserializer

Figure 9. Deserialization Process

Data serialization is essential for security, as it converts
complex data into a format that can be efficiently stored,
transmitted, and reconstructed, ensuring the integrity and
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confidentiality of data during transfer between systems. In
our context, we opt for the ”pickle” module from Python,
commonly used for serialization. Serialization occurs in the
last step of the upload module, as shown in Fig. 4, and
serves as the entry point for the downloading process, as
illustrated in Fig. 8.

As shown in Fig. 9, we also consider optimizing the
serialization mechanism by compressing serialized data
using algorithms such as GZIP or LZ4 to further reduce the
size of the output and improve the delivery performance.

b) NLP Processor

Natural Language Processing (NLP) employs compu-
tational techniques to extract meaningful words from text.
This is achieved by breaking down the text into tokens,
removing noise such as punctuation and stopwords, and ap-
plying advanced techniques such as part-of-speech tagging
and named entity recognition. These methods are essen-
tial for tasks such as sentiment analysis and information
retrieval.

c) De-anonymization

The secret vault operates in key-value mode, where the
value represents hidden information and corresponds to the
token generated and stored during the upload phase.

Figure 10. De-anonymization Step

As illustrated in Fig. 10, deanonymization involves
fetching tokens from the secured file and replacing them
with the corresponding values found in the secret vault to
reconstruct the original clear file.

D. Implementation
We opted for terraform to implement our system. Ter-

raform simplifies the provisioning and configuration of
cloud resources by allowing users to define infrastructure
as a code. With Terraform, infrastructure configurations are
formulated in declarative language, facilitating automation,
consistency, and scalability. This approach not only sim-
plifies deployments but also enhances collaboration and
ensures infrastructure reproducibility across all environ-
ments. Terraform supports multi-cloud environments, pro-
vides greater flexibility, and avoids vendor lock-in, making
it an ideal choice for modern cloud infrastructure manage-
ment.

Figure 11. Automation of Model components Provisioning

Terraform takes advantage of the http-based APIs of-
fered by major cloud service providers, ensuring seamless
compatibility with their platforms. The workflow illustrated
in Fig. 11 enables Terraform to simplify the provisioning
and configuration of cloud resources. As a result, Terraform
functions as a versatile orchestrator capable of provisioning
resources on various cloud platforms through a unified set
of commands. In addition, the terraform’s results provide a
complete view of provisioned infrastructure resources.

5. EXPERIMENTAL DESIGN AND RESULTS
A. Experimental Design

1) Machine Learning Classification

In this study, three distinct types of neural network al-
gorithms—CNN, LSTM, and MLP—were employed within
our model to accurately detect data sensitivity. Each algo-
rithm was evaluated to identify the most performant and
accurate option suitable for our specific context.

• Convolutional Neural Network (CNN): CNNs are
designed for grid-like data. They learn spatial hier-
archies of features through layers of convolutions,
making them highly effective for recognizing and
classifying patterns in data. In our context, CNNs help
in identifying and classifying sensitive data patterns
within structured datasets.

• Multi-Layer Perceptron (MLP): MLPs are feedfor-
ward neural networks with multiple layers of neurons,
including input, hidden, and output layers. They are
used for general-purpose classification and regression
tasks due to their ability to model complex relation-
ships. For our model, MLPs aid in the classification
of data sensitivity levels, facilitating appropriate data
masking techniques.

• Long Short-Term Memory (LSTM): LSTMs are a
type of RNN that are well-suited for modeling tempo-
ral sequences and capturing long-term dependencies.
They address the vanishing gradient problem and are
ideal for tasks involving sequential data. In our model,
LSTMs help in analyzing time-dependent data access
patterns, enhancing the sensitivity validation process.
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Figure 12. Machine Learning Workflow

To better understand the machine learning process,
Fig. 12 illustrates the workflow applied to a set of labeled
datasets representing personally identifiable information.
The diagram outlines three phases: loading the labeled
dataset, training the models using 80% of each provided
dataset (training data), and evaluating the performance of
each algorithm. This evaluation was concluded with the use
of baseline models to predict labels on 20% of the dataset
(test data). We opted for CNN, MLP, and LSTM algorithms
to leverage their individual strengths and evaluate their
performance on our dataset. CNNs are excellent for spatial
feature extraction, MLPs are robust for general classification
tasks, and LSTMs excel at handling sequential data. By
evaluating the performance of each algorithm, we aim to
identify the most suitable one for our specific context of
securing sensitive data storage in the cloud. This evaluation
ensures that we select the most effective algorithm for sensi-
tivity validation and data masking, optimizing both security
and accuracy. The binary classification performance was
simulated using both the Python runtime environment in
Microsoft Azure Functions and the KNIME Analytics Plat-
form, with a system configuration including 16GB RAM,
Intel Core i7 processor, and Windows 11 operating system.
To accomplish this, a random subset of the categorized test
data was reserved and the predicted labels were compared
with the true labels.

The performance of the three compared models was
evaluated based on their configuration using optimized
parameters. Table VIII details the key parameters used for

TABLE VIII. Used Parameters for Studied ML Models

Model Key Parameters Values
CNN Embedding input=2000, output=64

Dense units=128
Dropout rate=0.5
Optimizer Adam
Loss categorical crossentropy
Learning Rate 0.001
Epochs 10
Batch size 1
Validation Split 0.2

LSTM Embedding input=2000, output=64
units units=100
Dropout rate=0.5
Optimizer Adam
Loss categorical crossentropy
Learning Rate 0.001
Epochs 20
Batch size 32
Validation Split 0.2

MLP Dense units=128, 64
Dropout rate=0.5
Optimizer Adam
Loss categorical crossentropy
Learning Rate 0.001
Epochs 10
Batch size 32
Validation Split 0.2

training and validation of each model, encompassing em-
bedding size, dropout rate, optimizer, loss function, learning
rate, epoch, batch size, and validation splits. Quantitative
performance was evaluated after training the classifier with
a labeled dataset. The mathematical representation of the
parameters employed to estimate the performance of the
model is shown in (2)-(4).

TABLE IX. Confusion Matrix

Predicted Actual Class
Positives Negatives

Positives TP (True Positive) FP (False Positive)
Negatives FN (False Negative) TN (True Negative)

• Accuracy: This represents the ratio of correct predic-
tions to the total number of input samples.

Accuracy =
T P + T N

T P + T N + FP + FN
(2)

• Recall: This represents the ratio of correctly predicted
positive observations to total actual positives. It mea-
sures the ability of a model to identify all the relevant
instances in a dataset.

Recall =
T P

T P + FN
(3)

• F1-Score: It is also referred to as the harmonic mean
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and represents a balanced measure between recall and
precision in the classification model.

F1-Score =
2T P

2T P + FP + FN
(4)

Table IX presents a confusion matrix. TP (True Positive)
denotes the count of correctly identified sensitive data
points. TN (True Negative) represents the accurate detection
of non-sensitive data. FP (False Positive) indicates the
number of non-sensitive data points incorrectly identified
as sensitive. FN (False Negative) signifies the count of
sensitive data incorrectly identified as non-sensitive.

TABLE X. Comparison of Algorithms Performance

PII ML Training
Time (ms)

Accuracy Recall F1-
Score

Email LSTM 210271.44 99.92% 99.86% 99.93%
CNN 21741.12 100% 100% 100%
MLP 14396.72 99.08% 98.6% 99.22%

Credit Card LSTM 44542.15 62.50% 100% 76.92%
CNN 7145.75 85.75% 98.20% 91.83%
MLP 14396.72 67.12% 90.60% 77.50%

Birthdate LSTM 122794.02 100% 100% 100%
CNN 19040.19 100% 100% 100%
MLP 13872.15 99.96% 99.93% 99.96%

IP Address LSTM 196026.36 94.86% 98.06% 96.08%
CNN 15619.28 99.52% 100% 99.63%
MLP 9877.31 87.54% 97.06% 90.91%

Passport LSTM 78022.04 100% 100% 100%
CNN 15376.95 100% 100% 100%
MLP 10120.97 99.91% 99.86% 99.93%

Table X presents the results of the classification using
a varied set of metrics that encompass critical aspects,
such as training time, accuracy, recall, and F1 score, all
of which were measured carefully using the predictions
generated by the trained models. These multifaceted perfor-
mance measures served as essential benchmarks, providing
a comprehensive overview of the model’s classification
achievements.

2) Model Overhead

To evaluate the impact of our model from user request
to data persistence on the cloud environment, we analyzed
time costs before and after the implementation of our model.
In addition, we quantified the latency associated with the
read and write operations. The cost of the Model is also
evaluated. By assessing these metrics, we obtained valuable
insights into the additional computational and resource costs
incurred by our model, enabling us to optimize efficiency
and reduce overhead.

The graph in Fig. 13 reveals the varying upload and
download times in milliseconds (ms) for different data sizes,

Figure 13. Data transfer (upload/download) pre- implementation

as the data size grows, the download times significantly
increase. Although there are minor variations, download
times remain stable overall, regardless of the data size.

Figure 14. Data transfer (upload/download) post- implementation

Following the implementation of our system, as illus-
trated in Fig. 14, we evaluated its effect on data transfer
performance by examining changes in upload and download
times across a range of data sizes, measured in milliseconds
(ms). For instance, with a data size of 10 KB, we observed
that the upload time increased slightly to 0.4607608 ms,
while the download time decreased to 0.3886256 ms. This
indicates a modest adjustment in the system’s handling of
smaller data sizes, potentially due to overhead introduced
by our model. In contrast, for larger data sizes, such as
10,000 KB, the system demonstrated notable improvements:
the upload time was significantly reduced to 6.8294536
ms, and the download time decreased to 6.5997401 ms.
These changes highlight the system’s enhanced efficiency in
managing larger data transfers, which is likely attributable
to the optimizations embedded in our model. Overall, these
results reflect a balance between upload and download
performance improvements, suggesting that our model can
effectively adjust to varying data sizes.
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TABLE XI. Details of Model Cost

Module Azure Service Description Configuration Cost Details
Storage

Container
Azure Blob

Storage
Storing Secured

Files
10,000 Write operations, 10,000 List

and Create Container Operations
10,000 Read operations 10,000 Other

operations. 1 GB Capacity

$0.03 Per 1GB $0.00036
Per 10,000 operations

Upload Azure Functions Executing
functions in

Python runtime

Consumption tier, Pay as you go, 128
MB memory, 100 milliseconds

execution time, 100 executions/mo

The first 400,000 GB/s of
execution and 1,000,000

executions are free.
Download Azure Functions Executing

functions in
Python runtime

Consumption tier, Pay as you go, 128
MB memory, 100 milliseconds

execution time, 100 executions/mo

The first 400,000 GB/s of
execution and 1,000,000

executions are free.
Data Gateway API Management Intercepting HTTP

requests
Consumption tier 10,000 calls $0.035 per 10,000 calls

Secrets Vault Azure Secret Vault Storing Sensitive
Information

10,000 Operations $0.030 Per 10,000
operations

TOTAL PEER MONTH : 0.07 $

Figure 15. Upload time pre / post-implementation

Figure 16. Download time pre / post-implementation

In Fig. 15, we compare the upload times before and after
the implementation of our system. Discernible changes were
observed across various data sizes.

In Fig 16, a comparison of the download times before

and after the implementation of our system reveals sig-
nificant changes for the different data sizes. For example,
for a data size of 10 KB, the download time decreased
from 0.6599721 ms to 0.3886256 ms after implementation.
Similarly, for larger data, such as 10,000 KB, the download
time increased significantly. These changes underline the
impact of our system on the download time.

Figure 17. Data Storage Latency

In the context of our experiment, which uses Azure
Storage, latency refers to the delay or response time for data
read and write operations that are separate from the other
modules of our model that run on Azure Functions. Latency
is influenced by factors such as the distance between the
user and the region in which the storage container is hosted.
Fig. 17 provides the data latency measured in milliseconds
(ms) across various data sizes. As the data size increases, for
both upload and download requests, the latency generally
exhibits an upward trend. For example, uploading 10 KB
of data takes approximately 12.3 ms, whereas uploading
10 MB increases the latency to 1345.6 ms. Similarly, the
downloading latency ranges from 8.7 ms for 10 KB to 987.6
ms for 10 MB.
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We evaluated the cost of our model, which is estimated
using the Azure Cost Calculator tool and can change
based on several factors, including the chosen Azure re-
gion—France Central in our case—and the specific config-
uration of each service. The cost of Azure Blob Storage
depends on the storage tier and the amount of data stored,
whereas the pricing of Azure Functions varies based on the
number of executions and resource consumption. Similarly,
the cost of Azure Key Vault is influenced by the number
of operations performed on stored secrets. Table XI shows
the Azure services used to simulate the implementation of
our approach and the monthly costs of each service.

3) Cloud Performance

Alongside the overhead analysis, we assessed the cloud
performance metrics to evaluate the scalability of our model
deployed in Azure cloud. Serverless computing, such as
Azure Functions, utilized in our experimental design, offers
inherent scalability by automatically adapting resources in
response to demand. This dynamic scaling ensures that the
functions can effectively manage the varying data volumes
without requiring manual intervention. Cloud uptime is
guaranteed through the utilization of availability zones for
high availability.

Figure 18. Serverless Modules Scalability

The metrics depicted in Fig. 18 from Azure Monitor,
illustrate this dynamic scalability, as the graphs exhibit real-
time metrics, including the request rate, request duration,
dependency call rate, dependency call duration, committed
memory, and CPU usage. As demand fluctuates, the Azure
Functions automatically adjust resources to maintain perfor-
mance, as evidenced by the varying request rates and CPU
usage. This demonstrates how serverless services efficiently
scale up or down computational resources based on incom-
ing requests,thereby ensuring optimal responsiveness and

resource management. The dependency calls include crucial
libraries and tools, such as Spark NLP, ML Python libraries
for MLP, CNN, and LSTM, and the MD5 library, which
are essential for the model’s data processing and security
functions.

B. Finding
Our model offers significant benefits, including high

sensitivity classification accuracy, attributed to the superior
performance of Convolutional Neural Networks (CNNs),
which achieve perfect scores for various PII types with
shorter training times. Our model ensures low latency for
small data sizes and the efficient handling of large data
transfers, making it suitable for diverse implementation sce-
narios. Cost-effectiveness was further validated with a low
estimated monthly cost. In addition, its inherent dynamic
scalability over the cloud maintains optimal performance
by automatically adjusting computational resources based
on real-time demand, ensuring consistent service quality,
and efficient resource utilization. Our model effectively ad-
dresses crucial security and performance factors, as demon-
strated by Table II and the examination of the results. It
showcases strong capabilities in maintaining confidentiality,
integrity, and scalability. Furthermore, the incorporation of
machine learning enhances its overall effectiveness. The
compatibility with cloud deployment provides additional
versatility to the model.

6. CONCLUSION AND FUTURE WORK
In a cloud environment, resources are shared among

multiple tenants, making them susceptible to threats from
internal and external sources. Our research proposed a
comprehensive framework that integrates machine learning
and data-masking techniques to enhance the security of
personally sensitive data storage in the cloud. Our approach
involves integrating binary classification and data mask-
ing using cloud services, which may have broad appli-
cations in various industries, such as healthcare, finance,
and government. This is particularly relevant in sectors in
which strict data privacy regulations mandate robust security
measures. For instance, in healthcare, our methodology
can de-identify patient records while adhering to regula-
tions such as HIPAA, facilitating secure data sharing for
medical research, and preserving patient confidentiality. In
the finance sector, our approach enhances fraud detection
by identifying irregular transactions based on personally
identifiable information patterns. In government agencies
handling citizen data, our framework can ensure the security
of personal sensitive data stored in the cloud, while enabling
efficient data processing and sharing for public services.
It should be noted that the technical aspects discussed
here are not perfect, and that it is possible to improve
and refine the proposed approach in the future. In future
research, we plan to explore the use of data profiling and
data mining algorithms to optimize the process of data
sensitivity validation. In addition, we aims to investigate the
potential benefits of integrating blockchain technology into
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cloud data storage security to enhance both the transparency
and accountability of all data transactions.
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