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Abstract: The depletion of the ozone layer, a significant environmental concern, is primarily caused by human activities, particularly
the emission of ozone-depleting chemicals like Chloro-Fluoro Carbons. Integrating machine learning (ML) and game theory methods
presents a novel and promising approach to better anticipate and address this issue. Game theory offers a framework to model
the interactions among various stakeholders, such as nations and industries, influencing the dynamics of ozone layer depletion,
while large-scale dataset analysis through Time Series Forecasting and correlation enables more accurate predictions and informed
decision-making. This study aims to enhance the accuracy of ozone layer depletion predictions by combining ARIMA time series
forecasting, correlation with the Air Quality Index (AQI), and strategic decision-making through game theory. By incorporating the
strategic interactions of various entities contributing to ozone layer depletion, the proposed interdisciplinary model seeks to provide
realistic and comprehensive solutions for environmental sustainability and ozone protection. The methodology integrates ARIMA
time series forecasting and correlation analysis to predict ozone depletion, with game theory modeling stakeholder interactions. This
approach is designed to optimize policy-making and technological solutions to mitigate ozone depletion. The results show that ARIMA
predicts future values with a Root Mean Squared Error of 5.04, while the game theory model generates tailored reports suggesting
protocols for users. Additionally, correlation analysis reveals an 82% accuracy in relating AQI to ozone depletion using Gradient
Boosting. This interdisciplinary approach demonstrates promising prediction accuracy and offers insights for improved decision-making
in environmental sustainability. The findings underscore the importance of future research, international collaboration, and policymaking
to protect the ozone layer and ensure the planet’s environmental health.
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1. Introduction
The ozone layer’s thinning serves as a stark reminder

of the effects of human activity on our planet amid an
increasingly dire environmental situation. The stratosphere,
a part of the Earth’s atmosphere that is situated between
10 and 50 kilometers above the surface, is where ozone
depletion mostly happens. The main culprit in this drama
is chemical emissions, primarily from chlorofluorocarbons
(CFCs), which eat away at the ozone layer that shields Earth
from harm.

As the need to address this pressing issue grows, the
use of cutting-edge technologies becomes essential. The
primary objective of this study is to enhance the accuracy
of ozone layer depletion predictions by integrating ARIMA
time series forecasting, Air Quality Index correlation, and
strategic decision-making through Game Theory, thereby

offering a novel interdisciplinary model that incorporates
the interactions between key stakeholders to inform more
effective environmental policies and technological solutions.
Situated in the Earth’s stratosphere, the ozone layer is a
thin layer of triatomic oxygen molecules that is essential for
protecting life on Earth from damaging ultraviolet radiation.
However, human activity has launched a relentless attack on
this crucial layer, especially through the careless release of
substances that deplete the ozone layer. The repercussions
are severe, encompassing everything from a rise in skin
cancer cases and cataracts in the eyes to extensive ecological
disturbances.

Figure 1 showcases the ozone hole expansion from
1979-2011.The depletion of the ozone layer poses severe
environmental and health risks. As the ozone layer thins,
more of the Sun’s ultraviolet (UV) radiation reaches the
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Earth’s surface. This increased exposure to UV rays can lead
to higher rates of skin cancer, cataracts, and other health
issues. UVB radiation, in particular, has been linked to DNA
damage in living organisms, which can result in various
types of cancer and impair immune system functions.

Figure 1. Ozone layer before and after the Montreal Protocol, cited
from [1]

In addition to the human health impacts, ozone depletion
also affects ecosystems. Marine life, especially plankton
and fish larvae, is particularly vulnerable to increased UV
radiation. Plankton forms the foundation of marine food
chains, and its reduction could have widespread conse-
quences for ocean biodiversity. On land, UV radiation can
inhibit photosynthesis in plants, potentially reducing crop
yields and harming forests.

An inventive, multidisciplinary approach is necessary to
address the intricate web of interactions and choices that
lead to ozone layer depletion. The application of machine
learning and game theory to the problem of ozone layer
depletion holds great potential for revolutionizing our un-
derstanding of and capacity for responding to environmental
issues. This multidisciplinary approach gives policymakers
and environmentalists powerful tools for developing fo-
cused and successful strategies, while also deepening our
understanding of the complex dance of factors contributing
to ozone layer depletion. The following sections contain
related works, followed by the methodology proposed, the
results of the experiments, and finally, we conclude with
discussion and future works.

2. RelatedWorks
Many investigations on the urgency, criticality, and

scientific basis of the dilemma confronting mankind have
been carried out by scholars in an effort to assess its

seriousness. Numerous facets of the dilemma have been
examined in these studies, from dangers to global health
and climate change to biodiversity loss and environmental
degradation. These studies’ summaries provide us with
a thorough understanding of the problems we face and
emphasize how vital it is to find solutions. In [2],the
authors examine ozone trends in relation to altitude, season,
and latitude, comparing observed ozone data with different
models. Total column ozone levels in the past and the future
are estimated using two- and three-dimensional (2D and
3D) models. The authors in [3] classify the applications
of game theory in various safety fields and suggest future
research directions, aiding in the identification of trends
and possible areas for growth. This study offers real-world
game theory applications in several safety-related fields,
including electrical, coal mine, construction, food, and
traffic safety. In [4], the authors suggest a game-theoretic
approach to address security and data trustworthiness (DT)
issues in Wireless Sensor Networks (WSNs) for Internet
of Things (IoT) applications, specifically using a repeated
game. The main goals are detecting nodes experiencing
hardware (HW) failures and thwarting selective forwarding
(SF) attacks. Similarly, in [5], the authors propose a game-
theoretic approach to tackle security and DT issues in
WSNs. In [6], the authors formalize the links between
game theory and machine learning, centering on the issue
of drawing conclusions from prior observations, a major
challenge in both domains. They incorporate algorithmic
game theory ideas into the proposed methodology, modeling
selfinterested agent behavior in the context of blockchain
mining. The paper in [7] highlights the popular deep learn-
ing architecture known as GANs as a solution to difficult
computer vision problems, illustrating how game theory is
fundamental to the development of GANs, as GAN training
is a two-player zero-sum game. In [8], the Borda scoring
algorithm based on game theory was utilized to rank the
GWQ conditioning factors based on sample points after cre-
ating the decision matrix for the ideal MCDM. The study in
[9], based on an actual dataset of 982 construction projects,
demonstrated that learning from prior bid sequences benefits
contractors in the long run. Specifically, findings indicate
that contractors can nearly double their chances of obtaining
more projects by incorporating learning algorithms into
the bidding process, increasing average profit by as much
as 89.44 The authors in [10] utilize stochastic learning
techniques to determine the equilibrium space of a molecule
corresponding to stable or metastable conditions. According
to [11], some of the causes of ozone depletion include
chlorofluorocarbons (CFCs), uncontrolled rocket launches,
global warming, and nitrogenous compounds such as NO,
N2O, and NO2. In [12], the study examines the relation-
ship between ozone layer alterations and the incidence
of skin cancer, focusing on the notion of ”environmental
effective UVdose.” Utilizing Norway’s varied topography,
the research evaluates how different ozone levels affect
skin cancer, ensuring robust data through Norway’s well-
established cancer registry. The study in [13] advances
our theoretical understanding of game theory in sustainable
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development education. Research in [14] aims to close a gap
in prior research by establishing interdisciplinary research
and teaching in the field of humanistic design, connecting
design students with their living environment. The course
is expected to assist students in developing multifaceted
thinking and improve their capacity to incorporate mean-
ingful game design. In [15], the quick development of
Environmental Decision Support Systems (EDSS) is rec-
ognized, anticipating improvements in data sets, computing
techniques, and spatial databases. Techniques for spatial vi-
sualization are acknowledged for enhancing decision-maker
performance in terms of problem-solving speed, accuracy,
and capability. The authors in [16] outline qualities of
effective Decision Support Tools (DSTs) that can improve
decision quality, emphasizing goal clarification, alternative
identification, information gathering, and outcome tracking.
Following extensive background research on the issue, the
current study focuses on precise prediction and the creation
of unified techniques for various use cases. This indicates
that the goal of the study is to increase the precision
of forecasts given in a specific context while ensuring
uniformity and efficiency in decision-making processes.In
[17] explore the application of machine learning models
to predict the recovery of the ozone layer under various
policy scenarios. Their research emphasizes the importance
of integrating technological approaches with environmental
policy frameworks to enhance predictive accuracy and guide
decision-making processes. In [18] provide a comprehen-
sive review of game theory applications in environmental
management, highlighting the strategic interactions among
stakeholders in managing environmental issues, including
ozone depletion. Their work underscores the potential of
game theory to inform collaborative approaches and opti-
mize stakeholder engagement in environmental strategies. In
a more technical contribution,in [19] utilize deep learning
techniques for time series analysis to predict future trends
in ozone depletion. Their study presents new methodologies
that improve the predictive capabilities regarding ozone
layer changes, demonstrating the effectiveness of advanced
machine learning approaches in environmental research.
Zhang and Wang in [20] propose a synergistic framework
that combines machine learning and game theory to address
the interlinkages between ozone depletion and air quality.
This innovative approach provides insights into how these
two domains can work together to formulate more effective
environmental policies.In [21] focus on enhancing environ-
mental strategies through the integration of artificial intel-
ligence and game theory, presenting a case study on ozone
layer protection. Their research emphasizes the significance
of stakeholder interactions and the necessity for collabora-
tive strategies in tackling environmental challenges.In [22]
assess the effectiveness of various policy measures on ozone
layer depletion using a game theoretic approach. Their study
models stakeholder behavior to evaluate the impact of dif-
ferent policy interventions, providing valuable insights for
policymakers aiming to mitigate ozone depletion effectively.
The authors in [23] examine the application of machine
learning techniques in forecasting ozone layer changes and

associated health impacts. Their study emphasizes the need
for robust predictive models that can incorporate various
environmental variables and stakeholder actions to provide
actionable insights for policymakers. In [24], the study in-
vestigates the role of game theory in developing cooperative
strategies for ozone layer protection, illustrating how strate-
gic interactions among nations can be modeled to facilitate
international agreements and collective actions necessary
for effective environmental governance. Nguyen and Tran in
[25] utilize a hybrid approach combining machine learning
and game theory to analyze the efficacy of policy measures
aimed at mitigating ozone depletion. Their findings suggest
that integrated frameworks can optimize decision-making
processes and enhance the effectiveness of environmental
policies. In [26] present a comprehensive study on the socio-
economic implications of ozone layer depletion, employing
game theoretical models to evaluate the trade-offs between
economic growth and environmental sustainability, high-
lighting the importance of considering economic factors in
environmental policy formulation. Finally, the authors in
[27] explore the impact of climate change on ozone layer
recovery through machine learning techniques, offering a
predictive model that assesses the long-term effects of
climate policies on ozone layer health, providing valuable
insights for future environmental strategies.

The research on ozone depletion and environmental
issues has predominantly focused on identifying trends,
applying game theory to various safety fields, and improv-
ing predictive models. However, gaps remain in integrating
these models with decision support systems (DSS) and
in enhancing the accuracy of predictions by considering
multiple stakeholders and dynamic policy interventions. Our
paper addresses these gaps by combining game theory,
machine learning, and DSS to provide a unified approach
for more precise and collaborative environmental decision-
making, particularly in the context of ozone layer protec-
tion. Additionally, we bridge the gap between technical
advancements and policy frameworks, proposing integrated
strategies for optimizing stakeholder engagement and fore-
casting future environmental trends

3. ProposedMethodology
The methodology for this study is structured to integrate

time series forecasting with game theory to examine the
relationship between ozone depletion and air quality in the
Southern Hemisphere as seen in Figure 2.

The approach begins with the collection and merging of
ozone hole data and air quality data, establishing a founda-
tion for correlation analysis. Next, time series forecasting
models, specifically ARIMA and SARIMA, are employed
to predict future ozone hole trends. These predictions are
then incorporated into a game theory framework, where
government agencies and industries are modeled as strategic
players with competing and cooperative strategies.
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Figure 2. . Proposed Methodology

Through the use of Nash Equilibrium, Pareto efficiency,
and Stackelberg leadership, the interactions between these
stakeholders are explored, with the goal of understanding
how different regulatory and technological strategies impact
both the environment and the economy. The methodology
ensures a dynamic feedback loop, where time series predic-
tions inform strategic decision-making, ultimately providing
insights into sustainable policy and industry practices.

A. Data Preparation
The data preparation phase of this study was crucial

to integrate ozone depletion data with air quality data for
the Southern Hemisphere. Ozone hole data, sourced from
NASA’s Ozone Hole Watch, included records of the max-
imum daily ozone hole size and minimum daily Southern
Hemisphere ozone levels [28]. Air quality data, collected
from the World Air Quality Historical Database, focused on
Bringelly, a suburb in Sydney’s southwest, Australia [29].
Both datasets were filtered to cover the same time frame,
ranging from 2013 to 2024, ensuring temporal alignment.
Pre-processing involved cleaning and merging these datasets

to create a unified structure. Missing values were handled to
maintain consistency and accuracy, and time series data was
formatted for forecasting analysis. The combined dataset
served as the foundation for examining correlations and im-
plementing game theory strategies to explore the interplay
between ozone depletion and air quality.

B. Exploratory Data Analysis
The authors performed exploratory data analysis on the

data to understand the underlying behaviors in the patterns
involved. The consumption of ozone-depleting substances
has reduced significantly over the past decade, with the peak
being in the 1980s, as seen in Figure 3 and Figure 4.

Figure 3. Ozone Depleting Substance Emission Over Time: A
Downward Slope

The insights acquired from trend analysis for ozonede-
pleting substance emissions show that the mean emission is
465,462.96 tons. The year with the highest average emis-
sions was 1988, with 812,500.00 tons of substances emitted,
while the lowest average was in 2014, with 242,500.00
tons emitted. Over the years, the entity with the highest
consumption of Methyl Chloroform (TCA) and Methyl
Bromide (MB) was the United States, while Asia had the
highest consumption of Hydrochlorofluorocarbons (HCFCs)
and Halons. For Carbon Tetrachloride (CTC) and Chlo-
rofluorocarbons (CFCs), the highest consumers were China
and Europe, respectively. The overall lowest consumption
of substances TCA, MB, HCFCs, CTC, Halons, and CFCs
was noted in Afghanistan, Ukraine, Niue, the United States,
Africa, and Vatican City, respectively. The correlation met-
rics highly suggest that over the years, the consumption
of Methyl Chloroform and Chlorofluorocarbons (CFCs) are
highly correlated.
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Figure 4. Emission Peaks in the 1980s

Parties involved in environmental agreements from
1971-2015, when consolidated, provide insights into the
global landscape of agreements, participation over time,
and their relationships. The agreement with the highest
number of parties was the World Heritage Convention,
with 5,321 parties, while the one with the lowest was
the Rotterdam Convention, with 1,691 parties. A steep
increase in participation was observed in the World Heritage
Convention, which had 30,374 parties, while the steepest
decrease was with the Kyoto Protocol, which saw a decrease
of 2,832 parties.

Figure 5 visually represents projected changes over time
since 1960, quantifying ozone depletion and highlighting
critical periods where significant changes occurred.

Figure 5. Stratospheric Ozone Concentration Projections

The mean, maximum, and minimum ozone concentra-
tion occurred at -16.97 units, 37.40 units (in 2100), and
-123.20 units (in 2005), respectively, plotted region-wise
(Antarctic, Arctic, and Global as seen in Figure 6.) for a
detailed understanding.Global insights indicate that the year
with maximum change was 2020.

Figure 6. Change in Rate of Ozone Concentration

Figure 7 is valuable for understanding the distribution of
CFC emissions globally. When integrated into game-theory
models, it enhances the analysis and strategic interactions
among stakeholders.

Figure 7. Geographic Plot for CFC Consumption

Figure 8 displays trends in air quality pollutants
from 2017 to 2023, highlighting key pollutants such as
PM2.5,PM10, O3, NO2, SO2, and CO. This figure is
important for understanding the temporal changes in pol-
lution levels during this period, offering insights into the
effectiveness of environmental regulations and industrial
practices.

Finally, Figure 9 depicts the ozone hole area and mini-
mum ozone levels over time from 1979 to 2023, illustrating
the temporal changes in the size of the ozone hole and
the corresponding lowest ozone concentrations, highlighting
key periods of ozone depletion and potential signs of
recovery following international environmental policies like
the Montreal Protocol.
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Figure 8. Trends in Air Quality Pollutants over Time (2017-2023)

Figure 9. Ozone Hole Area and Minimum Ozone over Time (1979-
2023)

C. Time Series Forecasting for Ozone Layer Depletion and
Air Quality Index Forecasting
To predict future trends in ozone depletion, we em-

ployed two types of time series models: ARIMA (Au-
toRegressive Integrated Moving Average) and SARIMA
(Seasonal ARIMA). These models are particularly suited
for handling time-dependent data, accounting for trends,
seasonality, and autocorrelations inherent in environmental
datasets such as ozone hole data. Below is a detailed
explanation of how these models were selected, calibrated,
and validated, with mathematical details.

1) ARIMA Model Selection and Calibration
ARIMA is a popular statistical method for forecast-
ing time series data, defined by three parameters: p,
d, and q, which represent the autoregressive order,
the degree of differencing, and the moving average
order, respectively. The general form of the ARIMA
model can be written as:

Yt = c +
p∑

i=1

ϕiYt−i +

q∑
j=1

θ jϵt− j + ϵt (1)

where Yt is the value at time t, c is a constant, ϕi
and θ j are the AR and MA parameters, ϵt is the error
term, and p, d, q are the model’s order parameters.
• p, d, q values were determined through ACF

(AutoCorrelation Function) and PACF (Partial
AutoCorrelation Function) plots to identify lag
correlations and differencing requirements.

• The model was then fitted to the ozone
hole data to make forecasts. Through cross-
validation, the best-fit ARIMA model was se-
lected for ozone hole trend predictions.

2) SARIMA Model Selection and Calibration
Given the strong seasonal patterns in ozone deple-
tion, a SARIMA (Seasonal ARIMA) model was
employed to better capture these periodic fluctua-
tions. SARIMA extends the basic ARIMA model
by incorporating seasonal differencing and seasonal
autoregressive/moving average terms. The SARIMA
model is expressed as:

(1 −
p∑

i=1

ϕiLi)(1 −
P∑

j=1

Φ jL js)(1 − L)dyt =

(1 +
q∑

k=1

θkLk)(1 +
Q∑

m=1

ΘmLms)ϵt

(2)

where L is the lag operator, ϕ1, ϕ2, . . . , ϕp and
Φ1,Φ2, . . . ,ΦP are the autoregressive parameters for
non-seasonal and seasonal components, θ1, θ2, . . . , θq
and Θ1,Θ2, . . . ,ΘQ are the moving average parame-
ters for non-seasonal and seasonal components, d is
the degree of differencing, s is the seasonal period,
yt is the observed value at time t, and ϵt is the error
term at time t.
• The seasonal parameters P, d,Q, s were iden-

tified using seasonal autocorrelation plots to
detect repetitive patterns in the ozone depletion
data. The seasonal terms helped the model
adjust for recurring annual fluctuations in the
ozone hole size, making SARIMA highly suit-
able for this application

• The model was then calibrated by fitting it to
historical data and performing forecasts based
on seasonal and trend patterns

D. Modeling Approach and Implementation
In the context of this research, the ARIMA and

SARIMA models were applied to forecast the future be-
havior of the ozone hole area using the following steps:

1) Preprocessing: The raw ozone hole dataset was
transformed to make it stationary through differenc-
ing (removing trends), and ACF/PACF plots were
used to determine the values of p, d, and q.

2) Model Training: The ARIMA and SARIMA models
were trained using historical ozone hole size data,
with a focus on capturing both short-term variations
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(using ARIMA) and long-term seasonal patterns
(using SARIMA).

3) Validation: The models were validated by testing
on holdout data, comparing the predicted ozone hole
sizes with the actual observed values.

4) Forecasting: Once the models were fine-tuned, they
were used to forecast future trends in ozone depletion
over a defined time period.

E. Game Theory Integration
Game theory provides a structured framework for an-

alyzing strategic interactions between two key players in-
volved in the ozone depletion dilemma: government agen-
cies and industries. The choices made by each player not
only affect their respective outcomes but also have broader
implications for environmental health and public welfare.
For the purposes of this study, we focus on this specific
scenario involving government agencies and industries;
however, it’s important to acknowledge that this framework
can be adapted to include other stakeholders, such as
environmental NGOs or the public, in future analyses.

1) Player 1: Government Agencies
a) Minimal Regulation: Government agencies

may choose to implement basic regulations
with limited enforcement. This strategy aims
to minimize administrative costs while allow-
ing some level of ozone depletion to continue,
prioritizing short-term economic gains over
long-term environmental health.

b) Strict Regulation: Alternatively, government
agencies can opt for strict regulations on pollu-
tants that deplete the ozone layer. This strategy
seeks to significantly reduce emissions, pro-
mote environmental recovery, and ultimately
improve air quality. The long-term benefits
of such measures may outweigh the imme-
diate economic impacts, fostering a healthier
ecosystem.

2) Player 2: Industries
a) Business as Usual: Industries may decide

to continue current practices without making
significant changes. This strategy focuses on
maximizing short-term profits but often results
in increased emissions and exacerbates ozone
depletion.

b) Adoption of Green Technologies: In con-
trast, industries may invest in and imple-
ment cleaner technologies to reduce emissions
of ozone-depleting substances. This strategy
aligns with long-term sustainability goals and
can lead to benefits from regulatory support
and consumer preferences for eco-friendly
products.

1) Nash Equilibrium
In game theory, a Nash equilibrium occurs when both

players select strategies such that neither would benefit

from unilaterally changing their decision. The following
scenarios illustrate potential Nash equilibria:

1) Scenario 1: (Minimal Regulation, Business as
Usual) Both government agencies and industries
maintain the status quo, resulting in ongoing ozone
depletion and deteriorating air quality. While this is
a stable outcome given their choices, it is ultimately
detrimental to environmental health.

2) Scenario 2: (Strict Regulation, Adoption of Green
Technologies) In this equilibrium, both players adopt
environmentally conscious strategies. Government
agencies enforce strict regulations, prompting indus-
tries to invest in green technologies. This leads to
ozone layer recovery and improved air quality, rep-
resenting a mutually beneficial outcome where both
players align toward environmental sustainability.

The concept of Nash Equilibrium extends beyond just these
two players and can be applied to international negotiations,
as nations must decide how much effort to invest in reducing
emissions. In this broader context, the Nash Equilibrium
describes a situation in which no nation can unilaterally
change its approach to emissions reduction without consid-
ering the strategies of others. Understanding this concept
can guide policymakers in crafting strategies that are robust
against the actions of other stakeholders.

Algorithm 1 Nash Equilibrium

1: Input: Set of players P = {p1, p2, . . . , pn}; Set of
strategies for each player S = {S 1, S 2, . . . , S n}

2: Output: Nash equilibrium strategies
3: Initialize equilibriumFound ← f alse
4: while not equilibriumFound do
5: for each player pi ∈ P do
6: Calculate the payoff for each strategy S i ∈ S
7: for each player pi ∈ P do
8: if pi has a strategy S i that gives a higher

payoff than their current strategy then
9: Update pi’s strategy to S i

10: end if
11: end for
12: end for
13: if all players have strategies giving them maximum

payoff then
14: set equilibriumFound ← true
15: end if
16: end while
17: return strategies for each player at equilibrium

2) Pareto Efficiency
This study also examines Pareto-efficient outcomes,

where an improvement in one player’s strategy does not
harm the other player’s outcome. For instance, if govern-
ment agencies implement stricter regulations that lead to
better environmental outcomes without adversely affecting
industry profits (e.g., through subsidies or incentives for
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green technologies), both players can benefit. Achieving
Pareto efficiency signifies a win-win situation, allowing both
players to enhance their respective outcomes.

Algorithm 2 Pareto Efficiency

1: Input: Decision variables: xi for each player i; Utility
functions: Ui(x1, x2, . . . , xn) for each player i; Feasible
outcome space: X

2: Output: Pareto optimal solutions x∗
3: Define Decision Variables: Let xi represent the decision

variable for each player i in a strategic interaction.
4: Formulate Utility Functions: Define the utility function

Ui(x1, x2, . . . , xn) for each player i.
5: Identify Feasible Outcome Space: Define the feasible

outcome space X as the set of all possible combinations
of decision variables that satisfy constraints.

6: Find Pareto Optimal Solutions:
7: for each solution x∗ in the feasible outcome space X

do
8: Evaluate the utility Ui(x∗) for each player i.
9: if there exists another feasible solution x′ such that

then
10: Ui(x′) ≥ Ui(x∗) for all players i, and U j(x′) >

U j(x∗) for at least one player j
11: end if
12: if no such solution x′ exists then
13: x∗ is a Pareto optimal solution.
14: end if
15: end for
16: return the set of Pareto optimal solutions x

3) Stackelberg Leadership
The Stackelberg model is utilized to simulate situa-

tions where one player—government agencies—assumes
a leadership role by imposing regulations. The other
player—industries—reacts by adjusting their strategies in
response. This dynamic underscores the significance of
policymakers in guiding industries toward sustainable prac-
tices. For example, when government agencies enforce
strict regulations, industries may be compelled to adopt
greener technologies, recognizing the long-term benefits of
compliance and sustainability.

F. Game Theory Protocol Integration
In addition to modeling the strategic interactions, we

developed a program to generate custom reports based on
stakeholder data requirements. Whenever a user requests
a report, the program dynamically creates it by calling
predefined functions. Furthermore, the program includes
details about suggested protocols related to ozone protection
based on entered keywords. These protocols include:

• The Vienna Convention for the Protection of the
Ozone Layer (1985): A framework agreement for
international cooperation to protect the ozone layer.

Algorithm 3 Stackelberg Leadership

1: Input: Players: Leader and followers; Strategies: Strat-
egy sets for each player; Payoff Functions: Payoff
functions representing each player’s utility given their
chosen strategies; Leader’s Commitment: Strategy cho-
sen by the leader before followers make their decisions

2: Output: Optimal Strategy for the Leader
3: Define Leader and Followers: Designate one player as

the leader and the rest as followers.
4: Leader Commits to Strategy: Specify the leader’s com-

mitment by choosing a strategy sL.
5: for each follower i do
6: Observe the leader’s chosen strategy sL.
7: Choose their own strategy si to maximize their

payoff given sL.
8: end for
9: Leader Anticipates Followers’ Responses: Anticipate

how followers will respond to the leader’s chosen
strategy sL.

10: Determine Optimal Strategy for the Leader: Evaluate
the outcomes to determine the effectiveness of the
leader’s strategy in influencing follower behavior.

11: return the leader’s chosen strategy sL that maximizes
the leader’s payoff given the anticipated responses of
the followers.

• Montreal Protocol (1987): A global agreement
aimed at phasing out ozone-depleting substances
(ODS) like chlorofluorocarbons (CFCs) and halons.

• The Copenhagen Amendments (1992): Strength-
ening commitments by enhancing control measures
and accelerating phase-out schedules in response to
evolving scientific understanding.

• The Beijing Amendment (1999): Focused on phas-
ing out hydrochlorofluorocarbons (HCFCs), which
are both ODS and potent greenhouse gases.

• The Kigali Amendment (2016): Aims to reduce the
consumption of hydrofluorocarbons (HFCs), potent
greenhouse gases that are alternatives to ODS.

Table I contains the protocols mentioned above by the
year.

Through game theory modeling and protocol integration,
we gain valuable insights into the interactions between
government agencies and industries in addressing ozone
depletion. The analysis of strategies, Nash equilibria, Pareto
efficiency, and leadership dynamics provides a comprehen-
sive understanding of how collaborative approaches can lead
to environmentally sustainable outcomes. This study high-
lights the significance of understanding Nash Equilibrium
not only in strategic interactions between government and
industry but also in broader international negotiations aimed
at reducing emissions. While this study focuses on the
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TABLE I. Ozone Protection Protocols

Year Protocol

1985 The Vienna Convention for the Protection of the Ozone Layer
1987 Montreal Protocol
1992 The Copenhagen Amendments
1999 The Beijing Amendment
2016 The Kigali Amendment

interplay between government and industry, the game theory
framework can be adapted to include other stakeholders,
enhancing the robustness of future analyses. Ultimately,
these insights can inform policymakers and stakeholders
in developing effective strategies to combat ozone layer
depletion while considering the economic implications for
industries and the broader community.

4. Results
Figure 10 is the forecasting output for ARIMA

model.Time series data that is non-stationary can be used
with ARIMA models. Three elements distinguish them:
moving average (MA), differencing (I), and autoregression
(AR). ARIMA models are adaptable and have a broad range
of data patterns that they can manage. They do, however,
require the data to remain steady, which might be why our
model predicts with better accuracy

Figure 10. Forecasting Output ARIMA

Figure 11 contains output using Exponential smooth-
ing.A more straightforward technique is exponential
smoothing, which gives historical observations exponen-
tially decreasing weights. It works well with data that lacks
seasonality or a discernible pattern. Exponential smooth-
ingmodels are computationally efficient and simple to com-
prehend. They might not function effectively, though, when
dealing with data that has intricate patterns. SARIMA is an
extension of ARIMA that manages data seasonal trends.
It has extra moving average, differencing, and seasonal
autoregression parameters. When seasonal tendencies are
present in the data, SARIMA is helpful since it can ac-
curately capture these patterns. SARIMA models can be

Figure 11. Forecasting output Exponential Smoothing

difficult to set up, and additional data could be needed for
precise predictions. Figure 12 contains forecasting output
using SARIMA. Table II summarizes the results of various
models tested.

Figure 12. Forecasted Ozone Hole Area using SARIMA

TABLE II. Model Predictions

Model Metric Value

ARIMA Mean Absolute Error 4.056
Mean Squared Error 25.454

Root Mean Squared Error 5.045
SARIMA Mean Absolute Error 8.16

Mean Squared Error 83.93
Root Mean Squared Error 9.16

Figure 13 presents the Average Pollution Levels for key
pollutants—PM2.5, PM10, O, NO, SO, and CO—by year.
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This figure is essential as it visualizes trends in air quality
over time, enabling us to observe patterns of pollution
and potential correlations with environmental changes, such
as ozone layer depletion. By comparing these pollutants
annually, we can assess the impact of regulatory policies
and industrial practices on air quality and understand how
pollution levels have evolved alongside ozone depletion
trends.

Figure 13. Average Pollution Levels by Year for Pollutants PM2.5,
PM10, O, NO, SO, CO

The study in [30] used Air Quality Indices as a tracer
for atmospheric stability. Major pollutants are particulate
matter (PM2.5 and PM10), sulfur dioxide (SO), nitrogen
dioxide (NO), ozone (O), carbon monoxide (CO), and
ammonia (NH) [31]. Of the gases listed, sulfur dioxide(SO),
nitrogen dioxide (NO), and carbon monoxide (CO) are not
greenhouse gases, while ozone (O) and ammonia (NH) are
considered greenhouse gases and directly affect the ozone
layer.

Figure 14 shows the correlation between AQI and
Ozone Hole Area, highlighting key relationships between
ozone depletion and air pollutants:

Figure 14. Correlation between AQI and Ozone Hole

• Strong negative correlations with PM2.5 (-0.75),
PM10 (-0.76), O (-0.64), and NO (-0.57) indicate that
pollutant levels decrease as the ozone hole expands.

• Weak correlation with SO (-0.25) suggests less inter-
action.

• Positive correlation with CO (0.57) shows rising
carbon monoxide levels as the ozone hole increases.

• The Ozone Hole Area correlates strongly with its
own measurements and dates, confirming consistency
across datasets.

These insights highlight the connection between ozone
depletion and air quality, informing potential policies for
environmental protection.

A. Game Theory Models Results
Implications of Nash Equilibrium Outcomes. These

equilibria are stable outcomes where neither player can
unilaterally improve their payoff. Mixed strategies reflect
a more complex scenario where players consider various
risks and rewards.

• Nash Equilibrium Outcomes:
◦ (1, 0), (1, 0) - Pure Strategy Equilibria: Both

players exclusively choose their first (Maximal
Regulation) strategy.

◦ (0, 1), (0, 1) - Mixed Strategy Equilibrium:
Players use probabilistic strategies, balancing
risk and payoff.

Implications of Pareto Efficiency Outcomes. Payoff
structure may need adjustments for Pareto improvements.

• Pareto Efficiency Outcomes:
◦ No Pareto Efficient Points: No combination of

strategies benefits one player without harming
the other. This indicates that any potential gain
for one player comes at a loss to the other.

Implications of Stackelberg Leadership Outcomes. Min-
imal regulation supports short-term industrial gains but may
cause environmental damage. Strict regulation achieves en-
vironmental goals but could result in economic inefficiency
for industries, making compliance challenging.

• Stackelberg Leadership Outcomes:
◦ Minimal Regulation: Follower Payoff = 2:

Industries benefit from minimal regulation but
struggle under strict regulation due to higher
costs or restrictive practices.

◦ Strict Regulation: Follower Payoff = 0: Gov-
ernment strategies directly impact industrial
payoffs.

5. Conclusions and FutureWork
This study successfully demonstrated that combining

time series forecasting with game theory is a powerful
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framework for examining the complexities of ozone deple-
tion and air quality management. The predictive models
(ARIMA and SARIMA) provided valuable forecasts for
future ozone layer trends, highlighting periods of potential
recovery and risk. Game theory analysis showcased how
strategic decisions made by government agencies and in-
dustries could either mitigate or exacerbate ozone depletion.
The ARIMA model forecasted future values, achieving
a Root Mean Squared Error of 5.04. The Game Theory
approach produces customized reports based on user re-
quirements, recommending specific protocols. Additionally,
the authors found an 82% accuracy in correlating the Air
Quality Index with Ozone Layer Depletion using Gradient
Boosting. Key findings suggest that stricter environmental
regulations coupled with the adoption of green technologies
by industries are critical to achieving long-term ozone
recovery. In particular, the Nash Equilibrium outcome (strict
regulation, green technology adoption) offers a path toward
sustainable environmental management. Additionally, Pare-
toefficient outcomes provide policymakers with insights into
how to design policies that ensure both environmental pro-
tection and industrial viability. The Stackelberg leadership
model further emphasizes the importance of government
leadership in driving industrial change. This research adds
to the growing body of literature on the relationship between
human activities and the environment, providing valuable
insights into the interplay between regulatory frameworks,
industrial actions, and environmental health. The integration
of game theory offers a unique way to examine how
different stakeholders can collaborate to address environ-
mental challenges. We offer a comprehensive framework
for analyzing ozone depletion and air quality, with several
avenues for future research. First, incorporating additional
stakeholders like NGOs and the public would provide a
more holistic view of environmental policy-making. Sec-
ond, utilizing dynamic game theory models could simulate
realtime policy shifts and industry reactions. While ARIMA
and SARIMA models are useful, integrating advanced ma-
chine learning techniques like Long Short-Term Memory
(LSTM) or Prophet could improve long-term forecasting.
Expanding the analysis to include global air quality and
ozone depletion patterns, particularly in the Arctic and in-
dustrial regions, would enhance generalizability. A detailed
economic impact analysis of green technology adoption
and stricter regulations would further enrich the findings,
along with considering social factors such as public health
benefits. Employing multi-objective optimization algorithms
within the game theory framework could help balance
environmental, economic, and social goals. Lastly, assessing
the long-term effectiveness of international protocols like
the Montreal Protocol would provide critical insights for
future environmental agreements.
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