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Abstract: The Internet of Things comprises wireless sensor devices (nodes) that work together to create a dynamic network without
central management or continuous assistance. Due to their high mobility, sensor nodes cause periodic topological changes in the
network that cause link failures, frequently forcing nodes to rediscover new routes for efficient data transmission in the IoT. This
process consumes more energy, which makes the network’s lifetime shorter. This brings attention to energy management and network
lifetime issues. A single artificial intelligence technique is insufficient to solve these issues. A relay selection is one way to reduce node
energy while routing the data in an IoT network. The proposed work aims to develop an efficient energy-aware relay node selection
during the routing process using an adaptive neuro-fuzzy model (ANFIS).
The proposed work utilizes a centralized controller architecture called software-defined network which minimizes the overhead of sensor
nodes by managing the topology control and routing decisions through intelligent algorithms. This paper presents an energy-aware relay
selection technique (ERST) using an ANFIS to optimize the overall energy usage and improve the span of the network. The relay node
is selected based on the remaining energy, signal strength, mobility, and the expected transmission ratio of the nodes, which is given to
the fuzzy inference system to make intelligent decisions based on the fuzzy rules and neural network used to fine-tune the fuzzy system
to select the optimal relay node. The proposed work is evaluated using MATLAB and NS3 simulators. The obtained results of the
suggested work outperform the previous protocols by minimizing 5% of end-to-end delay and 4% of energy usage and maximizing 8%
of average throughput, packet delivery, and overall network lifetime. The proposed ERST achieves efficiency, reliability, and scalability
in IoT.

Keywords: Relay Node Selection, Software-Defined Network, Energy Efficiency, Fuzzy Logic, Neural-networks.

1. Introduction
The IoT (Internet of Things) makes it possible for

physically existing objects or devices to connect, exchange
crucial information for decision-making, and do critical
tasks without human intervention. Over the past ten years,
energy utilization has risen alarmingly, leading to a growing
number of digital users and gadgets. There are estimated
to be 50 billion IoT-connected devices by 2030 [1]. The
WSN (Wireless Sensor Network) is an eminent element
of the IoT. It quickly spreads into many new fields, like
smart cities, innovative healthcare, intelligent transportation,
smart agriculture, smart homes, and other areas. It includes
5G connectivity, enabling technologies, and heterogeneous
intelligent sensors. These applications generate vast vol-
umes of data, and it is essential to transport this data via
the network. Some unpredictably dynamic pauses during
data transmission, such as mobility, connection quality, re-
maining energy, and scalability, may suffer in time-varying

network topology aspects [2]. The sensors of dynamic IoT
are resource-constrained (resources like battery, memory,
and processor); the battery is one of the major resources
because it is irreplaceable.
To keep the network alive, the wise utilization of these
resources is essential for IoT devices because frequent
communication can quickly deplete the battery. One such
solution for minimizing energy utilization is to select an
efficient relay node that extends the lifetime of the network
and reliable operations. For example, consider healthcare
applications in which all the sensors or devices gather med-
ical data related to patient health and medical conditions,
then transmit these data to the sink. While transferring the
data, optimal route selection is essential, and this can be
achieved by choosing an efficient relay node that plays a
significant role.
The primary challenge of relay selection is the heterogeneity
of devices, which includes devices with different energy
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sources, communication capabilities, and processing power;
furthermore, various devices may use different communica-
tion protocols, making it difficult for relay selection. The
other one is dynamic network topology, which deals with
mobility, especially in applications like smart cities and
transportation. Mobile nodes and the node’s movement can
lead to frequent changes in IoT network topology, and phys-
ical and environmental factors can affect signal strength.
Network connectivity requires dynamic and adaptive relay
selection strategies [3].
Achieving energy efficiency through an energy-aware relay
selection in IoT involves dynamic adaption, which adapts
to changing network conditions, such as the location of
devices, energy level, and communication link parameters.
This ensures the relay selection is optimal. Developing
energy-aware routing strategies for dynamic WSNs to
meet QoS (Quality-of-Service) objectives, such as network
longevity, link reliability, and scalability, is still difficult,
particularly in situations with limited resources in real-
time applications [4]. An SDN is also the ideal design for
applications with few resources. The application plane, the
data plane, and the control plane are its three layers. The
central controller makes all decisions, and sensor nodes are
deployed in the data plane. These sensor nodes relay the
perceived data to the controller [5]. A versatile network
structure known as SDWSN was created by combining the
SDN and WSN to satisfy the application requirements in
IoT networks [6].
Many researchers have concentrated on developing optimal
link stability and reliability routing solutions using artificial
intelligence algorithms for good decisions; the fuzzy logic
technique is efficient for making decisions. In addition, the
neural network also helps train the data through the learning
process. Combining both techniques to make more efficient
decisions in routing problems, especially in relay selection
[7].
Motivation: Energy management plays a significant role
in IoT networks since sensors/devices have limited battery
life and must be used effectively to maintain network
connectivity. The devices are communicated through routing
protocols to transmit the data to the destination. In the
routing process, relay node selection is crucial to lowering
sensor node energy usage. The path that uses the least
energy from source to sink has the best relay. Energy
optimization is required to reduce the cost-effectiveness and
sustainability of the network. This motivates the authors
to propose an energy-aware relay selection technique for
dynamic networks to maximize the energy efficiency of the
network.
The prominent objectives of the proposed study are as
follows:

• To improve the ratio of packet delivery.

• To optimize network energy usage.

• To reduce the delay during data transmission.

• To increase network throughput and lifetime.

Contributions: The key contributions of the suggested
paper are as follows:

• Proposed an energy-aware relay node selection algo-
rithm by considering various network performance
factors such as remaining energy, link condition,
traffic pattern, and mobility.

• The proposed work considers input parameters such
as residual energy, path loss, and ETX to choose the
next relay node to select a reliable, energy-aware path.

• The proposed algorithm uses a fuzzy inference system
that selects an optimal relay node by applying fuzzy
rules and uses a neural network to fine-tune the input
parameters based on the feedback over a dynamic
network.

• Comparing the proposed work with existing protocols
by simulating various scenarios using MATLAB and
NS-3.37 simulators.

The remaining paper structure is as follows: Section 2
explains the existing survey, and Section 3 explains SDN ap-
proach. Section 4 describes the proposed ERST algorithms
and ANFIS, followed by 5 explains the implementation part,
Section 6 discusses the results, and finally, the conclusion
and future enhancement in 7.

2. Literature Study
This section explains the recent literature reviews on

relay selection to optimize energy in IoT and WSN, as
shown in the Table. I.

A. Context and Background
Wireless Sensor Networks (WSNs) have become inte-

gral in many applications, including environmental mon-
itoring, industrial automation, healthcare, and innovative
city implementations. These networks consist of numerous
sensor devices that monitor and collect data from their sur-
roundings, transmitting it to a central gateway for process-
ing. Despite their wide range of applications, WSNs face a
significant challenge, such as the limited energy resources
of sensor nodes, which are typically battery-powered. Ef-
ficient energy management is paramount to extending the
network’s operational lifespan, reducing maintenance costs,
and ensuring reliable data transmission.
In WSNs, relay nodes are crucial in forwarding data from
sensor nodes to the central gateway, especially in multi-hop
communication scenarios. However, relay nodes consume
considerable energy during data transmission and reception,
making their efficient selection essential for the network’s
sustainability. Hence, software-defined networking (SDN)
has emerged as a promising paradigm for enhancing the
management and efficiency of dynamic WSNs. There-
fore, relay selection is made through the routing protocol.
Designing an efficient and reliable routing protocol for
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dynamic networks is a big challenge in IoT. In recent
years so, many studies have been proposed based on these
problems. Still, it is a challenge to select the best relay for
communication.
Krzysztof Grochla et al. [8] proposed a power-aware al-
gorithm for relay selection over low-power WAN. The
relay node is chosen based only on the current battery
capacity of the nodes. The simulation results prove that the
proposed algorithm achieves energy efficiency and network
life compared to existing algorithms. The energy parameter
is not enough to select the best relay to enhance the network
span, which is the main drawback of this algorithm.
Wenli Lei et al. [9] suggested a relay-chosen algorithm
based on the predetermined olive-shaped area for relay node
selection to the destination. The single hop, transmission,
and radius of each node were considered for the selection.
The simulation outcome shows that the olive forwarding
method provides energy efficiency for static networks, but
for nodes with dynamic networks, this algorithm is not
suitable.
Samia Allaoua Chelloug et al. [10] presented a dual-phase
blockchain-oriented relay selection mechanism to select the
best relay over the UAV network. This protocol considered
the channel capacity, distance, and bandwidth parameters
to choose the following trusted relay nodes using the
blockchain concept. The simulation results show that the
proposed optimal UAV provides reliable-secure communi-
cation over data transmission. However, this algorithm is
unsuitable for the dynamic network due to its dynamic
nature, blockchain overhead, and interoperability.
Mangang Xie et al. [11] proposed an Lth relay selection
policy in a two-hop-cooperative system with ARQ updates
through decoder and forwarder relays to solve the age
of information and energy consumption problems in IoT
systems. This policy outperforms the existing systems in
terms of energy efficiency. Still, it applies only to single-
source and designation networks and not to multi-source
and multi-destination networks.
Abdullah M. Almasoud et al. [12] suggested a hybrid-
energy-efficient approach to solving the relay placement
problem in which energy harvested with buffered relays is
used, and the BPSO algorithm is adapted for selecting the
energy-efficient relays. The proposed approach outperforms
the existing search algorithms regarding delay and energy,
but it does not consider other parameters.
Sina Shaham et al. [13] suggested a relay selection method
using transfer learning in industrial IoT. This reduces the
communication overhead and computational complexity.
The suggested framework is evaluated and tested using
the dataset and proved suitable for large-scale networks.
The dynamic time-varying nature creates more challenges
for relay selection, so the work can adapt different energy
optimization algorithms to reduce energy in the future.
Kamal Das et al. [14] suggested optimal relay methodology
for two-hop star topology in which fuzzy inference was
used to choose the optimal node as the next forwarder by
considering link quality parameters. The simulation results
proved that the suggested OR-TH outperforms the existing

protocols, but it suffers from scalability problems due to its
being applicable only to star topology.
Feng-Wen Lo et al. (2023) [15] proposed a best relay selec-
tion method using a two-hop relay model in cognitive radio
wireless networks. Apply the proper buffer size rules to
select the best relay to reach the destination. The suggested
model performs better than the existing one and provides
average throughput. Because of the buffer at the node, the
energy consumption is higher at the CH.
Yufeng Han et al. [16] proposed a dynamic relay selection
method to choose a relay node using a drift-plus-penalty
optimization algorithm for autonomous underwater surface
vehicles. This method reduces energy consumption and
latency but suffers from complexity due to the calculation
of drift and penalty for each selection.
Table. I outlines the advantages and disadvantages of previ-

ous studies, demonstrating that most studies employed static
network types, with only a few publications considering
dynamic situations. Mobility and inadequate relay selection
are the two main issues. Furthermore, the link is unreliable
because of the weak selection of routing parameters. To
solve this problem, a neural network that uses trustworthy
parameters and fuzzy logic to make decisions based on
fuzzy rules is employed to decide which relay is optimal
for transmission via an IoT network.

3. Proposed System Design
The proposed work considered an SDN architecture

scenario for environment monitoring shown in Figure. 1,
which consists of three layers, namely the upper layer,
the middle layer, and the lower layer. All the network
applications, such as traffic engineering, load balance,
network monitoring, and analytics are executed on the
upper layer (application plane). The Northbound APIs are
interfaced between the upper layer and the middle layer.
The lower layer (data plane) consists of source nodes (S),
relay nodes (R), and a sink for monitoring the environment.
The sensed data is sent through relay nodes using the
data path (solid arrow) from source to sink, and control
information is sent back to the source through the control
path (dotted arrow), as shown in Figure. 1.
The SDN controller is placed in the middle layer (control

plane), which controls the upper and lower layers. The
Southbound APIs provide the OpenFlow interface between
the middle layer and the lower layer. The SDN controller
takes the routing decisions based on the neuro-fuzzy logic
concept, manages the flow table, and adopts the topology
dynamically according to the information obtained by the
data plane. The proposed work assumed that the network
consists of a group of M sensors or nodes and one BS
(base station) placed at the center of the network, in
which some nodes are considered source nodes that gather
information from the environment and the rest of the nodes
are moving relay nodes. The set of nodes is represented by
M = n1, n2, n3, ..., nM , where nk represents the kth node in
the network. Consider a graph representing an IoT-based
sensor network in which sensors are denoted as vertices
and connections between vertices are represented as edges.
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TABLE I. Existing literature review on energy-efficient relay selection in IoT

Reference Protocol Methodology Network
Type

Strengths Weaknesses

Aljawharah
Alnasser et al.
(2021) [17]

V2X Analytic Hierarchy
Process

Dynamic Improved PDR Not energy-efficient
due to packet collisions

Abdullah M. Alma-
soud et al. (2022)
[12]

MILP BPSO algorithm Static Less energy
consumption
and delays.

It is applicable for
only delay-constrained
applications.

Sina Shaham et al.
(2022) [13]

Relay
framework

Transfer learning tech-
nique

Static Achieve mod-
erate accuracy

Consume energy and
increased delay.

Ali Reza Heidar-
pour et al. (2022)
[18]

DDQN-
MRS

DDQN double deep Q
network

Static Improve
overall network
lifetime

It reduces the average-
success rate.

Qian Yang et al.
(2022) [19]

ACPSO Adaptive chaotic parti-
cle swarm

Static Maximum
Throughput

Does not support mo-
bility and dynamic fac-
tors.

Samia Allaoua
Chelloug et al.
(2023) [10]

Optimal
UAV

Dual-Phase and
Blockchain technique

Static Enhanced effi-
ciency and se-
curity

Blockchain overhead
and difficult to
adapt in a dynamic
environment.

Mangang Xie et al.
(2023) [11]

PRS (lth
best relay)

Decode-and-forward
relays

Static Energy
efficiency.

Not applicable for
multi-source and
destination networks.

Saad Haseeb et al.
(2023) [20]

ED-CARP Channel state informa-
tion

Static Less energy
dissipation,
high PDR

Not suitable for the
dense network.

Feng-Wen Lo et al.
(2023) [15]

MTTRs Two-hop relay model Static High through-
put

Increased latency and
consumes more energy.

Kamal Das et al.
(2023) [14]

OR-TH Fuzzy algorithm Static Achieve good
PDR and
throughput

Apply only for star
topology, scalability
problem

Yufeng Han et al.
(2024) [16]

DA
(dynamic
access
scheme)

Dynamic optimization
using drift-plus-penalty

Dynamic Energy
efficiency
and average
latency

Increased complexity.

Safiu A.
Gbadamosi et al.
(2024) [21]

Max-SINR Interference-aware and
coverage-analysis

Static Efficiency,
inference
minimization

Applicable only for
D2D communication.

Wenli Lei et al.
(2024) [9]

OFA-RSA Olive Forwarding Area Static Energy
efficiency
and network
lifetime.

Not suitable for dy-
namic networks.

Jaeyoung Song et
al. (2024) [22]

DQN-
policy

Optimal scheduling
policy

Static Obtain high ac-
curacy

More training cost
while training the data.

Ting Lyu, Haitao
Xu et al. (2024)
[23]

ADP Adaptive dynamic
programming-based

Dynamic Reduce
transmission
power and
delay

Efficient optimization
algorithm can be
applied to achieve
efficiency

Manju Bargavi et
al. (2024) [24]

SEERS Energy and bandwidth-
based relay selection

Static Reduce energy
consumption
and enhance
network life

Consider delay param-
eters to select the best
relay

Proposed work ERST Adaptive neuro-fuzzy
model

Dynamic
network
with node
mobility

Energy
efficiency,
low delay,
high PDR, and
throughput.

Future study: Cluster-
ing architecture can be
considered with hetero-
geneous devices.
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Figure 1. SDN architecture
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Figure 2. Network Graph in Different Time Instance

A sensor node pair (nk, n j) is connected when the distance
of the pair is less than the transmission range TRr, and
distance is calculated based on Euclidean distance (ξi j).
Consider an edge e(nk, n j) between sensor pairs, which is
represented by Eq. 1 [5].

e(nk, n j) =
{

1 i f ∥ di − d j ∥ ≤ TRr

0 otherwise
(1)

Where the distance between sensor pairs (nk, n j) is
calculated. IoT network is dynamic and consists of both
stationary and moving nodes. In this network, the relay
node moves randomly at different occurrences of time (t1,
t2, and t3), which is presented in Figure. 2.

A. Network Energy Model
The proposed work implements a basic energy model

based on [25] in which Eq. 2 displays the energy model,
where TE indicates the required amount of energy for
transmitting p bits of data from the source to the destination.
It depends on the energy consumed by their electric compo-
nents Eelec and energy required for amplification such as rs
and εamp. This approach considers both the signal sensitivity
and noise disturbance levels of the node-received signals.

The distance between the nodes is denoted di, compared
with the threshold distance (d0).

TE =

{
p ∗ Eelec + p ∗ εrs ∗ di2, i f di < d0

p ∗ Eelec + p ∗ εamp ∗ di4, i f di ≥ d0
(2)

d0 =

√
(εrs/εamp) (3)

The energy required for transmission is proportional to two
if the transmission distance is shorter than the threshold
value; otherwise, it is four. Where d0 is represented by Eq.
3.

B. Node Mobility
In the IoT network node movement is unpredictable.

The proposed study uses a random way-point movement
technique to create the nodes’ mobility as a consequence.
To demonstrate the randomness in node location, stochastic
geometry, an investigation of random spatial organization,
is used [26]. The placement of the mobile devices is based
on random point patterns using the Poisson point technique.

The mobile nodes (devices) move randomly over a
dynamic network, which results in an unstable network
connection between two devices (di,d j) at time T th

n instance
is represented using Eq. (4),

e(di, d j,Tn) =
CTn

i j ξi j ≤ Tr at time Tn

0 otherwise
(4)

where CTn
i j represents the duration of connectivity between

two devices (di,d j) at time Tn.

C. Parameters for Relay Selection
The term path loss (PL) describes the decrease in signal

strength when a wireless signal travels between a transmitter
and a receiver over a distance through the propagation
medium. That can be calculated by using Eq. 5.

PL(Di)dB = PL(Di0) + 10nlog10 (Di/Di0) + Mσ (5)

The distance between the source and destination is denoted
by Di, where Di0 is the reference distance, and Mσ is a
variable with zero mean and variance of σ2. The ETX
(Expected Transmission Count) is a metric used to estimate
the successful data transmission that can be calculated by
Eq. 6.

ET X = (1/d f ∗ dr) (6)

where df represents the probability of a packet being
received by a neighbor, while dr represents the probability
of a successful acknowledgment packet receipt.
The RE is calculated using Eq. 7

RE = Ie − Ep,Total (7)

The energy level at the relay node is computed by subtract-
ing the amount of energy needed to transmit p bits of data
from the initial energy (Ie).
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4. Methodology
This section contains the proposed algorithm, fuzzy

inference system, and neural network training process to
select the optimal relay node.

A. Proposed ERST Approach
The design and function of the proposed ERST are

shown in Figure. 3. To select the best relay for data
communication, the source node first requests the SDN
controller for the optimal relay. Meanwhile, other nodes
exchange their routing table information with the SDN
controller, shown by the dotted line. The SDN controller
then accepts the request from the source (S) and searches
for the optimal relay in the flow table, which consists of
relay node information such as RE, PL, and ETX of all
the nodes. The controller then executes the proposed ERST
algorithm that gives the best optimal relay node, which is
R1, because it has high residual energy, low path loss, and a
small ETX value, and then sends a replay back to S. Finally,
the source sends the data to Relay (R1), and then R1 sends
that data to the sink or search for next relay.

B. Fuzzy-logic Inference System (FIS)
The FIS generates fuzzy rules based on the membership

function states. The Fuzzy Logic Designer used to design
the proposed three inputs (RE, PL, and ETX) membership
functions, in which degrees of membership and truthfulness
of the input value to each linguistic term are shown in
Figure 4. It shows the fuzzy membership functions for RE,
PL, and ETX. The membership degrees indicate the level
of relevance or similarity between the input value and the
fuzzy set. The input variable RE ranges from 0 to 100.
That is divided into three fuzzy membership states: Low,
Medium, and High, denoted as L, M, and H, as shown in
Figure. 4(a). Similarly, the path loss of the input variable
PL (range 0 to 60) is split into Less (Le), Moderate (Mo),

and More (Mr) in Figure. 4(b). The ETX (range from
0 to 10) is divided into Short, Avg, and Long (S, A,
La), as shown in Figure. 4 (c). Figure. 5a demonstrates
that the node has a high RE with less ETX and has the
highest degree. Consequently, Figure. 5b explains the
degree of residual energy and path loss. The node with a
high RE and less path loss has a high degree of membership.
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Figure 4. Membership Functions

The proposed inference rules are shown in Table II,
which is used for fuzzification. In the fuzzification stage,
the linguistic variable is converted into its corresponding
fuzzy set. The linguistic values used are IRE={L, M, H},
IPL={Le, Mo, Mr}, and IET X={S, A, La}. The values are
subsequently mapped onto the output set y = {First, Second,
Third, Fourth, Fifth, Sixth, Seventh} using the function (IRE ,
IPL, IET X). The mapping process employed IF-THEN rules.
The Eq. 8 shows a trapezoidal function known as trape is
used to define the linguistic values. The function uses the
variables E and F to represent support and c1 and c2 to
define the trapezoidal membership function’s kernel. It is
assumed that the values of c1 and c2 are between E and F,
with c1 being less than or equal to c2.

trape(y; E, c1, c2, F) =


(y − E)/(c1 − E), i f y ∈ [E, c1]
1, i f y ∈ [c1, c2]
(F − y)/(F − c2), i f y ∈ [c2, F]
0, otherwise

(8)
To define the fuzzification value for path loss IPL, we utilize
the trapezoidal function.

Le = trape(IPL; 0, 0, 15, 30)

Mo = trape(IPL; 15, 30, 30, 45)

Mr = trape(IPL; 30, 45, 60, 60)

The IRE is defined as a function of the relay node’s residual
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(a) Degree of Membership ETX-RE

(b) Degree of Membership RE-PL

Figure 5. Degree of Membership Function

energy, with 50% being the midway point.

L = trape(IRE ; 0, 0, 25, 50)

M = trape(IRE ; 25, 50, 50, 75)

H = trape(IRE ; 50, 75, 100, 100)

The IET X is the average number of transmissions needed
to deliver a packet from the source node to the destination
node, ranging from 0 to 10.

S = trape(IET X; 0, 0, 3, 5.5)

A = trape(IET X; 2.5, 5, 5, 7.5)

La = trape(IET X; 5.5, 7.5, 7.5, 10)

The output degree of membership µ(y) for

f (IPL, IRE , IET X)

is defined as a value between 0 and 100, determined by the
combination of IPL, IRE , and IET X .

C. ANFIS Model
The ANFIS (adaptive neuro-fuzzy inference system)

utilizes the Takagi-Sugeno fuzzy inference method with
supervised learning, as shown in Figure.6 [27]. The AN-

FIS is composed of five Layers. The beginning layer is
the fuzzification layer, which generates the membership
function (MF). The second layer, the rules layer, calculates
the strength of a rule’s fringes. MF are quantified in the
third layer based on the fringed rules. The fourth layer,
the aggregation layer, aggregates and generates new MF
for old MF. Lastly, the final layer, the defuzzification layer,
converts the resultant MF into crisp values. Compared to a
fuzzy logic inference system (FIS), ANFIS is significantly
superior; it has higher functionality to adapt to dynamic
learning practice, updates the membership function weight,
and reduces the error rate while determining the guidelines
for ”fuzzy”. Consider a system with three inputs, X, Y, and
Z, and a single output, d. The first-order Takagi-Sugeno
rules can be defined as follows: Rule 1: If X is X1 and Y
is Y1 and Z is Z1, then d1 = p1X1 + q1Y1 + r1Z1 + C1
Rule 2: If X is X2 and Y is Y2 and Z is Z2 then d2 =
p2X2 + q2Y2 + r2Z2+ C2. Where p1, q1, r1, p2, q2, and
r2 are learning parameters. C1 and C2 are constants used
to adjust the MF.
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Figure 6. ANFIS Model

D. Neural network training process in ANFIS
The training process of ANFIS involves optimizing the

parameters of the FIS using the learning ability of artificial
neural networks (ANN). ANFIS combines fuzzy logic and
ANN to leverage the strengths of these methods. There are
two main phases during the training process: Forward pass
(evaluate the function): It evaluates all the layers of ANFIS
from layer 2 to layer 5 and calculates the error between the
predicted output and the actual target.
Backward pass: The backward pass involves updating the
parameters to minimize errors. ANFIS typically uses a
hybrid learning algorithm combining gradient descent and
least squares estimation (LSE).
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E. Proposed-ERST with ANFIS
Initially, in the proposed ERST, the routing node metrics

such as RE, PL, and ETX of the sensor nodes are assumed
to be used to select the next reliable, energy-efficient relay
node from the FIS. Consider NR (next relay), which is
used to choose the next relay from the FIS, determined
by ANFIS. The proposed three input structural designs of
ANFIS can be seen in Figure. 7. It takes three inputs RE,
PL, and ETX, and the corresponding linguistic variables of
the relay selection metrics, such as residual energy RE=
L, M, H and is defined as RE1, RE2, RE3, path loss =
Le, Mo, Mr that is represented by PL1, PL2, PL3, and
the ETX=S, A, La denoted by ETX1, ETX2, ETX3, and
finally, output parameter degree is based on the rules layer
(Rl) = First, Second, Third, Fourth, Fifth, Sixth, Seventh
as Rl1, Rl2, Rl3, Rl4, Rl5, Rl6, Rl7, and Rl stands for
Rules layer, which consists of 27 if-then rules generated by
Takagi-Sugeno fuzzy inference system takes three linguistic
variables of three input variables as shown in the Table. II.
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Figure 7. Proposed ERST using ANFIS

In the neuro-fuzzy inference system, the first layer, the
fuzzy layer (membership function layer), consists of several
nodes. This layer generates a membership ranging from
0 to 1 and applies different membership functions, like
triangular, trapezoidal, and Gaussian. The proposed work
uses the trapezoidal membership function. The outcome of
the first layer was calculated using Eq. 9, Eq.10, and Eq. 11.

O1, j = µX j(X) f or j = 1, 2, 3 (9)

O1, j = µY j−2(Y) f or j = 3, 4, 5 (10)

O1, j = µZ j−3(Z) f or j = 4, 5, 6 (11)

Likewise, the membership functions µRE j , µPL j , and, µET X j

can be determined. The second layer called the inference
layer (T-Norm Layer) contains several nodes that are labeled
with π (firing strength) (Figure 7). This layer takes the input
from the fuzzy layer and applies inference rules to perform
the AND operation. Each node in this layer calculates

the antecedents based on the Eq. 12. In this layer, the
parameters X, Y, and Z are adjusted using ANN (artificial
neural network).

O2, j = µRE j (X)× µPL j (Y)× µET X j (Z) where, j = 1, 2, 3 (12)

The following layer is called the normalized layer, it is non-
adaptive and is represented by N in figure (Figure 7). Every
node in this layer generates the output by taking the ratio
of the ith rule produced by the inference layer. The output
of this layer can be obtained by using Eq.13. Where W j
represents weights.

O3, j = W j =
W j

W1 +W2 +W3
j = 1, 2, 3 (13)

A fourth layer is called the adaptive defuzzification layer.
This gives the output as a product of the normalized layer
firing strength and out of individual rule. The outcome of
the normalized layer is as follows Eq. 14.

O4, j = W jd j = O4, j(p jX + q jY + r jZ +C j) (14)

Where p j, q j, r j,C j are tuning parameters used to update
when an error occurs. Finally, the last layer is called the
non-adaptive Output Layer. The single aggregated output is
generated at this layer by using Eq. 15.

O5,1 =
∑

j

W jd j =

∑
j W jd j∑

j W j
(15)

F. Proposed-ERST algorithm and flowchart
The comprehensive flowchart is presented in Figure. 8

illustrates the suggested relay selection procedure. When
the source node (Si) needs to deliver data to the sink,
it requests the SDN controller for the best relay. The
controller then looks through the flow table for the best
relay. If not, use the ERST approach to choose the optimal
relay. To choose the best relay node among the group
of relays, the proposed ERST method makes use of the
ANFIS model. The fuzzy and neural network concepts are
the foundation of the ANFIS model’s operation. Initially,
the FIS receives the RE, PL, and ETX routing parameters
as crisp inputs. It then creates fuzzy membership functions
like RE, PL, and ETX, and the firing strength is then
calculated using the fuzzy AND operation, and the
parameters are adjusted using an artificial neural network.
The firing strength is then normalized, and the overall
output is then calculated to obtain the optimal relay node
with a higher degree of output.
The proposed optimal relay nodes in a dynamic network
are selected using the Algorithm 1. Every sensor node in
the network must exchange its routing information, which
contains neighbor node details and source and destination
addresses, with its neighbors. The Network Controller
(NC) manages all sensor nodes and their applications
within the SDN architecture. The sensor nodes exchange
routing and flow details with the NC. When there is data
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Rule RE PL ETX Rl Rule RE PL ETX Rl
1 RE1 PL1 ETX1 Rl1 15 RE2 PL2 ETX3 Rl4
2 RE1 PL1 ETX2 Rl2 16 RE2 PL3 ETX1 Rl1
3 RE1 PL1 ETX3 Rl3 17 RE2 PL3 ETX2 Rl2
4 RE1 PL2 ETX1 Rl1 18 RE2 PL3 ETX3 Rl2
5 RE1 PL2 ETX2 Rl1 19 RE3 PL1 ETX1 Rl5
6 RE1 PL2 ETX3 Rl2 20 RE3 PL1 ETX2 Rl6
7 RE1 PL3 ETX1 Rl2 21 RE3 PL1 ETX3 Rl7
8 RE1 PL3 ETX2 Rl1 22 RE3 PL2 ETX1 Rl4
9 RE1 PL3 ETX3 Rl1 23 RE3 PL2 ETX2 Rl5

10 RE2 PL1 ETX1 Rl3 24 RE3 PL2 ETX3 Rl6
11 RE2 PL1 ETX2 Rl4 25 RE3 PL3 ETX1 Rl5
12 RE2 PL1 ETX3 Rl5 26 RE3 PL3 ETX2 Rl7
13 RE2 PL2 ETX1 Rl3 27 RE3 PL3 ETX3 Rl7
14 RE2 PL2 ETX2 Rl3

TABLE II. Inference Rules

to transmit from the source node (S), it reaches out to
the NC for guidance on which relay to use. The NC then
uses neuro-fuzzy rules to choose a high-degree node as the
next forwarder, considering RE, PL, and ETX. Finally, the
source (Si) sends data to the selected relay or goes into
sleep mode.

Start

Si sends a request to SDN
controller for optimal

relay (Ri) 

Is data arrived at
source (Si)

SDN controller checks for
optimal relay

Is an optimal relay
available?

Assign Ri to Si

 Si in active state and
start data transmission

Yes

No

ERST-(Adaptive Neuro-Fuzzy Inference
System)

Inputs to Fuzzy:
RE, PL, ETX

Generate MF for each
input: μRE, μPL, μETX

Calculate firing
strength:

 μRE x μPLx μETX

Normalizing firing
strength

Calculate overall
output to obtain

optimal relay
(Ri)

Neural network 
training process

 Si in sleep state 

No

Yes

Start

Figure 8. Flowchart for Relay Selection Process

The proposed Algorithm 2 utilizes a neuro-fuzzy model
of ANFIS to select Rl (relay). This model consists of two
passes: a forward pass and a backward pass. To train the

premise and consequent parameters of these passes, the
model uses gradient descent and the least mean squares
hybrid algorithm. During the forward pass, the static input
parameters (RE, PL, ETX) are given to the fuzzy layer.
The information then passes through the hidden layers and
reaches the defuzzy layer, where the output is analyzed for
errors. In the backward pass, these errors are sent back to
the fuzzy layer to adjust the parameters. This allows us to
update the membership function using the gradient descent
method. This process continues until Nepoch (one round of
execution, including both passes).

Algorithm 2 RL selection using Neuro-fuzzy

1: Input: RE, PL, ETX, and N
2: Output: Rl
3: for n=1 to Nepoch do
4: Input RE, PL, ETX to fuzzy inference engine
5: Generate membership functions

(µRE j µPL j and µET X j ) for each node by fuzzy
layer using Eq.(12)

6: Calculate the normalized firing strength of each
node based on Eq.(13)

7: Defuzzification process done based on Eq.(14) for
each node

8: Calculate the final output Rl using Eq. (15)
9: end for

5. Implementation
This section evaluated the proposed work with simu-

lation tools MATLAB and NS-3.37 to analyze the perfor-
mance of the proposed protocol ERST. A sensor network of
200 nodes is simulated in a 300 x 300 area. Nodes selected
at random are considered source nodes. Each simulation
is run for at least 300 seconds and repeated 20 times. To
evaluate the performance measures, average values from
the findings are extracted and considered as input datasets
to ANFIS. Table III summarizes the simulation parame-
ters used to evaluate the proposed algorithm packet de-
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Algorithm 1 Optimized Energy-aware RS

1: Input data: source (S), Sink (D) relay ( R1, R2, R3,....Rn)
2: Outcome: Ri optimal (relay-node)
3: Initialization: Ie (Initial-Energy), TRr (Range of Transmission), ET (Energy threshold), S=idle
4: Sensors Si and relays Ri exchange their flow table and neighboring information to NC
5: while data arrival at Si do
6: Si request the NC for optimal relay within its expected TRr
7: The NC executes neuro-fuzzy function /* Selecting the best relay based on PL(5), ETX (6), and RE(7) value*/
8: for i=0 to n do
9: if Ri.RE=High && Ri.ETX=Short && Ri.PL=Less then

10: NC assign Ri to Si
11: Si=active;
12: Si starts data transmission to Ri
13: else
14: NC recursively executes the fuzzy function
15: if next optimal relay is available then
16: NC assign Ri to Si
17: end if
18: end if
19: end for
20: S=idle;
21: end while

livery ratio, end-to-end delays, average throughput, energy
consumption, and network lifetimes for a comprehensive
analysis. The simulation’s outcomes are compared with the
earlier routing protocols like MRE and RRS [28], [29].

Create SDWSN:
Configure sensor
nodes (200) with

AODV routing

Generate trace file
(.tr)

Write AWK script to
calculate the

Residual Energy,
Pathloss and ETX

Fuzzification Fuzzy Inference
System

Neural Network
Layers

Defuzzyfication
Process

Optimal Relay
Node

Crisp
input Fuzzy

inputs
Fuzzy
output

Crisp
output

Text Fuzzy
rules

1 2 3

4

RE ETXPL

Neuro-Fuzzy Process

Figure 9. Proposed Simulation Process

The hybrid simulation process is explained in Figure. 9.
During the simulation process, the first step involves creat-
ing a simulation environment with 200 sensor nodes and
using the AODV routing protocol for data transmission.
Step 2 generates a trace file, which calculates the RE,
PL, and ETX values based on an AWK script in step 3.
The optimal relay node is then determined in step 4 using
the Neuro-Fuzzy Process, which performs fuzzy and neural
network operations.

TABLE III. Simulation Parameters

Parameters Symbol Values
Network Size Sq.mt 300*300
Transmission Range TR 50m
Sink Node D (0,0)
Position of source S (200,200)
Channel ch Nakagami-m

fading channel
Energy Threshold ET 0.001J
Power Dissipation elec 50 nJ/bit
Packet size (k bits) L 512 bytes
Initial energy IE 2J

A. Validation of ERST
The proposed ERST is validated through performance

metrics, namely packet delivery ratio, energy consumption,
E-to-E delay, and throughput.

• Data collection phase: extract ETX, PL, and RE
values from the trace file of the proposed ERST
simulated by NS3.

• Design the membership function: design the MF as
mentioned in Section 4.B using FIS.

• Train the ANFIS: Give the collected data to ANFIS
to train the model. During the training process, adjust
the parameters of FIS using backpropagation.

• Evaluate the algorithm: The obtained output is com-
pared with the existing MRE and RSS protocols.
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B. Simulation details
• The packet-delivery ratio (PDR) is a metric used in

computer networking to measure the success rate of
transmitting packets in a network.

• The node’s energy consumption is the amount of
energy used over time.

• The end-to-end Delay (E-to-E) defines the time taken
for a data packet transmission from the source node
to the destination within a computer network.

• The average throughput indicates the average data
transfer rate or the amount of data successfully trans-
mitted over a network during a given time period.

• Network lifetime refers to the duration or lifespan of
an IoT network before its nodes become unable to
communicate or exhaust their energy resources.

6. Results And Discussions
This section presents the obtained results, tables, graphs,

and an explanation of the proposed work efficiency with the
baseline protocols.

TABLE IV. PDR

Successful packet delivery ratio (%)
Nodes 100 120 140 160 180 200
Proposed-
ERST

97 97.89 97.90 98 98.34 99

MRE 94 94.79 94.80 95 95.45 95.89
RRS 93 94 94.39 94.60 94.75 94.86
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Figure 10. Packet Delivery Rate

Figure. 10 shows the packet delivery ratio of the pro-
posed work. The ERST algorithm demonstrates an 8%
increase in successful packet delivery rate compared to
existing MRE and RRS protocols. This is achieved by
selecting an optimal relay node using a neuro-fuzzy model,

which applies various fuzzy rules and fine-tunes the mem-
bership functions for selecting the energy-efficient, robust,
and reliable relay node. As the number of nodes in the
network is inserted, the number of potentially available
relay nodes also increases, increasing the packet reception
ratio at the sink. This indicates that the proposed algorithm
is highly scalable. This can also be suitable for mobility-
based dynamic networks. In contrast, the previous MRE
protocol only selects the next relay based on the residual
energy of a node without considering link quality, which
is unsuitable for a dynamic nature network. Similarly, the
RRS protocol chooses a random node as the next relay,
which may result in reduced packet delivery if the node
fails as data is retransmitted through the same relay node.
The existing MRE and RRS provide less packet delivery
percentage due to congestion and unstable links, leading to
network sinkhole problems. The proposed ERST overcomes
these problems efficiently. Table IV represents the obtained
values of PDR.

TABLE V. E-to-E delay

End-to-End delay (ms)
Rounds 20 40 60 80 100 120
Proposed-ERST 14 19 23 26 29 34
MRE 16 22 25 28 33 38
RRS 25 34 40 43 55 59
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Figure 11. Delay (End-to-End)

The proposed ERST reduces End-to-End delay by 5%
by considering path loss rate and ETX for data transmission.
This results in selecting a less congested and more reliable
relay node over the network, as shown in Figure. 11.
The existing MRE protocol was causing delays due to its
selection of unreliable links for data transmission. It even
selects high ETX links as the next forwarder, which leads
to further delays. In contrast, the previous RRS protocol
only selected nodes randomly based on distance without
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considering robust link parameters such as ETX and RE,
resulting in additional transmission delays. The proposed
ERST uses different fuzzy rules to select the best relay using
the neural network learning process. This builds a robust,
non-congested path from source to sink to provide energy-
aware and reliable transmission with minimum delay. Table
V represents the obtained results for delay.

TABLE VI. Energy Consumption

Total energy consumption (J)
Nodes 100 120 140 160 180 200
Proposed-
ERST

1.0 1.7 0.8 0.7 0.69 0.6

MRE 1.239 1.182 1.176 1.020 1.0 0.91
RRS 1.789 1.692 1.498 1.340 1.250 1.2
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Figure 12. Energy Consumption

Figure. 12 describes the energy consumption of sensor
nodes at varying node densities, in which the proposed
ERST retains the maximum amount of energy at each
node as compared to existing protocols (MRE and RRS). It
reduces nearly 4% of energy consumption because it selects
the high residual energy node on the high-quality link as the
next forwarder by applying neuro fuzzy rules. Each node
energy is utilized efficiently by applying a backpropagation
technique at each hidden layer of a neural network to fine-
tune the parameters. This shows that the proposed ERST
promises a long-term sustainable link. The existing MRE
and RRS protocols do not consider link quality metrics
such as path loss and ETX while selecting a relay. MRE
works on random selection in such situations as the same
node is repeatedly selected as a relay node, which creates
a dead node and link failure problem. For this reason, the
existing RRS protocol consumes more energy during data
transmission, reducing network life. That can be seen in
Figure 12. When the number of nodes increased, the energy
consumption also increased, leading to the network’s early
death. Table VI represents the obtained energy values for
all considered protocols.
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Figure 13. Average Throughput

TABLE VII. Average Throughput

Average Throughput (kbps)
Time (s) 100 200 300 400 500
Proposed-
ERST

320 340 370 385 400

MRE 280 285 320 355 360
RRS 255 260 270 285 290

Figure. 13 and Table VII illustrate the suggested
ERST protocol average throughput it increases the network
throughput by more than 8% compared to MRE and RRS
protocols. The proposed ERST chooses the best relay on
the reliable link to maximize data delivery and minimize
packet loss. The proposed work uses the ANFIS model to
select the energy-efficient relay node based on the fuzzy
rules and consider the nodes’ mobility factors. The proposed
ERST selects the robust routing path from source to sink.
The resultant of this provides good throughput. However,
in the existing work, RRS chooses the relay based only
on probability and ignores the energy factor and mobility.
The MRE protocol only concentrates on energy but does
not consider link quality factors; for these reasons, existing
protocols lose more packets at the intermediate nodes
because of poor link reliability due to the improper selection
of routing parameters.
Figure. 14 illustrates that the proposed ERST protocol
has more active nodes than the existing MRE and RRS
protocols. In the proposed ERST, the first node dies in about
200s, whereas in MRE, the first node dies at about 150s,
and in RRS, the first node dies at about 100s, respectively.
Finally, the proposed ERST extends the network lifetime
in terms of the alive nodes involved in different simulation
times, as shown in Figure. 14. It shows that the proposed
ERST has been sustained for a long time because the
network is alive after the 500s of simulation time. The
results are compared with the prior routing protocols: MRE
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and RRS. All the sensor nodes are active in the initial
stages and up until the 100s. After that, their energy begins
to drain gradually, decreasing the number of active nodes.
The network using the existing protocol RRS died faster
because of the random selection of relay nodes. The MRE
is better compared to RRS but not as good as the proposed
ERST. This proves that the proposed ERST outperforms
both existing protocols. It is due to the proposed ERST
selecting the next relay using the neuro-fuzzy model to
increase the IoT network lifetime.
The main strength of the proposed ERST protocol is that it
applies to mobility-based dynamic IoT networks. It provides
energy-efficient and reliable data routing during transmis-
sion and can also be applied to dense networks for large-
scale applications. The limitation of the proposed work is
the synchronization problem of the moving relay nodes due
to mobility; sometimes, nodes receive duplicate packets.
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Figure 14. Network Lifetime

A. The practical implications of the findings
The Figure. 15 shows the practical implications of the

proposed energy-aware relay selection in IoT. It is broadly
categorized into network performance, operational cost,
sustainability, and application-specific benefits. Network
performance: Using the energy-aware relation approach
enhances the network lifespan because of less energy con-
sumption during data transmission. It also provides stable
communication links that enhance reliable data transfer and
data integrity. Finally, optimize the latency and response
time due to energy-aware relay selection.
Operational cost: Reduced energy utilization leads to long-
lasting IoT devices, which reduces the cost of replacements.
Lower energy consumption reduces power costs, which is
beneficial for large-scale IoT applications.
Sustainability: The proposed ERST approach is more en-
ergy efficient, consumes less energy for data transfer, and
reduces the overall carbon footprint to support green and
sustainable technologies.

Application-specific benefits: The IoT applications, such
as health care, environmental monitoring, industrial, and
smart agriculture, generate huge data to transfer over
the network. In this context, the proposed ERST ensures
energy-aware relay selection, guarantees critical health data
transmission reliably, long-term monitoring of environmen-
tal data, provides continuous operations in industrial au-
tomation, and energy-aware ERST ensures cost savings and
more effective monitoring of crops to promote sustainable
farming practices.
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Figure 15. The practical implications.

B. Abbreviations and Acronyms
The Table. VIII presents the notations used in the

proposed work.

TABLE VIII. Notations and Description

Notation Description
nk Kth sensor node
n j Jth sensor node

di Distance between ith node
TRr Transmission range of a node
ti Time instance of relay node movement
TE Total Energy
p p number of bits
Eelec Energy required for transceiver circuit
rs, ϵamp Energy required for amplification of the receiver

and received signal noise
Ie Initial energy of the sensors
Ep, Total Total energy required to transfer p bits
Ci j Duration of connectivity b/w two devices di &

dj,
Tn nth time instance
Tr Transmission range
RE Residual Energy
PL Path Loss
ETX Expected Transmission Count
Di Distance between source-destination
M Variable with zero mean
df Probability of the successful packet being re-

ceived
dr Probability of a successful acknowledgment

packet reception
NC Network Controller
L, M, H Low, Medium, High
Le, Mo, Mr Less, Moderate, More
S, A, La Short, Average, Long
IRE , IPL , IET X Linguistic values of residual energy, path loss and

ETX
y Output set
E, F Support of membership function
c1, c2 Trapezoidal membership kernel
ET Energy Threshold
S Source
D Sink
R1,. . . Rn Relay nodes
µRE , µPL , µET X Membership functions
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7. Conclusion And Future Enhancement
This paper proposed an energy-aware relay selection

(ERST) technique using an adaptive neuro-fuzzy-based
model (ANFIS). It adapts fuzzy logic and neural network
concepts to choose the optimal relay and routing over
a dynamic IoT network. The ERST approach selects an
energy-efficient relay by considering factors such as the
node’s remaining energy, the link’s path loss ratio, and the
ETX of nodes to identify the next relay node from source to
sink. The fuzzy model generates the member functions, and
the neural network optimizes the membership functions that
help to find the optimal relay node. A reliable and energy-
aware routing path is constructed using the proposed ERST,
which saves energy over the network and increases the
lifetime. The simulation was performed in MATLAB and
NS-3.37 to analyze the proposed protocol. The proposed
ERST improves the delivery ratio of packets by 8%, reduces
energy utilization by 4%, minimizes End-to-End delay by
5%, and increases network lifetime and average throughput
by 8%. The proposed ERST protocol provides efficiency,
high scalability, and reliability for IoT networks.
Future Enhancement: In the future, the clustering archi-
tecture can be used to reduce energy utilization by selecting
the optimal relay for the nearest cluster head to transfer
the data to the sink. Relay node placement and intelligent
algorithms can be applied to choose the optimal relay based
on the different routing parameters. The selection of a
relay on Vehicular Ad-hoc networks and Low-Power Wide-
Area Networks to solve the network coverage problem with
mobility is a future field that will provide more robust and
scalable network performance.
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