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Abstract: This paper introduces a novel generative model based on an encoder-decoder architecture for defect detection within Industry
4.0 frameworks, focusing on the escalating need for automated quality control in manufacturing settings. Precision and efficiency,
crucial in such environments, are significantly enhanced by our approach. At the core of our methodology is the strategic incorporation
of random Gaussian noise early in the image processing sequence. This deliberate interference disrupts the model’s ability to reconstruct
images of defective parts, thereby enhancing both the accuracy and robustness of defect detection.
The model further integrates skip connections during the decoding phase, with a special emphasis on the first two connections.
These are augmented with multi-head attention mechanisms and spatial reduction techniques, followed by targeted convolutions. This
intricate configuration helps preserve vital local features while filtering out superfluous data, facilitating precise image reconstruction
and effectively addressing the often problematic issue of locality loss during the upsampling process. Moreover, our model excels in
maintaining contextual integrity and capturing multi-scale features, which is crucial for detailed defect detection. Each block of the
architecture connects to a scaled version of the original image, allowing for nuanced feature analysis. Extensive testing and validation
on real-world datasets have proven the model’s high efficiency and accuracy in identifying defects, marking a significant advancement
in automated quality control systems.
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1. INTRODUCTION
Advanced technologies such as robotics, artificial

intelligence, machine vision, big data, cloud computing,
and machine learning have revolutionized manufacturing.
They have given rise to what is known as Industry 4.0,
which has played a major role in the application of
automated visual inspection. This has helped avoid many
problems that can be caused by human inspection by using
artificial vision techniques, such as cameras and capture
devices, to record images and transfer them to a machine
to check product quality [1][2][3][4].

The quality of industrial products is defined by
their compliance with established standards. Any defect
impacting product quality indicates it has not met the
required standards, leading to potential issues such as safety
risks, breakdowns, material damage, or even injuries. These
incidents can result in financial losses for companies and
a negative reputation. This is why defect detection is
fundamental in product quality control. Defect detection
is the process of identifying anomalies that occur during

production, such as contamination, scratches, cracks, color
changes, etc. Computer vision is one of the most widely
adopted fields for this task. It involves capturing images
of the product, with and without defects, and then letting
the model operate until it can distinguish between the two.
This produces meticulous results. Since defects can vary
in different ways, annotating all types of defects becomes
impossible due to the time required.

This has prompted researchers to focus on unsupervised
learning. Some have explored methods based on feature
integration. The fundamental idea of this approach is to
generate, during training, a significant vector space to
represent normal data. During the testing phase, results
are compared to this vector to classify whether they
indicate a defect or not. Conversely, other researchers
have opted for reconstruction approaches. The main idea
behind reconstruction is to train the model exclusively on
images without defects. Although this approach creates
divergences when processing images containing defects,
these differences effectively reveal the presence of defects
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during the testing phase. Most work has adopted the
reconstruction approach based on convolutional layers,
incorporating architectures such as Autoencoder Networks
[5][6][7], GAN (Generative Adversarial Networks)
[8][9][10], and Variational Autoencoders [11][12][13].
However, the major drawback of these convolutional layers
lies in their excessive focus on locality, which limits
their explicit modeling of long-term dependencies. This
limitation results in often imperfect reconstruction, even
for non-defective images during the testing phase, thus
compromising accurate defect detection.

With the emergence of the Vision Transformer
architecture [14], inspired by the Natural Language
Processing (NLP) model [15] known for efficiently
modeling long-term dependencies, several research studies
have been encouraged to adopt this architecture in
reconstruction-based methods for defect detection. Some
have even substituted the autoencoder’s encoder with a
transformer [16][17], while others have explored using it
to create a self-attention based autoencoder for feature
reconstruction [18]. However, despite successful modeling
of the global context by this architecture, its use has
sometimes led to a lack of locality [19]. Mathian et al.[20]
aimed to combine locality and globality by using an
autoencoder composed of a sequence of a convolutional
layer followed by a self-attention mechanism. However, this
raises concerns about the quality of the extracted locality,
as the exclusive use of convolutional layers may require a
well-defined sequence for efficient extraction. Considering
the inherent visual complexity of images, characterized by
intricate patterns and details, accurate reconstruction of
images or features requires considering both global and
local information. Nevertheless, a challenge persists in the
context of reconstruction-based methods during the testing
phase, where the presence of defective images can lead
to the reconstruction of defects, thereby complicating the
precise detection and localization of anomalies.

In this paper, to fully leverage the complementarity of
local and global features, an encoder-decoder architecture is
proposed. The initial layers of the encoder capture texture
features, while the final layers focus more on semantic
features. To restore the image from the extracted features,
the decoder applies a set of upsampling and convolution
operations. However, during the decoding phase where
upsampling operations are performed, there can be a loss
of locality. To enable the decoder to fully utilize this
information for precise image reconstruction, inspired by
U-Net [21], it is integrated with skip connections, the
first two of which are combined with multi-head attention,
followed by spatial reduction inspired by [22], and then
convolution aimed at retaining only specific local features
and eliminating those that are not necessary. To maintain the
integrity of contextual information on one hand and capture
features at different spatial scales on the other, each block is
associated with an equivalent representation of the original
image, but at a reduced scale. To prevent the problem of
reconstructing the defect and hinder the reconstruction of

the defective part from random Gaussian noise, the latter
is added at the beginning of the image. In addition to
this, to enrich the dataset dedicated to defect detection and
localization, a new class of data is created.The remainder
of this paper is structured as follows: Section 2 provides
an overview of the related work, Section 3 describes
the proposed method, Section 4 presents the experiments,
section 5 Describe integration in real time 6 present the
limitations of the model. and Section 7 concludes the paper.

2. RelatedWork
A. Methods Based on Reconstruction

Since the database contains only non-defective images,
some research has explored the effectiveness of CNNs in
reconstruction methods. Bergmann et al. [5] introduced
structural similarity as a metric, replacing the simple
pixel difference (L2) in their approach. Yang et al. [23]
introduced the concept of multi-sequence by combining
model blocks at different scales. Zavrtanik et al. [24]
proposed image inpainting, masking specific portions in
the images to prompt the model to reconstruct the defective
parts as if they were non-defective. Zhou et al.[25] Based
their approach on the difference between the structural
information of the original image and the reconstructed
image to detect defects. Li et al. [26] introduced the
concept of superpixels to divide the image into regions,
and then masked these regions randomly to prevent the
reconstruction of defects in the test portion. Hou et al. [6]
introduced the concept of multi-scale block-wise memory
in autoencoders to maximize the difference between the
reconstruction of defective and non-defective images. Jiang
et al. [27] introduced an ’Interpretability-Aware’ loss in
the autoencoder to enhance result interpretability during
training and testing. Li et al. [28] introduced continual
learning. Zhao et al. [29] introduced efficient channel
attention, as well as a strategy to better distinguish the
foreground from the background. Li et al. [30] used the
Dual Attention mechanism to optimize reconstruction, with
a loss function aimed at enhancing defect detection. Zhang
et al. [31] proposed AGUR-Net with EfficientNet-B2 as the
encoder and an Atrous Spatial Pyramid Pooling module in
the decoder, integrating a residual fusion with attention and
a dual-threshold segmentation method to enhance defect
detection. Chen et al. [32] proposed a 3D model with
three components: a multimodal reconstruction to restore
the normal image, segmentation to extract defects, and an
attention model to enhance anomaly detection. Wang et al.
[33] analyzed the image in small patches to better locate
anomalies.

Other works have explored the potential use of trans-
formers to enhance data representation. Lee et al. [17]
introduced the transformer as an encoder for the CNN
autoencoder. De et al. [34] applied masking to hide in-
formation, focusing particularly on the masking of patches
inside blocks. You et al. [35] introduced the transformer
into a method based on feature reconstruction. Mishra et
al. [16] introduced a Gaussian mixture density network to
model the distribution of representative vectors generated
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by the encoder of the Vision Transformer in the context
of defect detection and localization. Yang et al. [36] devel-
oped an autoencoder with a Vision Transformer encoder
to capture global information and a memory model to
store normal data. A Coordinate Attention block enhances
the representation before the decoder reconstructs the final
image. Shang et al. [37] replaced the autoencoder’s encoder
with a transformer featuring a ”defect-aware” mechanism
and graph-based positional encoding to enhance perfor-
mance. Our model is based on the overarching concept
of reconstruction. It is inspired by previous work that
has demonstrated the effectiveness of CNNs for extracting
local features, as well as transformers for capturing global
features. We have also evaluated multi-scale approaches,
which are recognized for their relevance in capturing details
at different levels of granularity.

B. Feature Integration based Methods
To improve the performance of unsupervised methods,

some approaches strive to incorporate the idea of a represen-
tative vector or vector space.[38][39][40][41] Create a hy-
persphere space during training by minimizing the distance
between normal points and the center of the hypersphere.
During the test phase, if the distance is no longer close
or identical, the instance is considered defective.[42][43]
opt for the use of normalized vectors through distribution
estimation methods. During the test stage, if the distance
between the normal and observed distribution is higher,
the instance is considered defective.[44][45] follows an
approach where the teacher is considered a reference vector.
During training, a student model tries to adapt to this
teacher. During the test phase, if the student fails to mimic
the teacher, the instance is considered defective. Unlike
previous work, our model does not rely on their main idea.
Nevertheless, some of these related studies have applied
fine-tuning, and we have leveraged their results to integrate
a pre-trained model.

3. Method
A. Feature Extraction

Pre-trained CNNs are recognized as being among the
most effective models for producing discriminative features
that have a significant impact on tasks of defect detection
and localization [23], as shown in Figure 3, To enable the
model to capture local information, the first three blocks
of the VGG19 Network pre-trained on the ImageNet
dataset are used, the first and second are designed for the
extraction of texture features, while the third acts as an
intermediary between texture and semantic information.

f ∈ RH×W×C The feature map of the last block where C
and H×W indicate the channel and the spatial dimensions of
the feature map, respectively. As the vision transformer pro-
cess unfolds, the feature map is initially divided into a set of
tokens N = HW

P2 where P×P represents the resolution of each
token, these tokens are linearly projected into latent vectors
of size D combined with position encoding to restore the
information to its position before they are introduced to
the transformer block to model global information as the

permutation is invariant. Regarding The transformer block,
it follows the structure of the classic architecture shown 1,
the encoding passes through a multi-head attention mech-
anism in the first sub-block and a forward propagation
in the second sub-block, and normalization and residual
connection in both sub-blocks.Everything related to feature
extraction is illustrated in Figure 2.

Figure 1. Block transformer components.

Figure 2. The encoder architecture.

B. Image Reconstruction
In order to reconstruct the image and decipher hidden

features, we begin by reshaping the dimensions of the out
put of the hybrid encoder, changing from N×D to n1×n2×D,
where n1 = H

P and n2 = W
P . This is followed by the

application of a convolutional layer to restore the original
dimensions, and then a series of upsampling operations with
a magnification factor of 2 to enhance spatial resolution,
and conv3x3 for extracting more complex features. A Relu
activation is also applied. In addition, a sigmoid function
is used on the final results to normalize the values between
0 and 1. The structure of this proposed model, designed
according to an encoder-decoder scheme, naturally allows
for the integration of ’skip’ type connections between the
encoder and decoder. These connections are crucial for ef-
fectively associating high-resolution local information with
low-resolution global information.
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Figure 3. The overall architecture of our model.

As the encoder becomes more complex, the processed
information becomes more global and elaborate, which can,
however, lead to a loss of local details during the decoding
process. This particularly affects the reconstruction of
objects with variable structures and complex patterns.
To address this problem, multi-head attention combined
with spatial reduction is integrated at the level of the first
and second residual connections. This approach allows
for a significant improvement in the ability to weigh
and integrate texture information across the entire image,
thereby enhancing the representation of relevant features
in the overall context of the scene. This is succeeded by a
conv3x3 and a Relu activation function to accentuate local
details.

The multi-head attention mechanism (MHA), designed
to identify distant interdependencies, operates as follows:
the linear projections of keys (K), queries (Q), and values
(V), all of which have the same dimension, are distributed
across multiple heads. In each head, a multiplication is per-

formed between the keys and queries, after which a softmax
function is applied to the result of this multiplication. The
resulting output is then adjusted by multiplying it with the
corresponding values. This process can be expressed in the
following way.

Attention(Q,K,V) = Softmax
(

QK⊤
√

dk

)
V (1)

The first and second blocks create a high-resolution
feature map, whose integration into MHA increases the
computational load and memory usage. The implementa-
tion of Spatial Reduction for multi-head attention involves
adjusting the dimensions of the keys and values via a spatial
reduction R, before proceeding to the attention operation 1.

Kreduced = Reshape
(HW

R2 ,C · R
2
)

W(C · R2,C) (2)

Vreduced = Kreduced = Norm(Kreduced) (3)
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W refers to a linear projection designed to preserve channel
dimensions, while Norm refers to the normalization layer.
To enrich the information represented by the three blocks
of the pre-trained CNN and to address issues related to
resolution reduction and capturing features at various spatial
scales, additional features are introduced for each block.
These features are generated from a sequence that includes a
2×2 average pooling operation, a 2×2 convolution, followed
by activation using the Relu function on the original image.
Careful restoration of visual data can sometimes lead to
the reappearance of defects during the testing phase. To
avoid this, a proactive approach has been implemented: the
deliberate introduction of a random Gaussian disturbance
in the input image. This disturbance is designed to mask
certain information while preserving the overall quality of
the reconstruction. The formula used for integrating this
noise is as follows:

Xnoisy = X + λ where, λ ∼ N(0, σ2) (4)

As X represents the input image and σ is the maximum
standard deviation of the Gaussian noise added to the input
image.

C. The Loss Function
During the training phase, a loss function was used

that combines both the pixel-focused L2 method and the
SSIM [5]. . The pixel-focused L2 method assesses the error
in the value of each corresponding pixel, while the SSIM
evaluates brightness, defined as the average value of all the
pixels; contrast, measured by the standard deviation of the
pixel intensities; and structural similarity, which indicates
the correlation between the two images and is measured by
the divergence in intensity distributions.

SSIM(X, X̂) =
(2µxµx̂ +C1)(2σxσx̂ +C2)

(µ2
x + µ

2
x̂ +C1)(σ2

x + σ
2
x̂ +C2)

(5)

LossT = L2(X, X̂) + SSIM(X, X̂) (6)

where,

• X the original image.
• X̂ the reconstructed image.
• µx the average sample of the image X.
• µx̂ the average sample of the image X̂.
• σ2

x the variance of X.
• σ2

x̂ the variance of X̂.
• σxσx̂ the covariance of X and X̂.
• C1 = (K1L)2 and C2 = (K2L)2 are two variables to

stabilize the division with a weak denominator.
• L is the dynamic range of pixel values (typically it’s

2bitsperpixel − 1).
• K1=0.01 and K2 = 0.03 by default.

During the test phase and to evaluate the performance
of our model, we use the multi-scale gradient magnitude
similarity method (MSGMS) [24], a multi-scale extension

of GMS [46], to evaluate the similarity of structure and con-
tours, in conjunction with the L2 loss to calculate the pixel
to-pixel difference between the values. This method allows
us to estimate the anomaly score between the reconstructed
image and the original image. The function for calculating
this anomaly score is presented as follows:

Ascore = (1H×W −MSGMS(X, X̂)Conv f ) + L2(X, X̂)Conv f
(7)

The anomaly score is obtained by subtracting the
anomaly map obtained from MSGMS from 1H×W , where
1H×W is a matrix of ones, and then adding the result to
the anomaly map obtained from the L2 loss. The anomaly
maps obtained from MSGMS and L2 have been previously
processed by a mean filter convolution of size 21 Convf.

Ascore is a matrix representing the anomaly score of
each pixel. To calculate the score for the entire image, the
maximum among all scores is taken into account.

4. Experiments
A. Data Sets

In the context of our study, we used two datasets to
assess the effectiveness and accuracy of our model for
defect detection.

The first dataset, as illustrated in Figure 4, consists of
real images of buttons that we created. This set contains 173
images, divided into two categories: 131 images for training
and 42 for testing, with 14 non-defective and 28 defective
images. Each image in this dataset has dimensions of 704
pixels in width by 708 pixels in height and is presented
in RGB color format. These images were captured using
a mobile phone camera, which offers a high resolution of
4032x2268 pixels. This capture method guarantees high
image quality, essential for detailed and precise analysis. To
enhance the effectiveness of the defect detection process,
masks were generated for all images showing anomalies.
These masks play a crucial role in our study, as they allow
precise localization of defects on the images. This method
greatly facilitates the evaluation of our model’s performance
in terms of detection and localization of defects on button
images.

The second dataset is MVTec Anomaly Detection
(MVTec AD) [47], a diverse and specialized dataset crucial
for assessing how well anomaly detection techniques work
in unsupervised machine learning. This dataset consists of
fifteen distinct industrial categories, including five different
texture types and ten different object categories. All of
the categories are in RGB format, except for the ”grid,”
”zipper,” and ”screw” categories, which are in grayscale
format. This variety allows for a comprehensive and ex-
haustive evaluation of anomaly detection models, offering a
wide range of possible scenarios and use cases. Detailed
information on the dataset including the distribution of
categories is provided in Table I. For each category, MVTec
AD provides two distinct sets of images: one is used for
testing, and another for training. These training pictures are
carefully selected to present no defects, ensuring that the
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Figure 4. Non-defective samples (first row) and Defective samples
(second row) with Defect overview (last row).

models learn from examples without anomalies. In contrast,
the test set consists of both defective and non-defective
images. This composition is crucial for testing the models’
ability to distinguish anomalies from normal conditions
in real environments. A particularly relevant aspect of
MVTec AD is the inclusion of annotated masks for each
defective image in the test set. These masks provide precise
information on the location and nature of defects in the
images. Using these masks not only allows for assessing
whether a model can detect an anomaly but also measures
its accuracy in locating and characterizing specific defects.

TABLE I. Detailed Information on the MVTec AD Dataset: Learning
Set (L. Set), Evaluation Set (ES), Real (R) Defective (D), Defect
Types (dfts).

Class L. Set ES(R,D) dfts Res

Bottle 209 (20,63) 3 900 × 900
Cable 224 (58,92) 8 1024 × 1024

Capsule 219 (23,109) 5 1000 × 1000
Hazelnut 391 (40,70) 4 1024 × 1024
Metal nut 220 (22,93) 4 700 × 700

Pill 267 (26,141) 7 800 × 800
Screw 320 (41,119) 5 1024 × 1024

Toothbrush 60 (12,30) 1 1024 × 1024
Transistor 213 (60,40) 4 1000 × 1000

Zipper 240 (32,119) 7 1024 × 1024

Carpet 280 (28,89) 5 1024 × 1024
Grid 264 (21,57) 5 1024 × 1024

Leather 245 (32,92) 5 1024 × 1024
Tile 230 (33,84) 5 840 × 840

Wood 247 (19,60) 5 1024 × 1024

B. Implementation Details
At the beginning of the process, before feature extraction

begins, images are first scaled to 224 pixels. Then, the
parameters of the transformer block head and the multi-
head attention for the second and first levels of the skip

connection are set to 4, 2, and 1, respectively. Furthermore,
the encoding parameters of the transformer block size (D)
and the multi-head attention for the second and first skip
connections are fixed at 512, 128, and 64. Lastly, the spatial
reduction rate for the first skip connection is set to 8, and
for the second skip connection, it is fixed at 4. Dropout with
a value of 0.25 is applied in both the MLP and the attention
blocks of the transformer. The model is run with the Adam
optimizer with a learning rate equal to 0.0001. The dataset is
divided into 80% for processing and 20% for validation with
batch sizes of 8. The model was trained for 2000 epochs,
with an early stopping mechanism activated from epoch
800. This mechanism ends the training if the validation loss
shows no improvement for 300 consecutive epochs. It is
important to note that the training loss and validation loss
remain very close in value, with minimal difference. This
suggests that the model generalizes well to the validation
data and shows no significant signs of overfitting. Regarding
the noise rate, each class is run and evaluated individually
and independently of other categories. We ran each class
with a different noise rate to select the optimal rate offering
the best performance. The noise rates chosen for each
class are as follows: 0.1 for ‘bottle’, 0.25 for ‘cable’, 0.2
for ‘capsule’, 0.2 for ‘hazelnut’, 0.3 for ‘metal nut’, 0.09
for ‘pill’, 0.2 for ‘screw’, 0.3 for ‘toothbrush’, 0.3 for
‘transistor’, 0.1 for ‘zipper’, 0.4 for ‘carpet’, 0.16 for ‘grid’,
0.1 for ‘leather’, 0.11 for ‘tile’, 0.09 for ‘wood’, and 0.09
for the new class ‘constructed button’. The network was
implemented in PyTorch with GPU RTX 3050 6G.

C. Results and Discussion
In order to assess how well our model finds and detects

flaws, we undertook an extensive comparison of our results
with those obtained by current state-of-the-art methods
in this field. Our analysis focused on various approaches,
including knowledge distillation with KDAD [44], various
reconstruction methods such as SMAI [26], AnoGAN [8],
VTBA [36], GAP [33], AESSIM [5] and HaloAE [20],
as well as one class classification techniques like FCDD
[40], specifically for defect localization. Additionally,
we also examined recognized defect detection methods,
including Ganomaly [10], KDAD [44] ,AnoViT [17],
and DAAD [6],AESSIM [5], fAnoGan [9], DBISD [30],
CAD [28] ,SCADN [7].This comparative analysis allowed
us to position our model on current standards in the
field and to evaluate its performance in a quantifiable
manner. To measure the effectiveness of these different
methods, including ours, we opted for the use of the
evaluation matrix of the area under the curve (AUC) of
the receiver operating characteristics (ROC). This metric is
widely recognized for its ability to provide a reliable and
comprehensive evaluation of binary classification model
performance, taking into account both the sensitivity,
and specificity of the model. In addition to this, we also
considered the F1-score and accuracy, which provide further
insights into the model’s precision and overall performance.
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TABLE II. Comparison of pixel-level detection on the MVTec AD dataset.

Class AnoGAN[8] SMAI[26] KDAD[44] HaloAE[20] GAP[33] FCDD[40] VTBA[36] OUR

Bottle 86 86 96.3 91.9 93 97 95.1 94.1
Cable 78 92 82.4 87.6 94 90 92.6 87.1

Capsule 84 93 95.9 97.8 90 93 93.1 97.8
Hazelnut 87 97 94.6 97.8 84 95 98.2 97.7
Metal nut 76 92 86.4 85.2 91 94 91 90.6

Pill 87 92 89.6 91.5 93 81 92.6 98.6
Screw 80 96 96.0 99.0 96 86 97.7 97.6

Toothbrush 90 96 96.1 92.9 96 94 89.4 99.1
Transistor 80 85 76.5 87.5 100 88 85 87.9

Zipper 78 90 93.9 96.0 99 92 93.2 96.4

Meanob j 82.6 91.9 90.7 92.7 93.6 91 92.8 94.7
Carpet 54 88 95.6 89.4 96 96 88.4 85.6
Grid 58 97 91.8 83.1 78 91 97.2 97.6

Leather 64 86 98.1 98.5 90 98 96.6 99.4
Tile 50 62 82.8 78.5 80 91 92.8 95

Wood 62 80 84.8 91.1 81 88 91.4 84

Meantex 57.6 82.6 90.6 88.1 85 92.8 93.3 92.3

Mean 74 89 90.7 91.2 91 92 93 93.9

TABLE III. Comparison of image-level results on the MVTec AD dataset.

Class Ganomaly[10] AnoVit[17] KDAD[44] DAAD[6] DBISD[30] OUR

Bottle 89.2 83 99.4 97.6 94 99.4
Cable 75.5 74 89.2 84.4 88 79

Capsule 73.2 73 80.5 76.7 85 82.7
Hazelnut 78.5 88 98.4 92.1 95 96.6
Metal nut 70.0 86 73.6 75.8 69 82.6

Pill 74.3 72 82.7 90.0 89 90.8
Screw 74.6 100 83.3 98.7 100 89.8

Toothbrush 65.3 74 92.2 99.2 100 99.7
Transistor 79.2 83 85.6 87.6 88 95.4

Zipper 74.5 73 93.2 85.9 91 98
Meanob j 75.4 80.6 87.8 88.8 89.9 91.4
Carpet 69.9 50 79.3 86.6 91 57.2
Grid 70.8 52 78.0 95.7 94 94.7

Leather 84.2 85 95.1 86.2 95 100
Tile 79.4 89 91.6 88.2 80 99.4

Wood 83.4 95 94.3 98.2 94 96.2

Meantex 77.5 74.2 87.7 91 90.8 89.5

Mean 76.2 78 87.7 89.5 90.2 90.8

Accuracy =
T P + T N

T P + T N + FP + FN
(8)

where,

• TP: True Positives.
• TN: True Negatives.
• FP: False Positives.
• FN: False Negatives.

F1-score = 2 ×
Precision × Recall
Precision + Recall

(9)

where,
Precision =

T P
T P + FP

(10)

Recall =
T P

T P + FN
(11)
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Table II illustrates the performance achieved using the
area under the ROC curve (AUC) for receiver operating
characteristics at the pixel level. By comparing our model
with some leading models in MVTecAD, including two
using transformers (HaloAE, VTBA) and others using
convolutions, our model stands out markedly in five
categories, with a lead ranging from 0.4% to 5.6%. It
is worth noting that HaloAE utilizes data augmentation
techniques, whereas our model does not employ any data
augmentation. This remarkable superiority is also observed
in the overall average of all object categories, where our
model exceeds other methods by 1.1%. It is important
to mention that both KDAD and FCDD are pre-trained
models, while our model only uses pre-training for the
first three blocks. Additionally, these categories represent
67% of the total data. Taking into account the overall
average for all data categories, the performance of our
method exceeds those of other compared methods by 0.9%.

Table III provides a comparison of the MVTecAD
dataset’s image-level detection findings, revealing that our
model surpasses other models in five categories, with a
lead ranging from 0.8% to 7.8%. In addition, the average
of all categories for our model is higher than the total
average of other approaches, Despite a negative impact
observed in the ’carpet’ category, these results highlight
our model’s ability to effectively detect defects.

Table IV which presents the results obtained with the
AUC of the ROC curve, comparing our model with state-of-
the-art methods such as KDAD, AESSIM, CAD, fAnoGan,
and SCADN on the constructed data class, as the class
we created was not included in the original articles. The
results reveal that our model surpasses KDAD by 6.8%
in the button category. Combining the results of Tables
II and IV, our model outperforms KDAD in 13 of the
16 categories at the pixel level and offers nearly the best
results at the image level. It is important to note that KDAD
uses the Teacher-Student mechanism, where the Teacher
is pre-trained on ImageNet, while our model relies only
on the initial pre-trained layers. Additionally, our model
outperforms fAnoGan, CAD, AESSIM, and SCADN by
1% at the image level and exceeds AESSIM by 12.4%
at the pixel level. These results highlight the effectiveness
of our approach for defect detection and underscore the
advantage of combining both local and global features,
which enhances the accuracy of defect identification.

TABLE IV. Comparison results for the constructed class ’Button’.

Model pixel-level image-level

OUR 97.4 99.7
AESSIM[5] 85 94

CAD[28] - 95.8
fAnoGan[9] - 98.5
SCADN[7] - 91.3
KDAD[44] 90.6 99.5

Figures 5, 8 and 9 represent the evaluation of the
model’s performance in terms of the visual localization of
defects. In Figure 5, we focus on the constructed data class,
while Figures 8 and 9 are concerned with the MVTEC AD
dataset. Each line in the figures presents six columns: the
first and fourth columns show the input image, the second
and fifth columns display the segmentation mask, and the
third and sixth columns represent the anomaly scores,
where the red color indicates a high anomaly score. These
representations demonstrate the proposed model’s ability to
localize defects, whether their size is small, medium, or
large. It is notable that the classes where the model excels in
terms of score also demonstrate excellent visual localization
of defects, as in the classes of toothbrush, leather, capsule
and screw, even for very small sizes compared to other
classes such as carpet, and wood, the model manages to
provide accurate localization of anomalies, thus demonstrat-
ing the robustness of its approach.

(a) (b) (c) (d) (e) (f)

Figure 5. Qualitative results of our model on the ’Button’ class. Rows
a and d: Input images, b and e: Ground truth, c and f: Anomaly maps.

D. Ablation study
To demonstrate the effectiveness of ours model and the

impact of adding noise as well as skip connections, we
conducted an ablation study. In the first case, we removed
the noise, and in the second case, we eliminated the skip
connections. Then, we compared these results with the full
configuration. As shown in the Tables V, VI, VIII, VII
and Figure 6 we evaluated the performance obtained
under different configurations: without noise, without skip
connections, and with both. The improvements brought by
these elements are clearly visible, particularly in terms of
accuracy, F1-score, and ROC AUC.

TABLE V. pixel-level Ablation results on certain classes of the
MVTec AD dataset: N noise, S skip.

Without N Without S With (S & N)
class auc auc auc

bottle 90 91.9 94.1
cable 75.8 78 79
carpet 59.5 85.3 87.1
grid 75.9 95 97.6
leather 97.5 97.9 99.6
toothbrush 98.4 99 99.7
tile 88.6 62.1 95
wood 78.3 74.7 84
zipper 91.1 94.8 96.4
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TABLE VI. image-level Ablation results on certain classes of the MVTecAD dataset.

Without noise Without skip With (skip& noise)

class f1-score accuracy auc f1-score accuracy auc f1-score accuracy auc

bottle 93 89 97.2 96 94 98.2 98 96 99.4
cable 76 61 54.8 76 61 62.7 77 71 79
carpet 87 77 45.3 87 77 57 88 79 57.2
grid 85 74 66.2 92 87 93.1 92 88 94.7
leather 85 75 82.9 91 87 93.4 100 100 100
toothbrush 89 86 97.8 97 95 98.6 98 98 99.7
tile 87 80 88.8 84 72 69.4 97 96 99.4
Wood 89 81 84.1 90 85 88.2 95 92 96.2
zipper 88 80 87.3 94 90 91.9 96 94 98

TABLE VII. Ablation results on MVTecAD dataset.

Model pixel-level image-level

With (noise&skip) 93.9 90.8
Without skip 90.1 87.6
Without noise 83.2 77.8

TABLE VIII. Ablation results on Button class.

Model pixel-level image-level

With (noise&skip) 97.4 99.4
Without skip 93 95
Without noise 94 99

(a) (b) (c) (d) (e) (f)

Figure 6. Qualitative Comparison with and without Noise on Certain
Classes of the MVTec AD Dataset: a) Input Image, b) Ground Truth,
c) Reconstructed Image with Noise, d) Heatmap with Noise, e)
Reconstructed Image without Noise, f) Heatmap without Noise.

5. Real-Time Defect Detection Integration
In an automated industrial production line, the inference

time shown in Image 7 indicates that our model can
be effectively integrated into a real-time defect detection
system using the following approach:

• High-resolution IoT cameras equipped with smart
sensors are installed along the production line to
capture real-time images of products at various stages.
These cameras are connected to an industrial network
via low-latency transmission protocols such as LAN,
Profinet, or EtherCAT. These networks are designed
to ensure fast and reliable transmission of data to the
analysis system with minimal delay, which is crucial
for maintaining production efficiency.

• Once the images are transmitted to the analysis
system, they undergo necessary pre-processing steps,
such as resizing and normalization. This ensures that
the images conform to the input requirements of the
defect detection model, allowing for efficient and
accurate analysis.

Figure 7. Inference time of ours model in the MVTec AD dataset.

• The pre-processed images are then fed into our
model, where defects or anomalies are detected in real
time. Thanks to the model’s computational efficiency,
as outlined in our earlier response regarding infer-
ence time, the system can operate at near real-time
speeds,ensuring that defects are identified as products
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(a) (b) (c) (d) (e) (f)

Figure 8. Qualitative results of our model on 7 out of the 15 classes
in the MVTEC AD database .Rows a and d: Input images, b and e:
Ground truth, c and f: Anomaly maps.

(a) (b) (c) (d) (e) (f)

Figure 9. Qualitative results of our model on 8 out of the 15 classes
in the MVTEC AD database.Rows a and d: Input images, b, and e:
Ground truth, c, and f: Anomaly maps.

pass through the production line.
• The results of the analysis are displayed in real-time

on an intuitive user interface, enabling operators to
continuously monitor product quality. This interface
can be customized to show detailed information about
detected defects, including their location and severity.

6. Limitations of ours model
The main challenge with this model lies in the optimal

management of noise. If the noise level is too low or
completely removed, the model may reconstruct the defects
present in the image, making their localization impossible.
Conversely, an excessive increase in noise to prevent the
reconstruction of defects leads to poor overall image quality.
This degradation directly affects the accuracy of defect
localization and detection, thereby reducing the overall
effectiveness of the model, as seen in cases of anomalies
on surfaces such as carpets, cables, or metal nuts.

7. Conclusion
In this work, we have developed an innovative

architecture that combines convolutional neural networks
(CNNs) and transformers to leverage their respective
strengths in extracting local and global features. Our
encoder-decoder architecture is distinguished by the
integration of CNN blocks, which are pre-trained to
capture fine and local details in the early layers of the
encoder. This approach is complemented by the use of
transformers in the final layers to capture and integrate
information on a broader scale. The skip connections
from the encoder to the decoder especially the first two,
which are reinforced by multi-head attention and spatial
reduction, followed by a convolutional operation play a
crucial role in effectively weighting the features relevant to
the decoding task. Moreover, the introduction of random
Gaussian noise upstream of the image contributes to
preventing the reconstruction of defects, representing a
significant step toward model robustness. Establishing a
specific data class marks a notable advancement in our
research methodology.

Our future work will mainly focus on improving
the model’s performance in classes that currently have
a negative impact on our results. This approach will
involve a thorough analysis of these specific categories
to identify challenges and obstacles that hinder effective
processing. We will consider integrating new deep learning
techniques and optimizing the architecture to refine the
model’s ability to handle more complex or unconventional
cases. Additionally, we will explore the effectiveness of
different types of noise and regularization techniques to
further enhance the model’s ability to generalize and avoid
overfitting, particularly in scenarios where data is limited
or highly specific. The ultimate goal of this future work
will be to improve the robustness and accuracy of the
model, making it more effective and adaptable to various
practical applications.
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