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Abstract: This research introduces a novel Network-on-Chip (NoC) architecture based on AXI interconnect as an SoC optimization
method to reduce latency and improve throughput. AMBA architecture allows efficient intra-chip communication. Integrating the AXI with
NoC principles provides a scalable solution for efficient data transmission across multiple connected modules, which is difficult to achieve
in traditional bus systems. Some notable innovations include efficient routing mechanisms and a better network interface that enables the
smooth transfer of packets. Simulations show that a 2x2 mesh network with XY routing can achieve latency as low as 0.99 µs, which has
an effective throughput of up to 4.363 flits per cycle, making the architecture viable for high-performance computing applications at scale.
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1. Introduction
The AXI interface is essential in SoC architectures for

communication among system components, like processors,
memory modules, peripherals, and other IP blocks [1].
It is based on the ARM Advanced Microcontroller Bus
Architecture (AMBA) protocol, ensuring compatibility and
interoperability across various System on Chip (SoC) setups
[2]. The AXI connection is known for its scalability, adapt-
ing to different system configurations to fulfil the specific
requirements of each SoC design [3]. It improves resource
consumption and promotes system efficiency, whether han-
dling simple single-master setups or overseeing intricate
multi-layered systems. This versatility also applies to its
capacity to handle many sorts of transactions, including
read, write, and atomic operations, to facilitate the smooth
integration of IP blocks with different data processing
needs. The AXI connection has strong arbitration features to
efficiently handle simultaneous access requests from several
masters in the SoC context. The connection guarantees
fair resource allocation by using round-robin scheduling
and priority-based arbitration procedures, which helps to
prevent bottlenecks and contention concerns. This sturdy
construction improves system performance and creates a
favourable environment for developing intricate embedded
systems for many applications.

Interconnects play a crucial role as an effective com-

munication among nodes in distributed systems inside NoC
designs [4]. They easily connect processor parts, memory
units, and other IP blocks spread across the network, serving
as the basis for integrated NoC systems. Also, follow
defined protocols and topologies based on network-on-chip
design concepts, promoting interoperability and scalability
in various NoC setups. In NoC designs, interconnects
are notable for their capacity to adapt to various system
needs, supporting both homogeneous and heterogeneous
node topologies. NoC interconnects boost routing efficiency
and enhance overall network performance by coordinating
processing units or IP blocks with various capabilities
[5]. They are versatile in supporting many communication
paradigms, such as packet-switched and circuit-switched
architectures, to seamlessly integrate multiple processing
units in the NoC ecosystem.

NoC systems include sophisticated routing algorithms
and flow management technologies to handle data traffic and
reduce congestion efficiently. These interconnects use vir-
tual channel allocation and quality-of-service (QoS) priority
mechanisms to provide fair resource distribution and re-
duce performance issues. This sturdy construction improves
network speed and creates a favourable environment for
developing advanced, high-performance computing systems
for many applications. Numerous obstacles have surfaced in
the current interconnects of NoC designs, limiting the best

E-mail address: malladhinagarjuna@gmail.com, gattimarad@gmail.com

http://dx.doi.org/10.12785/ijcds/1571017778


2 Nagarjuna Malladhi, et al.

possible system performance and scalability. An emerging
problem is the growing intricacy and diversity of system
designs, which put pressure on traditional connection meth-
ods. As Network-on-Chip (NoC) designs advance to include
various processor elements, memory units, and specialized
IP blocks, current interconnects often face challenges in
establishing effective communication channels among these
different components [6]. This complexity worsens routing
inefficiencies, latency bottlenecks, and contention difficul-
ties, which impede overall network speed and responsive-
ness.

Another obstacle is the increasing need for bandwidth
and energy efficiency in Network-on-Chip (NoC) systems.
System-on-chip designs include an increasing number of
cores and functional units, which require interconnects to
handle expanding data traffic volumes while adhering to
strict power limits. Current interconnections may have chal-
lenges in meeting these requirements, resulting in higher
power use, thermal concerns, and reduced performance.
Furthermore, the changing workload allocation and com-
munication patterns in NoC designs make it more difficult,
requiring flexible and scalable interconnect solutions that
can allocate resources dynamically and enhance energy
efficiency. Additionally, the absence of defined interfaces
and protocols presents a major challenge to the interoper-
ability and scalability of Network-on-Chip (NoC) designs.
Integrating various IP blocks and system components may
be challenging without consistent communication protocols,
leading to compatibility problems and design inefficiencies.
The lack of standardized interconnect topologies hinders the
ability to easily transfer and reuse across various NoC de-
signs, resulting in vendor lock-in and impeding innovation.
To tackle these problems, industry collaboration is needed
to create shared interconnect standards and frameworks,
promoting a more open and compatible environment for
NoC development and implementation.

Creating an AXI Interconnect-based NoC architecture
for SoCs to decrease latency and improve throughput re-
quires careful strategic planning. The design should priori-
tize using the scalability and flexibility of the AXI interface
to provide effective communication channels among the
system components [7]. The design may efficiently dis-
tribute traffic by using several AXI interconnects arranged
in a hierarchical or mesh topology, reducing contention and
latency bottlenecks and maximizing resource efficiency. The
design should focus on implementing advanced features
including out-of-order transaction scheduling, Quality of
Service(QoS) methods, and adaptive routing algorithms.
The characteristics allow for dynamic resource allocation
and prioritizing depending on the criticality and urgency
of data transfers, improving system responsiveness and
throughput. Furthermore, including specialized buffers and
flow control methods into the AXI interconnects helps
reduce congestion and minimize latency spikes when there
is a significant volume of data traffic [8].

This study has research objectives which were directed
to overcome some of limitations that located in the field
of SoC architectures especially the latency and throughput
about dealing with data transmission. The initial intention
is to implement a new NoC architecture with AXI inter-
connect, with the aim of reducing latency and improving
throughput. The performance gain comes by using high-
throughput, low-latency AXI protocols to form more opti-
mized communication paths between the many components
in a SoC. The research also targeted increasing power
efficiency through mechanisms of dynamic reconfiguration
and resource management.

The contributions of this research are directed towards
dealing with some challenges encountered in current NoC
designs, besides performance enhancements. This architec-
ture combines the state of art routing algorithm, packet
forwarding (based on QoS), and multiple flow control mech-
anisms to expedite network communication. It shortens total
data transmission distance, reduces the delay time of signal
transfer by nature and provides much wider bandwidth at
lower energy cost compared with existing works. These in-
novations not only quicken data frequency but also increase
throughput and system response which is beneficial to be
applied in high performance computing applications.

The research also demonstrates the use of AXI-based
protocols in NoC framework to handle data traffic more
efficiently, especially in a sophisticated SoC environments.
The proposed approach effectively reduces contention and
increases the performance of overall systems due to an op-
timized buffer management in addition use of clock gating.
This, in turn helps the research community by providing an
efficient way of dealing with increasing demand for modern
SoC designs mainly power efficiency and performance
optimization.

Optimizing the AXI Interconnect-based NoC architec-
ture for power efficiency is crucial for maintaining sustained
performance improvements. The design may reduce en-
ergy consumption without sacrificing performance by using
clock gating, voltage scaling, and dynamic reconfiguration
of interconnect resources. Furthermore, integrating low-
power modes and intelligent power management techniques
allows for precise control over power consumption, hence
improving the energy efficiency of the SoC architecture. The
AXI Interconnect-based NoC design may efficiently fulfill
current SoC applications’ strict performance requirements
by balancing latency reduction, throughput enhancement,
and power optimization. The organization of the paper
as follows: Section-2 describes the Literature survey and
proposed AXI interconnect based NoC is explained in
Section-3. The simulation results are discussed in Section-4.
Finally, Section-5 concludes this article.

2. Literature
Kun-Chih (Jimmy) Chen et al [9] introduced an ap-

proach for flattening Deep Neural Networks (DNN) is
to transform different DNN operations into Multiply-
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Accumulate (MAC)-like operations, enabling the implemen-
tation of operations like convolution and pooling in con-
temporary DNN architectures. A DNN slicing approach is
proposed to evaluate large-scale DNN models in a resource-
limited NoC environment. The assessment results show a
significant reduction in off-chip memory accesses when
compared to current DNN models. Performance analysis is
carried out when discussing the trade-offs between various
design factors.

Phan-Duy Bui et al [10] proposed the Unified System
Network Architecture (USNA), a highly flexible and space-
efficient NoC design that can be tailored to various topolo-
gies. The USNA provides a high degree of flexibility in port
configurations to accommodate different quantities of local
cores and router linkers. It also facilitates quality of service
operations for routers and linkers. This research examines
the network performance of the USNA, focusing on mea-
sures like average latency and saturated throughput, along
with the installation cost. Multiple network architectures are
studied with an equal number of local cores under uniform
random traffic circumstances. The simulation findings show
that the USNA performs better or equals other NoCs in
terms of performance, with a smaller footprint and lower
power consumption.

Gokul Krishnan et al [11] performed an experimental
evaluation on several Deep Neural Networks to quanti-
tatively analyze the performance of the IMC architecture
using both NoC-tree and NoC-mesh configurations. NoC-
tree is recommended for compact DNNs at the edge,
whereas NoC-mesh is necessary for accelerating DNNs
with high connection density. A method is suggested to
identify the best connection option for a certain DNN. This
method uses analytical models of Network-on-Chip (NoC)
to assess the total communication delay of the Deep Neural
Network (DNN) being studied. Optimizing the connectivity
in the IMC design might potentially increase the energy-
delay-area product for VGG-19 inference by up to 6 times
compared to current ReRAM-based IMC systems.

Aravindhan Alagarsamy et al [12] An innovative hybrid
topology called Four Regular Dense Spidergon (FRDS) is
presented as a deterministic Network-on-Chip (NoC) design
with 64 cores. A mix of cluster and general heuristic-
based techniques is suggested for mapping applications
into the FRDS topology. The cores are mapped into the
topology using a genetic algorithm (GA) and simulated
annealing (SA) inside a general heuristic method to guaran-
tee effective mapping and fair performance comparison of
the proposed FRDS. Experimental findings show that the
suggested FRDS achieves a faster execution time compared
to Mesh design when utilizing genuine benchmark traces
under normalized settings.

C. De Sio et al [13] evaluated the dependability of the
connecting module in programmable hardware in relation
to radiation-induced failures in the configuration layer. An

intentional fault injection effort is under underway to simu-
late the effects of radiation on the configuration memory
of the AP-SoC Zynq 7000. The main focus is on the
specific portion of the configuration memory responsible for
programming the connection module in the programmable
logic. The connection module plays a critical role in several
applications and mitigation measures, such as hardware-
accelerated concepts, Dynamic Partial Reconfiguration, or
Triple Modular Redundancy. It is particularly important
when aiming for high performance, bandwidth, and reliabil-
ity. The fault injection results are analyzed and categorized
based on their impact on the availability of the processor-
system side along with the effect of the fault model on data
computed by cores on the programmable logic side.

Demyana Emil et al [14] analyzed a low-power, straight-
forward design multi-core RISC-V processor that is derived
from the open-source single RISC-V core processor, Taiga.
The device combines two Taiga cores, solving issues related
to cache coherence, connectivity, and memory architecture.
Data consistency between caches and main memory is
ensured by the use of the snoopy protocol. A specialized
peripheral unit tailored for hardware coordinates duties
across the operating cores. The primary memory unit is
structured for consistency and control, using a dual-port
arrangement following a specified protocol in the interface,
consisting of 8192 lines and word addressable units. A
UART peripheral device has been included for communica-
tion with other devices due to its widespread use in many
devices and CPUs. The processor is developed using System
Verilog HDL and thoroughly tested on several testbenches
to guarantee correct operation.

Santhi Chebiyyam et al [15] suggested incorporating a
memory controller into a multi-core System-on-Chip (SoC)
using the Advanced Extensible Interface (AXI4Lite) proto-
col. This approach improves the performance of the multi-
core SoC by using the burst mode capabilities of the AXI
protocol. The architecture suggested is implemented in Sys-
tem Verilog HDL using the Vivado tool. The experimental
results show that the suggested strategy surpasses traditional
approaches documented in current literature in terms of
power consumption and space utilization. The suggested
methodology results in a significant 90 % decrease in power
usage, as shown by numerical measurements.

Biruk Seyoum et al [16] presented DART, a tool created
to automate the whole design process in a real-time Dy-
namic Partial Reconfiguration (DPR)-based system, includ-
ing software and hardware components. DART is designed
to minimize the manual work usually needed by existing
tools for Xilinx Zynq 7-series and Ultrascale+ FPGA-
based SoCs, without assuming extensive knowledge in
programmable logic design under DPR. The tool automat-
ically manages partitioning, floorplanning, and implemen-
tation stages, which include routing and bitstream creation.
It produces a sequence of bitstreams according to tasks
marked with high-level timing specifications. Mathematical
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optimization methods are used to solve partitioning and
floorplanning issues, and a series of automatically created
scripts connect with vendor products to aid in synthesis and
implementation processes. DART’s performance is eval-
uated via experimental assessment utilizing a case study
application from an accelerated image processing system.

Jayshree et al [17] presented three on-chip connecting
strategies designed to reduce performance decline caused
by the ongoing reduction in global interconnect parame-
ters. The suggested approaches include 2-D network-on-
chip based interconnection (NoC-BI), point-to-point based
interconnection (PTP-BI), and AXI4 streaming and AXI4
light bus based interconnection (AXI4-BBI). Analyzing
various connections strategies via experiments to compare
resource use, latency, throughput, and energy consumption.
The NoC-BI approach aims to mitigate denial of service
(DoS) threats, including deadlock and livelock concerns, in
order to improve security in multimedia systems-on-chips.
A dynamic adaptive (DyAD) routing method is suggested to
alter routing according to congestion data on the route. The
results show that NoC-BI has great scalability and performs
better across several measures compared to PTP-BI and
AXI4-BBI.

Ian Swarbrick et al [18] described the Network-on-
Chip (NoC) in Xilinx’s planned Versal architecture, which
includes a robust NoC incorporated into Xilinx’s future 7nm
design devices. The devices have a range of new robust
features that make up the Adaptable Computing Accel-
eration Platform (ACAP) devices. There is an increasing
tendency in FPGA devices to strengthen frequently used
components such as processors, memory controllers, and
IO controllers. The next Xilinx devices have a device-
wide memory-mapped NoC that connects components and
the fabric in a unified way. This Network-on-Chip (NoC)
enables smooth communication across the CPU system,
FPGA fabric, memory subsystem, and other specialized
accelerator functions. The article outlines the Versal ar-
chitecture NoC and explains several unique features of
the design. It shows that strengthening the Network on
Chip (NoC) allows users to quickly create high-performance
system-level connections.

Joshua Lant et al [19] put forward a network interface
architecture and networking infrastructure designed to be
included into the FPGA fabric of a sophisticated MPSoC
device. This configuration enables communication across
networks of devices in distributed and shared memory
environments, with the goal of reducing the need for
expensive software networking system calls. They discuss
their implementation and prototype system, focusing on
important design choices for using the Xilinx Zynq Ul-
trascale+, an advanced MPSoC, and overcoming problems
presented by the device’s restrictions and limits. The authors
demonstrate a working prototype system that links two
MPSoCs, facilitating communication between the processor
and a distant memory location, as well as an accelerator.

They then assess the present implementation’s constraints
and pinpoint opportunities for enhancement to increase its
preparedness for production deployment.

Debasis Behera et al [20] proposed to improve the
efficiency of Embedding-Memory-Management-Units in a
Network-on-Chip (NoC) system. The study investigates the
use of a 3D Network-on-Chip (NoC) to enhance NoC
performance, resulting in significant progress. The research
also uses first-in-first-out (FIFO) buffers in NoC routers to
temporarily hold data packets. A suggestion suggests using
RAM as an intermediary between the crossbar switch and
input ports. The simulation findings show that the study
achieves memory usage levels between 0 and 16 out of 64
in a data storage stack, with a constantly strong ”almost
empty” signal.

P Anuradha et.al [21] presented a novel Route-
Controlling Network-on-Chip (RC-NoC) architecture over
TFFF link with FIFOAllocator, SwitchFIFO and Traffic-
informed/Fabric Congestion drived routing decisions by
adopting the targeted approach. Operations started with a
FIFO-Buffer logic to store data from any number of devices
and distribute the flow between different IP addresses. The
route controller module then arbitrated between various
routers in the crossbar switching fabric of different types
using a prioritized scheduling mechanism. The arbiter was
instrumental in managing and controlling data through the
source to destination by making sure that communication
can happen effectively according to levels of requests.
Simulations results offered an intensive analysis that evi-
denced the effectiveness of such RC-NoC architecture. The
comparative analysis demonstrates that the proposed NoC
outperforms state-of-the-art solutions in several important
metrics with up to 45% efficiency over GALS-NoC, F-
NoC and CE-On-Chip for Orion framework. This validation
was an added resource as it signified the robustness of RC-
NoC design both substantively and technically in addressing
issues facing recent D2D & SoC communication paradigm.

The paper [22] targeted asynchronous NoC router micro-
architecture design and functional verification in a GAL’S
system. The purpose of this novel simulation methodology
was to verify and prove design feasibility before contin-
uing onto further implementation stages. The paper also
presented a new Asynchronous Router template, the Base-
line (BL) asynchronous router, implemented from high-
level in-house written Domino Logic pipeline and using an
innovative hybrid encoding scheme. This hybrid encoding
map further streamlined the architectural design by not
introducing any new timing constraints. The verification
approach validated the primary asynchronous router on
Cadence AMS designer. Preliminary simulations results
validated with the objectives of the paper and a same
verification setup verified our design in later stages of
implementation.

The existing works on NoC architectures and designs
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show huge progress in improving performance, flexibility,
and efficiency. A technique, for instance, suggested con-
verting individual DNN operations into MAC-like operation
and eventually minimizing off-chip memory accesses in low
resource environment. The research work proposed Unified
Center Node for NoC which has flexible port mapping and
supports QoS more effectively than other NoCs, boasting
performance superiority over those in terms of footprint and
power consumption as well. Prototype IMC designs with
NoC-tree and NoC-mesh connectivity configurations were
experimentally evaluated, which improved the performance
of energy-delay-area product. A novel FRDS topology was
proposed and fast core mapping through genetic algorithms
were also presented to realize up faster execution time
than Mesh designs. Work concerned with the reliability
of inter-module communication in programmable hardware
using techniques such as Dynamic Partial Reconfiguration
have shown that to an extent mitigation can be achieved.
To address cache coherence and connectivity in a dual-
core RISC-V processor design, which allowed to reach
impressive power efficiency. Adding a memory controller
in the AXI4 Lite protocol enabled 10X reductions in
power and area of multi-core SoC. DART was developed
to automate the design of DPR-based systems, which
greatly improved efficiency in partitioning, floor-planning
and implementation. The three on-chip connecting strategies
(to better use resources, low latency, high throughput and
lower energy consumption) considering the specificity of
multimedia systems was proposed.

Our proposed NoC architecture based on AXI intercon-
nect is a big step forward these kinds of methodologies
merging the ARM’s Advanced Microcontroller Bus Archi-
tecture (AMBA) high-performance interface with principles
from NoCs. This integration overcomes the scalability limits
of classic bus systems in transferring large data among
multiple connected modules efficiently. Some of the key
innovations in proposed approach are as follows:
Efficient Routing System: The structure uses advanced
routing algorithms to optimize data paths in real-time,
which helps lower latency and boost throughput.
A Better Network Interface: The scalability and flexibility
of AXI interface helps our design distribute traffic efficiently
throughout the network, avoid contention and latency bot-
tlenecks, utilize resources at maximum efficiency.
Power Efficiency: The design incorporates clock gating,
voltage scaling and dynamic reconfiguration techniques to
save energy but not performance.

3. Proposed AXI Interconnect based NoC Architecture
An AXI interconnect-based NoC architecture is a highly

advanced and innovative approach to designing and imple-
menting communication subsystems in complex integrated
circuits, particularly in System-on-Chip (SoC) topologies.
The Advanced eXtensible Interface (AXI) is a component
of the ARM Advanced Microcontroller Bus Architecture
(AMBA) standard. It functions as a high-performance and
high-bandwidth bus interface that facilitates the connection

of components inside a microcontroller system. The integra-
tion of AXI with NoC principles enables the development
of a communication infrastructure that is scalable, efficient,
and adaptable. This infrastructure is capable of meeting
the high data transmission demands of current computer
applications.

The proposed architecture utilizes the AXI protocol’s
capabilities in facilitating rapid data transmission, handling
many data streams, and effectively managing concurrency.
By using a Network-on-Chip (NoC) approach, the design
may overcome the constraints in scalability that are present
in conventional bus systems. This enables more efficient
transfer of data across a greater number of linked modules
or processing units. The NoC design functions as a network
fabric that links different components, including processors,
memory blocks, and I/O devices. This allows them to inter-
act with each other via a common network infrastructure.

Within this architectural framework, the nodes of the
NoC are interconnected by routers, which control the rout-
ing of data packets depending on network circumstances
and destination addresses. These routers are specifically
intended to accommodate the characteristics of the AXI pro-
tocol, including out-of-order transaction completion, burst
transfers, and split transactions. This ensures that they are
compatible with AXI-compliant modules and maximizes
the efficiency of data transmission and overall system
performance. The block diagram of the proposed AXI
interconnect based NoC architecture is depicted in Figure
1.

Figure 1. Proposed AXI interconnect based NoC Architecture

The block diagram of a proposed NoC architecture
based on AXI interconnect would consist of many essential
components:

AXI-Master and Slave modules: AXI-compliant Mas-
ter and Slave Modules refer to the components such as
processor units, memory controllers, and peripheral devices
that establish communication using the AXI interface. Mas-
ters are responsible for initiating transactions, whilst slaves
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are responsible for responding to them.
Routers: Routers are essential components of the NoC,
responsible for overseeing the routing of data packets be-
tween nodes. They do this by using network topology and
routing algorithms. They have been designed specifically to
effectively manage the needs of the AXI protocol.
Network Interfaces (NIs): NIs, positioned between the
AXI modules and the routers, convert AXI transactions into
NoC packets and vice versa, guaranteeing smooth integra-
tion between the AXI interface and the NoC architecture.
Interconnect links: Interconnect links refer to the physical
or logical connections that exist between routers, allowing
for the transport of data packets across the network. They
may be engineered to accommodate different bandwidths
and latency demands.

A. NoC Architecture
The NoC architecture comprises Routers, network in-

terfaces, IPs, along with connections. Figure 2 displays
the components of a (2×2) Mesh topology. The network
topologies are determined by the connectivity of the Router,
NI, IP, and link. The essential elements of NoC architec-
ture consist of the routing algorithm, network structure,
including switching mechanisms. The router is an essential
element of a SoC that is constructed using NoC architecture,
similar to other types of networks. There are communication
lines that connect the whole chip, and the NoC Router
is responsible for efficiently directing incoming packets to
either the core that they are meant for or the router that
comes after it along the routing path that extends from the
originating point to the destination.

Figure 2. NoC Architecture

Network interfaces provide the link between the IP
cores as well as the on-chip router network. A Network
Interface in a NoC serves as an intermediary between the
computing unit and the communication system. Network
interfaces facilitate the transfer of data produced by IP
blocks into data packets and also provide additional routing
information dependent on the underlying NoC network.
NoC routers serve as the primary means of steering packets
in a communication network. Routers enable the transfer of

Figure 3. Router (2D mesh topology)

packets to the chosen connection in order to reach their
intended destination.

B. Router
A router is a crucial element in the communication

infrastructure of a NOC system. The router enables the
efficient transmission of network communication from its
origin to its intended endpoint. It ensures the synchroniza-
tion of data transmission, which is a crucial component
of communication networks. The router’s design has five
buffers: north, south, east, west, and a local buffer, as seen
in Figure 3.

The local buffer serves as a means to connect the IP core,
while the first four ports are used to establish connections
with other routers inside the network. Routers, which are
intelligent devices, accept incoming packets, analyze their
destination, and determine the optimal path for transmitting
packets from the source node to the destination node. Using
the routing function, a router decodes the data from the
incoming message and determines the packet’s destination.
The OSI model is followed in the construction of the NoC
router. Every layer in the model created by OSI has certain
tasks to complete.

C. AXI Network Interface
The network interface establishes the logical link be-

tween the IP core and the network. The network interface
serves as an intermediary between the router and the IP
core. NI keeps an eye on packets being sent and received
inside the IP core. Simultaneous bidirectional communica-
tion is made possible via the network interface. It starts
by gathering IP core data. After that, it divides the data
into packets, gives each packet a destination address, and
transmits the packets to the router. The packets are then
sent to their intended destination once it has removed the
packetization and received them from the associated routers.

1) AXI Interconnect
AXI interconnects have been designed to meet the

demands of on-chip communication that requires both
high bandwidth and low latency. These interconnects are
meant to be compatible and adaptable to different design
requirements. The AXI connection plays a vital role in the
advancement of complex digital systems that need effective
data transfer across many processor units, memory blocks,
and peripherals. The multi master and multi slave with AXI
interconnect is depicted in Figure 4.
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Figure 4. AXI interconnect with multi master and slave

The fundamental purpose of the AXI protocol is to
enable direct communication between master and slave
devices in a system. It facilitates efficient data transfers by
allowing for concurrent addresses, transfers of data that are
not aligned, and transactions that occur in bursts. These
properties play a crucial role in achieving the efficiency
necessary in contemporary high-speed computing systems.
The protocol specifies many channels (read address, write
address, read data, write data, and write response) that func-
tion autonomously, enabling concurrent data transactions,
hence enhancing throughput and system performance to a
large extent. The channels in the AXI protocol is shown in
Figure 5.

Figure 5. AXI channels

The AXI protocol defines five distinct types of channels:
Read Address Channel: The master device utilizes this
channel to transmit read requests to the slave device. The
read address channel conveys details on the data’s source
address, as well as transaction parameters such as data
amount, burst type, and transaction ID. This allows the slave
to comprehend the specific facts that the master is soliciting.
Read Data Channel: The slave uses the read data channel
to provide the data requested by the master via the read
address channel. In addition to the primary data, this
channel also transmits the response status (showing whether
the read operation was successful or not) and the transaction
ID, which assists the master in linking the incoming data
with the appropriate request.
Write Address Channel: The write address channel, like
the read address channel, is used by the master to commence
a write operation. The data packet contains the destination
address, transaction characteristics, and a distinct transac-

tion identifier. This channel efficiently conveys information
to the subordinate on the master’s desire to record data and
the precise details of the activity.
Write Data Channel: The write data channel is tasked
with transmitting the factual data from the master to the
slave for the purpose of writing it to the designated loca-
tion. This channel transmits the data along with the write
strobes (which signify the valid data bits in the transfer)
and the transaction ID. The write strobes are essential for
performing partial writes or for writing data that is less than
the bus width.
Write Response Channel: Once a write operation is
started using the write address and data channels, the
slave utilizes the write response channel to confirm the
successful completion of the write operation. The system
returns a status that indicates whether the write transaction
was successful or not, together with the transaction ID. This
allows the master to verify that the write operation was done
accurately.

Each of these channels functions autonomously, en-
abling concurrent processing of numerous transactions. This
greatly improves the data throughput and overall efficiency
of the system. The division of channels for addressing,
data transmission, and control signals in SoC designs that
use the AXI protocol reduces congestion and optimizes
performance. The AXI connection offers significant benefits
due to its capability to accommodate various degrees of
concurrency and effectively manage transactions of varying
sizes. The flexibility of AXI-based systems allows them
to be customized for many purposes, ranging from basic
control duties to intricate data-intensive activities. The AXI
connection has a split-transaction mechanism that separates
the request and response portions of a transaction. This
design reduces latency and enhances data throughput inside
the system.

4. Simulation Results
The proposed AXI interconnect is integrated with NoC

architecture, rather than the traditional bus-based NoC ar-
chitecture. The 2x2 mesh topology is considered for the
simulation and xy routing algorithm is incorporated in
the router. The mesh topology is characterized by a grid-
like structure with n rows and m columns. In a mesh
architecture, each router is linked to the neighboring router
using cables. The network’s (x, y) coordinates are used to
specify the address of the router and IP cores. In a Mesh
Topology, the detection of defects and the avoidance of
problematic nodes during packet routing in the network
are straightforward and efficient. This topology is the most
straightforward to implement compared to other topologies.
In this architecture, packets traverse a dedicated connection
and are delivered only to their intended destinations. The
simulation was carried out using Xilinx Vivado for synthe-
sizing the design and generating bitstream files for FPGA
implementation.
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A. Routing Algorithm
Routing algorithms play a crucial role in optimizing

communication inside a NoC. These methods ascertain the
precise path that a packet should follow in order to reach
its intended destination node. Several routing algorithms
have been suggested for implementation in NoC systems,
and they may be categorized based on their distinct charac-
teristics and needs. The routing algorithm may be classed
as source, distributed, or centralized based on where the
routing option is made. In a centralized algorithm, the
route is selected by the central controller. Source routing
involves the selection of a path by the source router before
transmitting a packet, while distributed routing involves the
selection of the routing path by intermediate routers. The xy
routing algorithm is chosen in this work due to adoptability
in nature and suitable for 2D mesh topologies.

The xy routing approach belongs to the category of
distributed deterministic routing algorithms. xy routing is
free from both deadlocks and livelocks. The xy routing
algorithm typically selects the shortest and predetermined
route for packet transmission. This approach is applicable
to both regular and irregular network topologies. Each
node in the mesh network is identified by its coordinates,
represented as (x, y), where x represents its horizontal
location and y represents its vertical position.

The path from the source node to the destination node
is pre-established and stays constant regardless of the
network’s condition. Under conditions of non-congestion,
the NoC network exhibits a significant level of reliability
and encounters little latency. This strategy establishes a
sequential movement of packets, first in the X-axis and then
in the Y-axis. It blocks packets from using other paths to
circumvent blocked pathways. The present position of the
router, indicated by its (x, y) coordinates, is compared to the
coordinates of the destination router to establish the route.
The data packet is first routed down the X-axis and then
along the Y-axis until it reaches its designated destination
IP core. The XY routing technique in Mesh topology allows
for just half of the available turns by restricting the other
half of turns. XY routing involves the initial movement of
a packet in the x-direction. Once the packet reaches the
desired column, it is then transported in the y-direction,
either upwards or downwards. The xy algorithm is reported
in Table I.

If the Yo f f set is positive, the xy routing strategy routes
packets to the west buffer. When the value is negative,
the packet is routed to the left, namely towards the east
buffer. If the Xo f f set is not equal to zero, the packet is
sent either upwards or downwards along the y-axis. If both
the Yo f f set and Xo f f set values are equal to zero, it signifies
that the packet has successfully arrived at its intended
destination. The route from the starting node to the target
node is consistently the most direct and stays constant. This
technique demonstrates reduced latency in situations of low
network traffic due to its static nature. Nevertheless, its

efficiency declines considerably when there is congestion
and a restricted selection of alternative routes. When faced
with a consistent traffic pattern, this NoC routing method
outperforms other algorithms. The xy routing algorithm
network experiences a much higher load in its central region
compared to the average load over the whole network. This
results in a concentration of traffic in the center, which is
often referred to as a hotspot. If there is a faulty node along
the route, the packet will get trapped in one of the switches.

B. Routing and Network Interface Improvements
1) Routing System:

• Dynamic Routing Algorithms: The complex
routing algorithms from the advanced dynamic
nature of real-time network conditions. The
algorithms chose the best path for data pack-
ets which is based on expressing congestion
minimal and they avoid hotspots. With external
dynamic XY routing, data always traverses
efficiently in a scale-out manner and latency
is minimized over diverse network loads.

• Priority-based Routing: The system imple-
ments packet forwarding with a prioritization,
where high priority data packets are given
preference over low priority ones. This will
ensure the important data is sent to where it
needs to be as fast as possible, providing more
overall network efficiency.

2) Network Interface:
• Enhanced Network Interface Controller

(NIC): The improved NIC design allows for
seamless integration with the AXI protocol,
supporting higher data rates and lower latency.
Key features include:
◦ Efficient Buffer Management: The NIC

includes advanced buffer management tech-
niques to handle data bursts and prevent
packet loss. This ensures smooth data trans-
mission even during peak loads.

◦ Adaptive Flow Control: The NIC imple-
ments adaptive flow control mechanisms
that dynamically adjust the data flow based
on network conditions, preventing conges-
tion and ensuring optimal throughput.

◦ Scalability and Flexibility: The architec-
ture is designed to scale efficiently with
increasing core counts. The flexible NIC
design supports various topologies and can
be easily reconfigured to accommodate dif-
ferent network sizes and shapes.

The Figure 6 is a schematic design of a NoC router.
Below is a concise description of the various blocks shown
in the schematic:

• Router CC (Router Crossbar Connect): This is the
core component of the router, which is responsible for
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TABLE I. XY Routing for 2D Mesh Network-on-Chip (NoC)

Algorithm: XY Routing for 2D Mesh Network-on-Chip (NoC)
1 Inputs:

- Source Node Coordinates: (X source, Y source)
- Destination Node Coordinates: (X dest, Y dest)

2 Outputs:
- Selected Output Channel

3 Procedure:

i.
Calculate the differences between the destination and source coordinates:
- X offset = X dest - X source
- Y offset = Y dest - Y source

ii. If the offsets are both zero (meaning source and destination are the same), the algorithm terminates as no routing is
needed.

iii. If the Y offset is positive, the selected output channel is North (Y+), indicating movement towards a higher
Y coordinate

iv. If the Y offset is negative, the selected output channel is South (Y-), indicating movement towards a lower
Y coordinate.

v. If the X offset is positive, after any north or south movement, the selected output channel is East (X+), indicating
movement towards a higher X coordinate.

vi. If the X offset is negative, after any north or south movement, the selected output channel is West (X-), indicating
movement towards a lower X coordinate.

Figure 6. Schematic of NoC Architecture
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directing data packets from the source to the destina-
tion. The system may include a crossbar switch that
links several input and output channels, which may
originate from the East (E), West (W), North (N),
South (S), and local (L) directions.

• Router Sink W, Router Sink S,
Router Sink N: These blocks are sink modules,
which serve as endpoints in the NoC where data
packets are received from the router. The letters ”W”,
”S”, and ”N” represent the west, south, and north
directions, respectively. Buffers may be included to
store incoming data.

• Router Source W: This module serves as a source,
primarily responsible for transmitting data packets
into the network. The connection will be oriented
towards the West, in accordance with the naming
tradition.

• axis m const L, axis m const VI 0,
axis m const N, and axis m const S: These
blocks might potentially function as data generators
or placeholders for data streams, serving as the
sources of traffic for the router. The Router CC
may receive either constant or variable data for the
purpose of routing it to various sinks.

• dip [7:0], send i, end i: These signals are in-
puts and controls for the Router Source W module.
”dip” likely represents the data input, ”send i” might
be a signal to initiate data transmission, and ”end i”
may indicate the completion of data transmission.

• xconstant E: This component serves as a constant
generator that produces a consistent value. It is used
for controlling or monitoring purposes inside the
NoC. The constant value is oriented eastward.

• xlconcat 0: This block is a concatenation module
that merges numerous input signals into a single
broader output signal.

The signals axis s, clock, led o, and reset n are often
used as interface signals. ”axis s” refers to the AXIS
(AXI Stream) interface. ”clock” represents the system clock
signal. ”led o” is an output signal used to drive an LED
for debugging or status signaling. Lastly, ”reset n” is an
active-low reset signal. The figure 6 also illustrates the
interconnections among these blocks, which symbolize the
transmission of data and control signals inside the router.
The connections to the East (E m), West (W m), North
(N m), South (S m), and Local (L m) with the RouterCC
block describe the possible routes for data transmission
inside the network. The nomenclature used for these blocks
and signals implies the presence of a standardized interface,
most likely AXIS, which is widely used in FPGA and ASIC
architecture for the purpose of streaming data.

The Figure 7 depicts a schematic representation of
an AXI interconnect topology that connects with a NoC.
Below is a breakdown of the many elements that are
depicted: AXIS DMA: The AXIS DMA block is a
controller that represents an AXI Stream Direct Memory
Access (DMA). DMA controllers facilitate the autonomous
movement of data between memory and peripherals,
eliminating the need for CPU involvement.
ps7 0 axi periph: The block labeled
”ps7 0 axi periph” indicates an AXI peripheral
that is linked to the processing system. The term ”ps7 0”
suggests that it is a component of a Xilinx Zynq-7000
series SoC, where ”ps7” refers to the seventh version of
the Processing System.
s00 couplers: The s00 couplers module enables the
linkage between the AXI peripheral and the AXI
interconnect. It functions as an intermediary, ensuring
proper communication between the peripheral and the AXI
Interconnect.
auto pc (AXI Protocol Converter): The auto pc is
a component that handles the conversion of protocols,
potentially across multiple AXI interfaces (such as from
AXI3 to AXI4). This guarantees interoperability across IP
blocks that may be using disparate versions of the AXI
protocol.
M AXI, S AXI: The M AXI and S AXI interfaces
refer to the master and slave AXI interfaces, respectively.
The ”M AXI” interface serves as the primary interface
responsible for initiating read and write transactions.
On the other hand, the ”S AXI” interface functions as
the secondary interface that replies to these transactions
launched by the master.
AxCxK, AxRESxT: The control signals AxCxK and
AxRESxT are part of the AXI protocol.

• ”AxCxK” is an abbreviation for AXI Clock, which
refers to the clock signal used for the AXI interface.

• ”AxRESxT” is most likely an abbreviation for AXI
Reset, which serves as the reset signal for the AXI
interface.

ack, aresetn: The control signals often seen in digital
circuits are known as ”ack” and ”aresetn”.

• ”ack” is often used as an acknowledgement signal
during the process of handshaking between different
components.

• The ”aresetn” signal is a kind of reset signal that is
active-low and asynchronous. It is used to reset the
interface or component.

AXI Interconnect: The AXI Interconnect is a pivotal
component that facilitates communication between various
masters and slaves inside the system. It manages the process
of directing transactions from masters to the right slaves.

The Figure 8 is a waveform derived from a simulation
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Figure 7. AXI Interconnect with Zynq SoC

Figure 8. Simulation Results of Proposed AXI Interconnect based NoC Architecture
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of a NoC architecture using AXI interconnect. An analysis
of the fundamental components included in the waveform
described as below:

• dma dout: This indicates the digital output signal
originating from the DMA block. The signal seems
to be a binary signal with two bits, where each bit
alternates at distinct time intervals throughout the
simulation.

• slot 0: dma s Interface: This interface facilitates the
DMA transaction specifically for slot 0. The signal
comprises:
◦ TVALID: Indicates that the master is perform-

ing a legitimate transfer.
◦ TREADY: Indicates the slave’s readiness to

accept a transfer.
◦ TLAST: Indicates the last transfer inside a

transaction.
◦ TDATA: The data that is being sent.

• slot 2: Conn1 Interface and slot 1: S AXI Inter-
face: The interface for slot 2 is Conn1, whereas the
interface for slot 1 is S AXI. These interfaces are
supplementary to the AXI connection. The presence
of the same signals (TVALID, TREADY, TLAST,
TDATA) indicates the occurrence of many simulta-
neous contacts with the interconnect.

In Figure 8, data sent when both TVALID and TREADY
signals are in a high state. TDATA displays the specific
data that is being sent throughout these transactions. The
hexadecimal value denotes the information payload. A high
value of TLAST signals the completion of a series of data
transfers. The simulation results indicate that the DMA is
effectively starting transactions with the interface, and data
is being transferred and received as expected without any
apparent faults or conflicts seen in the waveform.

Figure 9. Area Utilization

The Table II presents a summary of the resource use of
various connectivity technologies, with a special emphasis
on the proportion of slices used in Zynq 7000 SoC architec-
ture. The first technique mentioned, PTP-BI [17], refers to
Point-to-Point Bidirectional Interconnect, as cited in source

Figure 10. Power Utilization

TABLE II. Comparison of Resource Utilization

Method
Resource Utilization

(Slices) in %

PTP-BI [17] 50.58

AXI4-BBI [17] 34.48

Proposed AXI Interconnect 14

[17]. It represents 50.58% of the slices. In this particular
architecture, direct connections are made between two ends,
enabling data flow in both directions. The significant portion
of the slice consumption suggests a possibly extended
connection configuration that necessitates a huge amount
of logic resources. PTP-BI is followed by AXI4-BBI [17],
which refers to an AXI version 4 Bus-Based Interconnect,
also mentioned in the same source [17]. This connection
utilizes a smaller percentage of slices, 34.48%. The AXI4
standard is renowned for its exceptional performance and
is often used in system-on-chip architectures that operate
at high frequencies. Based on the statistics, it can be
inferred that a bus-based connection is more efficient in
terms of resource use when compared to the point-to-point
bidirectional architecture. The Proposed AXI interconnect-
based design demonstrates resource efficiency by employing
14% of the available slices. This signifies a substantial
decrease in the use of resources as compared to the PTP-
BI and AXI4-BBI approaches. Latency and throughput are
crucial performance measures for assessing NoC designs.
Comprehending and computing these metrics is essential
for designers to guarantee that the NoC fulfills the required
criteria for effective data transmission inside a SoC. Given
that the simulation ended after 3497 cycles and 3000 cycles
measured, the approximate latency would be 497 cycles.
Each clock cycle required 2ns time period, so latency would
be 994ns or 0.99 µs.

C. Mechanisms Leading to Reduced Latency and Improved
Throughput
• Optimized Data Paths: The dynamic routing algo-

rithms continuously optimize data paths, reducing the
number of hops and minimizing transmission delays.
This results in significantly lower latency for data
packets.

• Reduced Contention: Priority-based routing and
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TABLE III. Latency and Throughput comparison results

Method
Latency

(µs)

Throughput

(flits per cycle)

PTP-BI [17] 33.9 -

AXI4-BBI [17] 56.29 -

NoC-BI [17] 5.87 0.38

Proposed AXI

Interconnect
0.99 4.363

adaptive flow control reduce contention and packet
collisions, ensuring smoother data flow and higher
throughput.

• High-performance AXI Integration: The integra-
tion of the AXI interface leverages its high bandwidth
and low latency characteristics, further enhancing the
overall performance of the NoC architecture.

• Efficient Resource Utilization: Advanced buffer
management and adaptive flow control mechanisms
ensure efficient utilization of network resources, pre-
venting bottlenecks and maximizing throughput.

Latency in a Network-on-Chip (NoC) refers to the time
it takes for a data packet to get from the starting node to
the ending node. It encompasses the duration required for
routing, the processing that occurs at intermediate switches,
and any potential delays in queuing. The latency may
be determined by measuring the number of cycles (clock
cycles), which is dependent on the clock frequency of the
system. Throughput in a NoC refers to the rate at which data
may be sent between nodes within a certain time frame.
The typical unit of measurement is bits per second (bps)
or transactions per cycle. In this simulation, the simulation
ended after 3497 cycles. 15257 flits sent, and also 15257
flits received by the end of the simulation. The formula for
throughput (Th) would then be:

Th =
Number o f f lits transmitted or received

Total number o f clock cycles
(1)

The proposed NoC has a throughput of roughly 4.363
flits per cycle, as shown by the given statistics. On average,
about 4.363 flits are successfully conveyed via the network
each cycle. The Visual representation of Comparison Re-
sults is depicted in Figure 11.

Table III provides a comparative study of several con-
nectivity techniques in network architectures, evaluated
based on their latency and throughput measurements. La-

Figure 11. Visual representation of Comparison Results

tency is defined in microseconds (µs), whereas throughput
is evaluated by the number of flits. The first approach
is the PTP-BI [17], with a recorded latency of 33.9 µs.
The AXI4-BBI [17] approach has a much greater delay
of 56.29 µs. The NoC-BI (Network-on-Chip Bidirectional
Interconnect) developed in [17] demonstrates a significant
increase in performance, achieving a latency of just 5.87 µs
and a throughput of 0.38 flits per cycle. The Proposed AXI
connection, which demonstrates outstanding performance
metrics: a minimal latency of just 0.99 µs, coupled with
a high throughput of 4.363 flits per cycle. These numerical
metrics demonstrate a connection that has been specifically
designed to maximize both speed and efficiency. This archi-
tecture facilitates efficient data transfer with low latency and
allows a huge volume of data to be processed, which is very
beneficial in high-performance computing applications that
need fast data interchange and decreased response times.

5. Conclusions
The performance improvements for both latency and

throughput using AXI interconnect-based NoCs architecture
where it achieves a latency of 0.99 µs with a bandwidth
of 4.363 flits per cycle, performing better than its three
counterparts namely NoC-BI, PTP-BI and AXIBBI tech-
niques These improvements mean the architecture is well-
suited for high-performance computing and provides an
efficient means of moving data around, as well offering
effective scaling potential towards future SoC designs with
greater core counts. Dynamic routing algorithms communi-
cate directly with high-speed network interface controllers
and streamline resource usage, minimizing power use while
enhancing system performance. The research aimed to
assess the performance of 2x2 mesh topology. Although
this topology covers smaller SoC designs, much bigger
and complex NoC systems require other topologies such
as Torus, butterfly or tree to enhance data transmission
performance scalability. Potential avenues for future in-
vestigation include larger network topologies, as well as
adaptive machine learning-based routing and further power
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efficiency optimizations to more broadly enable the deploy-
ment of new technologies like quantum computing along
with its potential networking implications in IoTs through
autonomous systems on AI applications running even at a
very large scale. The results demonstrate that this architec-
ture can offer an interconnect solution at scale, efficiency
and high-performance across the several technology corners
of modern SoC implementations.
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