
International Journal of Computing and Digital Systems
2025, VOL. 17, NO. 1, 1–15

http://dx.doi.org/10.12785/ijcds/1571020131

Feature Engineering for Epileptic Seizure Classification Using
SeqBoostNet

Najmusseher1 and Nizar Banu P K2

1,2Department, of Computer Science, CHRIST (Deemed to be University) Central Campus Bangalore-560029, India

Received 16 April 2024, Revised 15 October 2024, Accepted 25 October 2024

Abstract: Epileptic seizure, a severe neurological condition, profoundly impacts patient’s social lives, necessitating precise diagnosis
for classification and prediction. This study addresses the need for reliable automated seizure detection in epilepsy by employing
Artificial Intelligence (AI) driven analysis of Electroencephalography (EEG) signals. Key innovations include combining spectral and
temporal features using Uniform Manifold Approximation and Projection (UMAP) with Fast Fourier Transformation (FFT), and the
introduction of the Sequential Boosting Network (SeqBoostNet), a robust stacking model integrating machine learning and deep learning
for effective seizure classification. Validated on benchmark datasets such as the BONN dataset from the UCI repository and the BEED
from the Bangalore EEG Epilepsy Dataset, this approach achieved high accuracy, distinguishing Focal and Generalized seizure onsets
with 95.91% accuracy and overall average accuracies of 96.71% on BEED and 97.11% on BONN. Existing models frequently struggle
with the variability of seizure events. However, these findings underscore the model’s strength in distinguishing between seizure onset
types, even with the inherent fluctuations in seizure patterns. This research not only advances automated seizure detection but also
underscores the value of integrating AI with EEG analysis to improve neurological diagnostics, offering the potential for significant
enhancements in diagnostic accuracy and patient outcomes.
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1. INTRODUCTION
An epileptic seizure is a neurological condition caused

by an abnormality of the electrical activity of the brain. In
recent years, there has been a wide focus on improving
seizure prediction with AI, for more accurate predictive
models [1]. Patients suffering from this disease are not
only treated medically but also surgically. Thus, the precise
prediction of future seizures becomes crucial to permit
timely preventive medication to prevent their occurrence [2].
Seizures are classified into Focal, Generalized, or Unknown,
which affect approximately 1% of the world population
[3]. The focal seizures begin from an area of the brain on
one side and a generalized seizure occurs when a seizure
occurs simultaneously in both hemispheres of the brain [4].
Epilepsy imposes a tremendous personal burden of recurrent
seizures, which further reduces the individual’s ability to
lead a normal social life. Epidemiological studies show
that uncontrolled seizures can lead to sudden unexpected
death, making epilepsy diagnosis a significant challenge.
EEG is a recording of electrical brain activity which is an
integral tool for diagnosing brain seizure disorders. During
an EEG examination, a computer screen visualizes these
electrical signals as wavy lines, representing a brain activity

record. Electrodes are placed on different areas of the brain
to record signals, with each channel representing a pair of
electrodes; the data collected from a channel is referred to as
a signal. The 10-20 International System is a standardized
method for electrode placement in EEG [5].

Neurologists still rely on manual analysis of EEG sig-
nals and lengthy video monitoring, which requires multi-
day recordings, posing a laborious task. EEG signals re-
sulting from seizures exhibit distinctive patterns that differ-
entiate them from signals caused by other factors. These
patterns often include high-amplitude repetitive activities
characterized by a combination of slow and spike waves.
Hence, recognizing these attributes poses a demanding task,
and the observation of each EEG signal is both laborious
and time-consuming [6]. Automatic detection methods are
vital for helping neurologists diagnose accurately. These
systems could save neurologists from spending hours re-
viewing EEG records manually. Despite ongoing research
efforts, many neurologists continue to rely on manual di-
agnosis, reflecting their lack of confidence in computerized
methods. Hence, the primary objective of this research work
is to develop the most accurate and efficient model possible.
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This research aims to enhance seizure detection and
prediction using spectral and temporal features combined
with advanced classification methods. A novel feature en-
gineering technique integrates FFT for spectral analysis
and UMAP for temporal data, improving feature learning
and prediction. The proposed SeqBoostNet model, which
merges machine learning and deep learning techniques,
addresses accuracy challenges in multivariate data and sup-
ports both binary and multiclass classification. This study
enhances EEG-based seizure classification by leveraging
advanced spectral and temporal features, which provide
critical information about the frequency and time dynamics
of brain activity. Spectral features capture the frequency
components of the EEG signals, enabling effective iden-
tification of distinct brain states, while temporal features
highlight the changes in these signals over time, crucial for
recognizing transient seizure patterns. The implementation
of an efficient stacking model optimizes both classification
accuracy and computational performance, establishing a
new benchmark in seizure detection. By advancing feature
engineering methods, this research not only enriches the
field of computational neuroscience but also paves the
way for broader applications in understanding various brain
disorders.

Key Significance of the proposed work:

• The research enhances seizure detection and predic-
tion, offering epilepsy patients greater reliability and
potentially improving their quality of life by reducing
uncertainty and better preparing for seizures.

• Combining spectral and temporal domain features
with a stacking model introduces a novel approach to
EEG analysis, with broader applications in neurolog-
ical and medical fields, marking a shift in analyzing
complex biological data.

• The stacking model leverages the strengths of various
algorithms through a meta-model, optimizing clas-
sification tasks like EEG data analysis, leading to
improved diagnostic accuracy.

• The stacking model integrates multiple algorithms via
a meta-model, enhancing the classification of EEG
data and improving diagnostic precision.

• This research sets a new standard for seizure classi-
fication accuracy, providing a reliable reference for
researchers and clinicians while advancing computa-
tional neuroscience and informing future studies on
neurological disorders.

The manuscript’s organization is structured as follows:
In Section 2, related work is presented, focusing on the
utilization of EEG data for classifying epileptic seizures.
Section 3 offers a comprehensive overview of dataset prepa-
ration and discusses the proposed methodology. Section
4 presents the proposed method results and discussions.

Lastly, Section 5 concludes with final remarks and outlines
the future scope of the research.

2. RELATED WORK
In the realm of epilepsy diagnosis, automated seizure

detection using EEG data has become essential, particularly
for improving accuracy in diagnosis and supporting real-
time clinical applications. Recent advances in deep learning
and machine learning have enabled more accurate and ef-
ficient processing of EEG signals, providing better insights
into seizure onset patterns and enhancing seizure classi-
fication. However, the challenges of accurately predicting
seizures across varied datasets and patient demographics
remain. To address this, various researchers have explored
different preprocessing, feature extraction, and classification
techniques to improve the generalizability and robustness of
seizure prediction models.

Modern approaches to EEG-based seizure detection of-
ten rely on complex transformations to extract meaningful
features. convolutional neural networks (CNN) are applied
in [7][8] in combination with the fractional S-transform
(FST) and dense convolutional blocks (DCB), respectively,
for feature extraction and classification. These techniques
have demonstrated high specificity and accuracy on con-
trolled datasets like the BONN dataset, indicating that
CNN architectures are effective for capturing critical EEG
features. However, these studies faced limitations related to
dataset diversity, which may restrict their effectiveness in
real-world settings where EEG patterns are highly variable.
This is a significant focus of our study, which incorporates
robust spectral-temporal feature analysis to ensure model
adaptability across different EEG datasets. Additionally,
methods combining CNNs with traditional machine learn-
ing classifiers have gained popularity, showing promise in
processing complex EEG signals. Mutual information-based
feature estimation in CNN architectures could improve
classification accuracy [9]. Meanwhile, [10] used a CNN-
based approach with image-based representations of EEG
signals. Although these methods achieved better accuracies,
the dependency on specific preprocessing steps, such as
image conversion, suggests that they may lack versatility for
direct application to raw EEG time-series data. Our research
aims to overcome this by integrating feature extraction tech-
niques directly applicable to time-series EEG data, thereby
enhancing computational efficiency and real-time perfor-
mance. A three-step methodology for seizure prediction
on EEG data, specifically targeting the CHB-MIT dataset.
Their method includes preprocessing through notch filtering
to improve the signal-to-noise ratio (SNR), followed by the
extraction of statistical and CNN-based automated features
[11]. Together, these studies emphasize the critical role of
optimizing feature extraction and preprocessing in EEG-
based seizure detection. The proposed model enhances these
advancements by employing a stacked machine learning and
deep learning approach for direct spectral-temporal feature
extraction from EEG signals. This methodology improves
accuracy and efficiency, providing a more adaptable solution
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for various EEG data sources without the need for extensive
preprocessing, thereby advancing real-time seizure detec-
tion applications. Feature extraction techniques such as Fast
Fourier Transform (FFT) and Continuous Wavelet Trans-
form (CWT) have been widely applied to isolate frequency-
domain characteristics of EEG signals, as seen in [12]. This
approach has highlighted the value of spectral features in
identifying seizure activity. However, as model complexity
increases, computational requirements also escalate, which
can be prohibitive in real-time scenarios. Our proposed
model incorporates UMAP and FFT for optimized spectral
and temporal feature analysis, striking a balance between
computational efficiency and classification accuracy to fa-
cilitate real-time seizure detection. Some researchers have
also focused on personalized seizure prediction models,
such as [13], who tailored their model to individual patients
by integrating a deep residual shrinkage network (DRSN)
with a gated recurrent unit (GRU). While personalized
models have shown strong sensitivity rates, they tend to
have reduced generalizability across diverse populations,
as they may overfit to specific patient data. To enhance
generalizability, our research leverages a comprehensive
multivariate dataset, which ensures the model’s applicabil-
ity across varied patient demographics and seizure types,
thereby providing a robust solution for broader clinical
use. For instance, [14] introduced a comprehensive method
to differentiate between interictal and ictal states using
multichannel EEG data. By employing a combination of
five features—Variance, Pearson correlation coefficient, Ho-
effding’s D measure, Shannon entropy, and inter-quartile
range—derived from maximal overlap discrete wavelet
transform. While this study underscores the potential of
these features in distinguishing different EEG states, it is
limited by its reliance on a single clinical dataset, raising
questions about the generalizability of the findings across
broader patient populations. Building on this foundation,
[15] developed an automated approach that integrates signal
processing techniques with machine learning algorithms.
Their methodology incorporates preprocessing using the
Savitzky–Golay filter, feature extraction via discrete wavelet
transform (DWT), and classification through a support vec-
tor machine (SVM). However, the need for further valida-
tion across diverse patient groups and real-time applicability
remains critical for ensuring the method’s effectiveness.
The quest for improved accuracy led to the exploration of
alternative neural network architectures, as highlighted by
[16], utilizing a Random Neural Network (RNN) for seizure
classification. Despite these encouraging results, the study
emphasizes the importance of broader validation across var-
ious datasets to assess the model’s robustness, particularly
in real-time clinical scenarios where immediate responses
are essential. Additionally, the integration of time-frequency
analysis has shown promise in EEG classification. [17]
combined time-frequency feature extraction with Relief
feature selection techniques, analyzing the BONN dataset.
Time-frequency features are crucial in EEG analysis as they
capture both temporal and spectral information, enhancing
the accuracy of brain activity and seizure detection. While

effective, this approach’s adaptability to varied EEG data
sources remains a challenge, as its accuracy is constrained
by the limited scope of the dataset, which could impact
generalizability to different seizure patterns. The reliance
on spectral features also presents advantages, as demon-
strated by [18]. However, their sole focus on frequency-
domain information without considering temporal aspects
may hinder the model’s ability to capture the complete
dynamics of the EEG signal, resulting in moderate per-
formance. In the area of deep learning, [19] showcased
the effectiveness of a stacking ensemble-based deep neu-
ral network (DNN) approach. This method benefits from
ensemble learning, which consolidates predictions from
multiple models. Nonetheless, the computational demands
of this approach present challenges for real-time seizure
detection, limiting its clinical applicability where prompt
diagnosis is critical. Wavelet transformation, combined with
fractal dimension techniques, has also been explored in
this context. [20] achieved using wavelet transformation
alongside Petrosian Fractal Dimension and Singular Value
Decomposition Entropy techniques on the BONN dataset.
Although this comprehensive feature set allows for detailed
signal analysis, the reliance on complex transformations
may increase computational overhead, which could limit
real-time deployment. Further advanced the field with their
sliding window weighting approach [21], utilizing discrete
wavelet transformation on the BONN dataset. By incor-
porating temporal elements through sliding windows, this
method effectively captures changes in the EEG signal over
time. However, the challenge of generalizability arises when
applying this approach to diverse EEG datasets not used in
the study. Lastly, a model that incorporates Discrete Wavelet
Transform and Moth Flame Optimization-based Extreme
Learning Machine [22], on the BONN dataset. While the
optimization strategy enhances classification performance,
its adaptability to larger and more varied datasets is limited,
which could impact the robustness of the model across
different populations.

In recent years, EEG-based seizure detection has drawn
significant interest, especially in the application of machine
learning and deep learning techniques to improve diagnostic
accuracy and support early intervention. Previous studies
have employed various feature extraction and classification
methods on EEG datasets, such as BONN, to address this
complex task with varying levels of success. While EEG-
based seizure detection has significantly advanced, current
models are facing limitations in scalability, adaptability,
and computational demands, especially in the context of
real-time applications. The proposed model builds upon the
strengths of previous studies by addressing these limitations
through a robust feature engineering and stacking approach.
By combining UMAP and FFT-based feature extraction
with stacked machine learning (ML) and deep learning (DL)
methods, our approach aims to enhance robust feature engi-
neering, computational efficiency, and seizure classification
accuracy. This current research not only contributes to an
adaptable model suitable for real-time applications but also



4 Najmusseher, et al.

Figure 1. Proposed Framework

sets a foundation for improved clinical decision support in
epilepsy diagnosis. Through systematic feature engineering,
this model reduces dependency on extensive preprocessing
and augmentation techniques, ensuring that it can adapt to a
wide range of EEG data characteristics and patient profiles.
It represents a significant step towards creating versatile,
accurate, and computationally efficient seizure prediction
models for use in diverse clinical settings.

3. METHODOLOGY
This section outlines our research framework for EEG

signal analysis, focusing on seizure classification (Focal,
Generalized, and healthy episodes). The framework consists
of four stages: Data Acquisition, Preprocessing, Spectral,
and Temporal features and Classification illustrated in Fig-
ure 1. After acquiring data, data preprocessing is performed
to enhance signal quality. FFT and UMAP are applied to
extract spectral and temporal features, respectively. These
extracted features are then combined into a unified feature
set, and subsequently fed into the classification model for
further analysis. For classification, SeqBoostNet, a novel
stacked learning model is introduced. Further details on
these techniques are provided in subsequent sections.

A. Data Acquisition
EEG data is acquainted using the brain’s neuronal ac-

tivity in the form of signals. The EEG signals are recorded
over varying periods, from minutes to days, depending
on research or clinical goals. The collected EEG data is
digitally stored for subsequent analysis. In this study, two
distinct datasets were employed. The first dataset comprises
the benchmark dataset BONN data obtained from the UCI
repository, while the second dataset consists of real-time
data obtained from BEED. The choice of datasets enhances
reliability and real-world relevance. The BEED dataset, with
its real-time and dynamic recordings in physical movement

and various seizure types, provides complexity in the ap-
plication environment. The BONN dataset is one of the
well-known benchmark datasets used, ensuring controlled
conditions and standardization of the validation procedure,
which affords a good comparison with other studies. By
balancing real-time variability in this way with reliable and
structured data for seizure prediction, a robust model can
be created.

1) BEED EEG Dataset
The Bangalore EEG Epilepsy Dataset (BEED) was

collected from an EEG clinic in Bangalore, which contains
raw waveform signals from 16 EEG channels with a sam-
pling rate of 256 Hz. The dataset is categorized into four
distinct types, detailed in Table I, each lasting 20 seconds.
These recordings adhere to the internationally recognized
10–20 electrode placement method and encompass EEG
data of seizure onsets, seizure events, and data from healthy
individuals for comparison.

2) BONN EEG Dataset
The BONN dataset, sourced from BONN University in

Germany and archived in the UCI repository, comprises five
subsets, each containing 100 individual channel recordings
from 500 subjects. These recordings, lasting 23.6 seconds
each, were sampled at 173.61 Hz, enabling frequency
analysis spanning 0.53 to 40 Hz. Collected via the inter-
national 10-20 electrode placement technique, the dataset
comprises 11,500 rows and 179 columns. The final column
serves as class labels, categorized into five distinct groups:
1 denotes seizure activity recordings, 2 indicates tumor
location recordings, 3 represents healthy brain recordings,
while 4 and 5 signify recordings with eyes closed and
opened, respectively [23].

B. Data Preprocessing
The proposed model aims to distinguish epileptic seizure

onsets, seizure events, and healthy states through com-
bined features and classification techniques tailored for
EEG signals. Initial preprocessing involves Exploratory
Data Analysis (EDA) and data standardization, pivotal for
understanding EEG data attributes, identifying anomalies,
and enhancing data quality. EDA facilitates informed deci-
sions on feature extraction and selection, enhancing overall
model performance. Data standardization ensures consistent
scales across EEG channels and subjects, aiding in clearer
interpretation of features and model coefficients [24]. This
preprocessing approach is crucial for constructing a precise
and resilient EEG data classification model.

C. Temporal Features Using UMAP
Temporal features extracted from time series EEG data,

particularly by applying UMAP, are pivotal for compre-
hending brain activity’s dynamic nature. These features re-
veal patterns and variations in brain signals across different
time points, encompassing crucial aspects such as temporal
dynamics and connectivity patterns. They illuminate how
brain activity evolves, offering insights into cognitive pro-
cesses like attention, memory, and perception, while also



International Journal of Computing and Digital Systems 5

TABLE I. BEED dataset description

Dataset Description

Seizure Events Seizure recording during physical movement
Healthy subject Recordings from seizure-free participants

Generalized Seizure recording in both brain hemispheres
Focal Seizure recording in specific brain area

aiding in identifying neurological disorders, monitoring dis-
ease progression, and enhancing Brain-Computer Interfaces
(BCI).

UMAP is an effective method that reduces the dimen-
sionality of data while preserving its structural integrity. It
combines manifold learning and topological data analysis
methods to capture intricate patterns in complex datasets.
The process involves constructing a nearest neighbor graph,
computing fuzzy set memberships, optimizing the UMAP
objective function through gradient descent, and generating
low-dimensional embeddings for visualization and analysis
[25]. UMAP is a method used to simplify complex data. It
accomplishes this through four main steps in four key steps.
It first examines the local relationships between each data
point and its nearest neighbors. Next, it uses a fuzzy set to
find each point’s relationship to the other points in the data.
After that, the data is adjusted to create a clearer picture
called gradient descent. Ultimately, it combines all of this to
present the data in an easier-to-visualize and analyze format.
The equations 1, 2, and 3 provide the mathematical details
for each step, helping us understand how UMAP works.

Fuzzy Set Membership Function (Fuzzifier)

ϕ(di j, σi) = exp

− d2
i j

2σ2
i

 (1)

Fuzzy Simplicial Set

S i j = ϕ(di j, σi) · ϕ(di j, σ j) ·Mutual knn(i, j) (2)

Objective Function

L =
∑

(i)
∑

( j) · S i j · log
(

S i j

Qi j

)
(3)

Where; Equation 1 computes the similarity between two
data points, where ’i’ and ’j’ represent the row indices in
the input EEG data, ’di j’ signifies the Euclidean distance
between these data points. Equation 2 constructs a fuzzy
simplicial set and Equation 3 defines an objective function,
with the following key parameters. Where σi A scaling
parameter determining the influence of distance on the
similarity for a data point, ’i’. Notably, smaller distances
and larger ’σi’ values yield higher similarity, ’S i j’ is the
pairwise similarity between data points ’i’ and ’j’ in the
high-dimensional space incorporating the fuzzy set mem-

Figure 2. UMAP Visualization for BEED Data

bership function, distance, and mutual k-nearest neighbors,
’Mutual knn(i,j)’ is a function checking whether ’i’ and ’j’
are mutual k-nearest neighbors considering their proximity
in the EEG data and ’Qi j’ is the pairwise similarity in
the low-dimensional space, representing the optimization
target sought by UMAP during the dimensionality reduction
process. ’S i j’ is the value in a specific position (i, j) in a
matrix, often representing a probability or frequency, and
’Qi j’ is the corresponding value in a specific position (i, j)
in another matrix, used for comparison with ’S i j’.

The Fuzzy Set Membership Function helps to find
similarities between data points, the Fuzzy Simplicial Set
creates a graph, and the Objective Function guides the
optimization process for effective simplification. UMAP
reduces the dimensions of EEG data while keeping its
essential relationships intact. Figures 2 and 3 show visual
representations of the transformed BEED and BONN data,
illustrating the outcomes for three embedding dimensions,
respectively. In this study, UMAP uses equations 1, 2 and
3 to simplify and condense high-dimensional EEG data.
The original data, with dimensions 4000*16 for BEED and
4600*178 for BONN, gets transformed into lower dimen-
sional representations and forms temporal features, 4000*3
for BEED and 4600*3 for BONN in the time domain.
This transformation maintains the important structures in
the data.

D. Spectral Features Using FFT
Spectral features, derived from the application of the

Fast Fourier Transform (FFT) in EEG, have been of great
use in understanding the frequency components of brain
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Figure 3. UMAP Visualization for BONN Data

Figure 4. Frequency Response Spectrum for BEED Data

activity. FFT analyzes EEG signals in the frequency do-
main thus making their information visible, and critical to
the brain’s rhythm, such as delta, theta, alpha, beta, and
gamma waves. These spectral features then give an ability
to understand cognitive processes, neurological conditions,
and states of consciousness. It observes and computes the
frequency content of a signal given in a time-domain signal
quite accurately. It transforms the signal from the time
domain to the frequency domain through the computation
of the DFT of a signal. The FFT, within the field of EEG
data analysis, is very useful in showing how the frequency
distribution for brainwave activity evolves with time [26].
The initial data from BEED, sized 4000*16, and BONN,
sized 4600*178, undergo transformation through FFT into
spectral features, maintaining the dimensions of 4000*16
for BEED and 4600*178 for BONN in the frequency do-
main. This process integrates the spectral features with the
existing temporal features, resulting in combined features
known as spectral and temporal features, with dimensions of
4000*19 for BEED and 4600*181 for BONN, respectively.
Figures 4 and 5 depicts the frequency response spectrum
representation of Generalized and Focal seizure signals
using BEED data, seizure, and healthy signals for BONN
and data. Equation 4 provides the mathematical expression
for the FFT.

Figure 5. Frequency Response Spectrum for BONN Data

Xk =

n−1∑
n=0

x j · e−
2πi jk

N (4)

Where; ’Xk’ represents the input signal in the frequency
domain, n represents the number of samples in the input
signal, j represents the value of the signal at a specific
feature index, N represents the total number of samples in
the input signal, i represents the imaginary unit, which is√
−1, k—represents the index for the frequency bins ranges

from 0 to N-1 and the exponential term e−
2πi jk

N represents
phase shift introduced by k and j.

E. Model Selection Criteria
Combining UMAP and FFT for feature extraction man-

age to utilize the time-domain and frequency-domain analy-
sis to improve the seizure classification with full complexity
of the EEG signals. This transformation is very important
because seizures tend to appear as changes in oscillatory be-
havior such as the power and frequency band and therefore
the transformation helps capture patterns related to specific
types of seizures. Even though many oscillations exist, FFT
results are useful to scrutinize these oscillations as they
contain prevalent spectral characteristics of seizures in the
EEG dataset. While UMAP applied to the time-domain data,
transforms high-dimensional data into lower-dimensional
space that preserves important nonlinearity that might be
hidden within the raw signal. It maintains important tem-
poral structures and connections in the EEG data which is
crucial for extracting seizures that have different temporal
characteristics such as spike-like onset. When combined
FFT is used to extract spectral features while temporal
features come from UMAP, the methods take care of the
non-stationariness of the EEG signals and then there are
both rhythmic oscillations as well as temporal changes in
the features. This dual representation not only strengthens
the classifier by ensuring comprehensive seizure characteri-
zation but also improves robustness against noise commonly
present in EEG signals. The combination of these features
enhances model generalization across seizure subjects and
their types by addressing both universal spectral properties
and individual temporal variations.
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Figure 6. Sequential Boosting Network Architecture

F. Sequential Boosting Network (SeqBoostNet)
After assembling the spectral and temporal feature sets,

the data proceeds to the classification stage. EEG clas-
sification entails sorting EEG signals according to their
distinctive features, encompassing the identification of neu-
rological events, cognitive states, and patterns associated
with mental and neurological conditions. Traditional ma-
chine learning (ML) approaches for binary and multiclass
classification didn’t yield significant accuracy. Therefore,
we propose a novel classification method employing a
stacking model, which combines ML and deep learning
(DL) approaches for more robust classification results.

SeqBoostNet is a classification model that employs
stacking ensemble learning to improve predictive perfor-
mance by combining multiple base models. This method
involves training a meta-learner, also known as a blender, to
effectively merge predictions from these base models. The
Stacking algorithm consists of two stages: in the first stage
(level 0), base models like LSTM, XGB, and GB are trained
individually to predict target class labels. In the second stage
(level 1), the meta-model synthesizes these predictions to
generate the final prediction. SeqBoostNet combines predic-
tions from diverse machine learning models using AdaBoost
to construct a metamodel, thus combining the strengths
of different base models to enhance predictive accuracy.
This technique effectively captures complex patterns and
improves performance across various classification scenar-
ios. Figure 6, illustrates the SeqBoostNet architecture used
in this research study.

1) Long Short-Term Memory (LSTM)
LSTM processes EEG data sequentially, step by step,

across all channels [27]. At every step, the cell state gets
updated and the hidden state is computed by selectively
retaining information through forget and input gates. Long-
term dependency in a stream of input data that an LSTM can
recognize makes it an excellent candidate for identifying
patterns of seizure. The process of classification can assist it
in identifying periods as seizure or non-seizure events. The
LSTM’s three main gates and cell state together manage the
information flow effectively.

Cell State: The cell state in an LSTM acts as the
memory, storing and transferring important information
through the sequence. It is updated at each step based on
the inputs and gate outputs, deciding whether to retain or
discard information.

Forget Gate: Determines which information from the
previous cell state to keep or discard using a sigmoid
function.

ft = σ(W f · [ht−1, xt] + b f ) (5)

Where: ft: Output of the forget gate at time step t, W f :
Weight matrix for the forget gate, ht−1: Previous hidden
state, xt: Current input, b f : Bias term for the forget gate,
σ: Sigmoid activation function.

Input Gate: Decides what new information to add to the
cell state using a sigmoid function.

it = σ(Wi · [ht−1, xt] + bi) (6)

Where: it: Output of the input gate at time step t, Wi: Weight
matrix for the input gate, bi: Bias term for the input gate.

Candidate Cell State: Computes potential updates using
the tanh function, mapping values between -1 and 1.

Ct = tanh(Wc · [ht−1, xt] + bc) (7)

Where: Ct: Candidate cell state at time step t, Wc: Weight
matrix for the candidate cell state, bc: Bias term for the
candidate cell state, tanh: Hyperbolic tangent function.

Cell State Update: Combines the previous cell state with
the new information from the input gate and candidate cell
state.

Ct = ft ·Ct−1 + it · C̃t (8)

Where: Ct−1: Previous cell state at time step t − 1, C̃t:
Candidate cell state at time step t.

Output Gate: Regulates how much of the cell state to
pass into the hidden state for the next step.

ot = σ(Wo · [ht−1, xt] + bo) (9)

Where: ot: Output of the output gate at time step t, Wo:
Weight matrix for the output gate, bo: Bias term for the
output gate.

Hidden State: Calculated by applying the tanh function
to the updated cell state, scaled by the output gate, which
is then used for prediction or passed to the next time step.

ht = ot · tanh(Ct) (10)

Where: ht: Hidden state at time step t, tanh(Ct): tanh of the
current cell state Ct.

2) Extreme Gradient Boosting (XGBoost)
Extreme Gradient Boosting (XGBoost) is a highly ef-

fective gradient boosting algorithm known for its high
predictive accuracy, particularly in analyzing EEG data.
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While it excels in modeling complex, non-linear patterns in
brain signals, it requires careful hyperparameter tuning to
avoid overfitting. XGBoost operates as an ensemble learning
method, combining multiple weak models (typically deci-
sion trees) to build a robust predictive model.

The algorithm’s core components are the loss function
and regularization:

L =
n∑

i=1

l(yi, ŷi) +
K∑

k=1

Ω( fk) (11)

Loss Function: Minimizes the error between actual la-
bels (yi) and predicted labels (ŷi) for EEG samples, ensuring
accurate classification of signals, such as seizure types.

Regularization: The term Ω( fk) controls model com-
plexity to prevent overfitting, essential for handling high-
dimensional EEG data.

Φ( f ) = γT +
1
2
λ
∑
ω2

j (12)

Regularization Details: Penalizes complexity by control-
ling tree parameters, where T is the number of leaves, ω j are
the leaf weights, and γ and λ are regularization parameters.

3) Gradient Boosting (GB)
Gradient Boosting is an ensemble learning technique

that builds decision trees sequentially, making it well-suited
for complex EEG data, including heterogeneous signals and
outliers. Although slower in training compared to other
algorithms, it is robust and effective. The model iteratively
improves predictions by addressing residual errors from
previous models. The learning rate α regulates the influence
of each new tree on the final prediction.

Fm(x) = Fm−1(x) + αhm(x) (13)

Loss Function: Measures the error between actual labels
and predictions, adjusting the model based on the residuals:

l(y, ŷ) = l(y, Fm−1(x) + αhm(x)) (14)

4) Adaptive Boosting (AdaBoost)
AdaBoost enhances accuracy by combining weak learn-

ers into a strong model, effectively reducing bias and
variance. However, it can be sensitive to noise and outliers.
AdaBoost integrates predictions from LSTM, XGBoost,
and Gradient Boosting base models in this framework.
The process involves calculating a weighted loss, classifier
weight, weight updates, and final prediction as shown in
Equations 15-18.

Weighted Loss:

Lt =

n∑
i=1

ωt−1
i l(yi, ht(xi)) (15)

Classifier Weight:

αt =
1
2

log
(

1 − errt

errt

)
(16)

Weight Update:

wt
i = wt−1

i · exp (−αt · yi · ht(xi)) (17)

Final Prediction:

H(x) = sign

 T∑
t=1

αtht(x)

 (18)

5) Stacking Classification Framework
In the SeqBoostNet stacking framework, LSTM, XG-

Boost (XGB), and Gradient Boosting (GB) serve as base
models. Spectral and temporal features from EEG data are
input into these models, which generate predictions. These
predictions are aggregated by the AdaBoost meta-model for
final classification. LSTM captures temporal dependencies,
XGB ensures robustness and accuracy, and GB handles
noise and outliers effectively. AdaBoost combines these
base models to enhance classification performance by re-
ducing bias and variance. SeqBoostNet, designed for seizure
detection using BEED and BONN datasets, incorporates
LSTM, XGB, and GB as base models and AdaBoost as the
meta-model. The BEED dataset has 4,000 samples with 19
features, while the BONN dataset contains 4,600 samples
with 181 features, both classifying seizures (1) vs. healthy
(0). The data is normalized and split into training and testing
sets. Each base model is trained to produce probabilistic
predictions (YLSTM, YXGB, YGB).

These predictions are compiled into a matrix for Ad-
aBoost, which is trained to improve classification accuracy.
Once trained, SeqBoostNet processes new data with the
base models, and AdaBoost makes the final prediction.
Key hyperparameters for the models used in this study
are as follows: For the LSTM, 128 cells are utilized with
ReLU activation, a dropout rate of 0.5, Sigmoid output,
Adam optimizer, Sparse Categorical Cross-Entropy loss,
100 epochs, and a batch size of 32. The XGBoost model
is configured with 300 estimators, a maximum depth of 6,
a learning rate of 0.05, and a Multi-Softmax objective. The
Gradient Boosting (GB) model includes 100 estimators, a
learning rate of 0.1, and a maximum depth of 3. Lastly,
the AdaBoost model employs 50 weak learners with a
learning rate of 1.0. These hyperparameters are crucial
for optimizing SeqBoostNet’s performance in EEG data
classification.
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6) Inferences
• Combining models significantly improves the classifi-

cation of complex EEG patterns, leading to enhanced
seizure detection accuracy.

• Each base model contributes specialized insights,
effectively capturing unique spectral, temporal, and
spatial characteristics of EEG signals.

• The stacked approach mitigates overfitting and en-
hances the model’s ability to generalize across differ-
ent EEG datasets and conditions.

• The meta-model integrates predictions from base
models, yielding more reliable and robust EEG clas-
sifications.

• The model architecture is flexible, allowing for the
incorporation of additional base models to refine EEG
signal interpretation.

• By optimally weighting base model outputs, the meta-
model boosts prediction accuracy for complex neuro-
logical conditions.

• This approach harnesses the complementary strengths
of individual models, providing a comprehensive so-
lution for EEG data analysis in clinical and research
applications.

G. Performance Evaluation Metrics
Performance evaluation measures assess a model’s ef-

fectiveness in various fields like machine learning, statis-
tics, and information technology. These metrics gauge how
well a model accomplishes its objectives [28]. Various
performance evaluation metrics are essential for assessing
the effectiveness of classification models in handling both
seizure and healthy subjects. Table II provides the formulae
used in this study. The acronyms used in the table are
as follows; TS-True Seizures, TH-True Healthy, TP-True
positives, FS- False Seizures, FH-False Healthy and A-
Agreement.

4. RESULTS AND DISCUSSION
This section interprets the results of the proposed fea-

ture engineering approach such as spectral and temporal
features, which utilizes techniques like UMAP and FFT.
It includes an analysis showcasing the efficacy of the
SeqBoostNet classifier in epileptic seizure classification.
The analysis was carried out using a Python tool on a
Windows 10 operating system with a 64-bit architecture
and 8 GB of RAM. The system was equipped with an
Intel(R) Core(TM) i3- 6006U CPU operating at 2.00 GHz.
The study introduces a model combining different features
from the time and frequency domain with SeqBoostNet for
an automatic epileptic seizure classification, utilizing BEED
and BONN datasets with different case scenarios provided
in Table III and IV respectively.

A. Performance analysis of BEED Data
Table V presents the detailed performance metrics for

BEED data. The results exhibit the performance metrics of
six distinct cases (A1 to A6) applied in the classification of
EEG data. Cases A2, A3, and A6 emerge as the top per-
formers, showcasing exceptional accuracy, precision, recall,
F1-score, ROC-AUC, Kappa, MCC, sensitivity, specificity,
and F2-score, with values consistently exceeding 99%.
These cases demonstrate near-perfect classification capa-
bilities, achieving perfect sensitivity and high specificity,
indicating their proficiency in accurately identifying positive
and negative cases. Moreover, their predictions yield low
log loss values, suggesting high confidence and calibration.
While cases A1, A4, and A5 also exhibit commendable
performance, they present slightly lower values across most
metrics, hovering around the mid to high 90% range.
Notably, cases A4, A5, and A6 require marginally more
processing time compared to A1, A2, and A3, which may
be a consideration for real-time applications. Hence, the
exceptional performance of these models in classifying EEG
data positions them as highly reliable for use in clinical
and neuroscience settings, providing significant insights for
future applications and research advancements.

Figure 7, illustrates the ROC curves for BEED cases,
showing the trade-off between the true positive rate (sen-
sitivity) and the false positive rate (1-specificity) for dif-
ferent cases (A1 to A6). Cases A3, A4, and A6 achieve
perfect discrimination (AUC = 1.00), indicating excellent
performance in distinguishing between positive and negative
cases. A2 and A5 also demonstrate strong discrimination,
with AUC values of 0.92 and 0.96, respectively, while A1
shows slightly lower discrimination with an AUC of 0.94.

B. Performance analysis of BONN Data
Table VI presents the comprehensive performance met-

rics of five distinct models (B1 to B5) employed for
EEG data classification. Notably, models B3 and B4 con-
sistently exhibit exceptional performance across various
evaluation criteria, including accuracy, precision, recall, F1-
score, Kappa, MCC, ROC-AUC, sensitivity, specificity, and
F2-score, with values consistently exceeding 99%. These
models demonstrate robust agreement between predicted
and actual classifications, with high sensitivity and speci-
ficity, indicating their proficiency in correctly identifying
both positive and negative cases. Furthermore, B3 and B4
achieve low log loss values, reflecting high confidence and
calibration in their predictions. In contrast, while models
B1 and B2 also perform well, they exhibit slightly lower
metrics compared to B3 and B4, while B5 demonstrates
relatively lower performance across most evaluation criteria.
Overall, the findings underscore the effectiveness of models
B3 and B4 in accurately classifying EEG data, suggesting
their suitability for practical applications in neuroscience
and clinical settings. The detailed performance metrics for
BONN data are presented in Table VI.

The models applied to EEG data for BONN cases
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TABLE II. Performance Metrics and their Formulas

Metric Formula

Accuracy (A) TS+T H
T P

Chance Agreement (CA) TS ·(TS+FS )·(TS+FH)+(T H+FS )·(T H+FH)
T P2

F1-Score (F1) 2·P·R
P+R

F2-Score (F2) 5·P·R
4·P+R

Kappa (K) A−CA
1−CA

Log Loss − 1
N

∑N
i=1

(
yi log(pi) + (1 − yi) log(1 − pi)

)
MCC (TS ·T H−FS ·FH)

√
(TS+FS )·(TS+FH)·(T H+FS )·(T H+FH)·N

Precision (P) TS
TS+FS

Recall (R) TS
TS+FH

Sensitivity TS
TS+FH

Specificity T H
T H+FS

TABLE III. BEED Cases

Dataset Description

A1 Generalized Vs Focal
A2 Generalized Vs Healthy
A3 Focal Vs Healthy
A4 Focal Vs Seizure Events
A5 Generalized Vs Seizure Events
A6 Seizure Events Vs Healthy

TABLE IV. BONN Cases

Dataset Description

B1 Seizure Vs Healthy
B2 Seizure Vs Tumor
B3 Seizure Vs Eye Closed
B4 Seizure Vs Eye Opened
B5 Eye Closed Vs Eye Opened

TABLE V. Performance Analysis of BEED

Metrics A1 A2 A3 A4 A5 A6
Accuracy 95.91 99.66 99.83 91.16 94.01 99.66
Precision 96.01 99.66 99.83 91.25 94.01 99.66
Recall 95.91 99.66 99.83 91.16 94.01 99.66
F1-score 95.91 99.66 99.83 91.15 94.01 99.66
Kappa 91.83 99.33 99.66 82.27 87.98 99.33
MCC 91.91 99.33 99.66 82.38 87.99 99.33
ROCAUC 95.98 99.65 99.82 91.06 94.01 99.65
Sensitivity 94.05 1.00 1.00 93.89 93.56 1.00
Specificity 97.92 99.30 99.65 88.23 94.46 99.30
F2-score 95.93 99.66 99.83 91.18 94.01 99.66
Log Loss 1.47 0.12 0.06 0.61 2.16 0.12
Time 28s 28s 28s 30s 31s 48s
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TABLE VI. Performance Analysis of BONN

Metrics B1 B2 B3 B4 B5
Accuracy 97.39 98.40 99.34 99.63 90.79
Precision 97.40 98.40 99.35 99.63 90.85
Recall 97.39 98.40 99.34 99.63 90.79
F1-score 97.39 98.40 99.34 99.63 90.79
Kappa 94.77 96.80 98.69 99.27 81.59
MCC 94.78 96.81 98.69 99.27 81.63
ROCAUC 97.41 98.38 98.69 99.64 90.84
Sensitivity 96.77 98.87 99.01 99.43 89.49
Specificity 98.04 97.89 99.69 99.84 92.19
F2-score 97.39 98.40 99.34 99.63 90.80
Log Loss 0.94 0.57 0.23 0.13 3.31
Time 2m 58s 2m 19s 2m 53s 2m 56s 2m 32s

Figure 7. ROC curves for BEED Data

exhibit excellent performance in classifying various condi-
tions. The tasks involving Seizure vs. Eye Closed (Case B3)
and Seizure vs. Eye Opened (Case B4) excel with top-tier
accuracy, precision, recall, and F1-scores, reaching 99.34%
and 99.63% respectively. These models also showcase high
sensitivity and specificity, effectively identifying both posi-
tive and negative cases with near-perfect accuracy. Seizure
vs. Healthy (Case B2) also performs exceptionally well,
maintaining high accuracy and strong ROC-AUC, indicating
its efficiency in distinguishing seizure data from healthy
cases. The Seizure vs. Tumor (Case B1) classification task

exhibits strong accuracy and reliability, though slightly
lower than the top performers. Eye Closed vs. Eye Opened
(Case B5) has the lowest performance of the set but still
delivers strong results in distinguishing between these two
conditions. Overall, these models provide highly reliable
and accurate classification of EEG data across different
tasks, making them valuable tools for use in clinical and
research settings.

Figure 8, illustrates the ROC curves for BONN cases.
The ROC curves demonstrate the classification performance
of cases B1 to B5, with AUC values indicating the ability
to distinguish between true positive and false positive rates.
Case B1 achieves perfect discrimination (AUC = 1.00),
signifying excellent classification accuracy. B2 closely fol-
lows with a high AUC of 0.99, while B3 and B4 exhibit
slightly lower discrimination with AUCs of 0.98 and 0.97,
respectively. Case B5 demonstrates the lowest discrimina-
tion among the cases, with an AUC of 0.91, indicating
relatively weaker classification performance.

C. Comparative Analysis
1) Comparision of existing literature with proposed model

Figure 9 provides a comparison of the results ob-
tained by the proposed system in the study with the find-
ings from previous relevant research. The proposed model
demonstrated outstanding performance with an accuracy of
98.40%, surpassing the accuracy levels achieved by previ-
ous studies on the same BONN dataset. This remarkable
accuracy highlights the effectiveness and superiority of the
proposed model in EEG signal classification. This study
offers valuable insights into the early diagnosis of epileptic
seizures through the application of artificial intelligence and
classification algorithms. It underscores the importance of
timely seizure diagnosis, considering the global prevalence
of this health issue, and the positive impact it can have on
patient outcomes.

The time complexity details in Table VII provide in-
sights into the computational efficiency of various tech-
niques employed in the proposed work for EEG data anal-
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TABLE VII. Time Complexity Details

Technique Time Complexity
FFT O(N log N)
UMAP O(N × D)
LSTM O(N)
XGB O(M × T )
GB O(M × T )
Ada O(M × T )
SeqBoostNet O(N log N + N × D + M × T )

Figure 8. ROC curves for BONN Data

Figure 9. Comparision of existing literature with proposed model

ysis. FFT demonstrates the most efficient time complexity,
making it well-suited for rapid processing of large datasets.
UMAP’s complexity is influenced by the number of data
points (N) and dimensions (D), indicating its scalability
for handling high-dimensional data. Recurrent neural net-
works, such as LSTM, exhibit linear time complexity, which
can result in increased processing times with larger as
datasets. In contrast, XGBoost, Gradient Boosting (GB),
and AdaBoost share a complexity of O(M × T ), reflect-
ing their dependence on the number of features (M) and
boosting iterations (T), suggesting moderate efficiency for
these ensemble methods. The proposed SeqBoostNet model
integrates the strengths of feature engineering techniques
like UMAP and FFT, leading to an overall time complexity
of O(N log N+N×D+M×T ). This stacking approach effec-
tively balances computational efficiency with deep learning
capabilities, providing a robust and scalable solution for
EEG data analysis. Hence, this overview emphasizes a range
of methods, each with its trade-offs between speed and
complexity, guiding the selection of suitable techniques for
specific tasks and datasets.

2) Comparison with Feature Extraction Techniques
In the comparative analysis of the diverse feature-

extracting techniques for seizure classification, the proposed
method with spectral and temporal features outperforms all
approaches by a wide margin in all cases as presented in
Table VIII. It surpasses traditional techniques in the form
of wavelet transform (WT) (89.81%), statistical features
(STATS) (84.32%), short-time Fourier transform (STFT)
(83.82%), principal component analysis (PCA) (89.82%),
independent component analysis (ICA) (89.57%), Hilbert-
Huang Transform (HHT) (80.90%), and empirical mode
decomposition (EMD) (85.75%) with an average accuracy
of 95.76%.

The proposed method has been compared with other
techniques using the same, and actually, the proposed
method has outperformed the existing methods in individual
cases. Furthermore, for difficult cases, such as A2 and
A3, the proposed method achieves 99.58% and 99.83%
accuracy, respectively. Other techniques demonstrate similar
performance but lack the strength of the presented model,
especially in cases like A4 and A5, to which they break
below 80%, while the proposed method maintains high
accuracy. This will endorse the added capability of the
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combined feature extraction in a spectral and temporal sense
to capture the complexity of seizure events.

Table IX represents a comparative feature extraction
analysis for Bonn data. In all cases for the comparative
analysis among feature extraction techniques, the proposed
method, which fuses the spectral and temporal features,
achieves superior performance. It has an impressive aver-
age accuracy of 96.97%, compared to conventional tech-
niques such as wavelet transform (WT), 91.39%; statis-
tical features, STATS, 89.95%; short-time Fourier trans-
form, STFT, 89.25%; principal component analysis, PCA,
88.92%; independent component analysis, ICA, 89.00%;
Hilbert-Huang Transform, HHT; and empirical mode de-
composition, EMD; 91.%. Altogether, this approach can
produce enhanced performance, particularly for challenging
cases like B2, B3, and B4, in which approximate accu-
racies are around 98.47%, 99.42%, and 99.56%, respec-
tively. Traditional methods remain comparable; however,
this proposed technique is successful in endowing seizure
pattern recognition with the facility to deal with complex
presentations for the above analysis.

3) Comparison with Stacking Models
Stack Model 1 is the combination of base models such as

XGBoost and LightGBM using a meta-learner of Bagging
Classifier [29], and in Stack Model 2 base models are
Random Forest, LightGBM, and Gradient Boosting; meta-
learner is XGBoost [30].

The proposed SeqBoostNet model results in a significant
outperformance of the stacking models on the BEED dataset
as shown in Table X. It also boasts an average accuracy
of 96.71%; more specifically, it outperforms other models
in the specific cases of A2 (99.66%) and A3 (99.83%).
Conversely, Stack Model 1 and Stack Model 2 display, on
average, accuracies of 85.85% and 87.57%, respectively.
The SeqBoostNet enhances much more challenging cases
A4 and A5: stacking models fall below 80%, but the
accuracy of SeqBoostNet is over 91% and shows its high
robustness for seizure classification.

From Table XI it is observed that in the BONN data
set, SeqBoostNet also outperforms with an accuracy of
97.11%, whereas Stack Model 1 shows 94.36% and Stack
Model 2 shows 94.30%. In higher-accuracy cases such as
B3 (99.34%) and B4 (99.63%), SeqBoostNet maintains high
performance surpassing the stacking models every time.
While the stacking models are performing well, relatively
lower accuracy in cases like B5 further solidifies that
SeqBoostNet has reliability and efficacy in accurately classi-
fying seizure events across different cases.Hence, SeqBoost-
Net consistently outperforms existing stacking models in
challenging scenarios. This exceptional performance high-
lights SeqBoostNet’s robustness and reliability in accurately
classifying seizure events, making it a strong classification
model for enhanced diagnostic capabilities in healthcare
settings.

5. Conclusions and FutureWork
This study contributes significantly to seizure diagnos-

tics by offering a robust SeqBoostNet stacking model’s
efficacy in classifying EEG data by leveraging both spec-
tral and temporal features obtained through UMAP and
FFT techniques. The proposed model accurately classifies
seizure types, achieving a notable accuracy of 95.91% in
distinguishing between focal and generalized seizures. Un-
like existing models, which often struggle with variability
in seizure presentations, this approach excels in classifying
both seizure and healthy states and adapts well to varying
patient conditions. By effectively capturing the temporal and
spectral characteristics of EEG signals, the SeqBoostNet
model demonstrates significant enhancement in classifica-
tion performance across multiple metrics. Specifically, the
model achieves an average accuracy of 96.71% for the
BEED dataset and 97.11% for the BONN dataset, achieving
a maximum accuracy of 99% for binary classification,
distinguishing between seizure and healthy instances across
both datasets. The proposed work demonstrates high per-
formance due to its innovative integration of spectral and
temporal features, which allows for a more comprehensive
analysis of EEG signals. By employing the SeqBoostNet
stacking model, the research effectively enhances clas-
sification accuracy through the combination of multiple
algorithms, capitalizing on their strengths. Additionally, the
use of advanced feature engineering techniques ensures that
only the most relevant data is utilized, further improving
the model’s robustness. This meticulous approach not only
boosts classification performance but also provides sig-
nificant insights into distinguishing between various brain
states. The exceptional precision, recall, and F1 scores
achieved by the SeqBoostNet model highlight its reliability
and robustness, marking a notable advancement in EEG data
classification for clinical use. This strong performance em-
phasizes the model’s potential for facilitating early detection
and diagnosis of neurological disorders in both clinical and
research contexts.

Limitations that are observed are dependency on the
relevance of extracted features, which can differ signifi-
cantly across datasets. Another key challenge related to the
adaptability of stacked models is that combining multiple
models or techniques can introduce complexity that may im-
pact the model’s performance across varied clinical datasets.
Ensuring that stacked models maintain robust performance
across different contexts remains a challenge. Future re-
search should explore methods to improve the adaptability
of stacking approaches, enhancing their applicability across
diverse clinical contexts. Integrating the model into clinical
practice could open avenues for innovations such as brain-
computer interfaces and personalized medicine.
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TABLE VIII. Comparative Analysis with Feature Extraction Techniques For BEED Data

Cases WT STATS STFT PCA ICA HHT EMD Proposed
A1 89.91 83.83 81.42 85.83 85.67 78.75 83.58 93.33
A2 89.83 92.19 91.99 90.83 90.99 94.75 93.58 99.58
A3 92.30 91.42 92.51 93.67 92.75 94.42 94.33 99.83
A4 85.08 68.75 67.83 83.58 82.33 59.17 70.92 89.91
A5 89.91 76.42 75.42 90.33 90.92 66.25 78.08 92.25
A6 91.83 93.33 93.75 94.67 94.75 92.08 93.99 99.66
Average 89.81 84.32 83.82 89.82 89.57 80.90 85.75 95.76

TABLE IX. Comparative Analysis with Feature Extraction Techniques For BONN Data

Cases WT STATS STFT PCA ICA HHT EMD Proposed
B1 93.90 93.72 91.22 92.13 93.26 93.33 93.43 97.10
B2 90.41 91.46 91.25 90.58 90.22 90.23 91.26 98.47
B3 92.26 92.96 93.71 93.68 93.19 93.29 94.19 99.42
B4 93.64 94.93 94.28 91.99 91.55 93.71 94.78 99.56
B5 86.74 76.67 75.80 76.23 76.80 75.58 82.03 90.28
Average 91.39 89.95 89.25 88.92 89.00 89.23 91.14 96.97

TABLE X. Comparative Analysis with Stacking Classifiers For BEED Data

Cases Stack 1 Stack 2 SeqBoostNet
A1 83.00 86.58 95.91
A2 91.75 90.92 99.66
A3 90.67 89.91 99.83
A4 71.67 75.58 91.16
A5 78.42 82.67 94.01
A6 99.58 99.75 99.66
Average 85.85 87.57 96.71

TABLE XI. Comparative Analysis with Stacking Classifiers For BEED Data

Cases Stack 1 Stack 2 SeqBoostNet
B1 94.88 93.96 97.39
B2 96.26 95.04 98.40
B3 97.28 96.35 99.34
B4 95.49 96.71 99.63
B5 87.90 89.42 90.79
Average 94.36 94.30 97.11
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Without their generous support, our research would not have
been feasible. Furthermore, we acknowledge Bangalore
EEG clinic’s notable contribution to our continued pursuit
of knowledge in this domain.
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A. Jones, A. Mohamed, P. Y. S. Chau, S. Sharmin, A. Chramiec-
Głabik et al., “Functional divergence of the two elongator sub-
complexes during neurodevelopment,” EMBO Molecular Medicine,
vol. 14, no. 7, p. e15608, 2022.

[7] S. Ashokkumar, S. Anupallavi, M. Premkumar, and V. Jeevanan-
tham, “Retracted: Implementation of deep neural networks for
classifying electroencephalogram signal using fractional s-transform
for epileptic seizure detection,” International Journal of Imaging
Systems and Technology, vol. 31, no. 2, pp. 895–908, 2021.

[8] M. S. Islam, K. Thapa, and S.-H. Yang, “Epileptic-net: an improved
epileptic seizure detection system using dense convolutional block
with attention network from eeg,” Sensors, vol. 22, no. 3, p. 728,
2022.

[9] F. Hassan, S. F. Hussain, and S. M. Qaisar, “Epileptic seizure
detection using a hybrid 1d cnn-machine learning approach from
eeg data,” Journal of Healthcare Engineering, vol. 2022, no. 1, p.
9579422, 2022.

[10] T. S. Cleatus and M. Thungamani, “Epileptic seizure detection using
spectral transformation and convolutional neural networks,” Journal
of The Institution of Engineers (India): Series B, vol. 103, no. 4,
pp. 1115–1125, 2022.

[11] M. H. Aslam, S. M. Usman, S. Khalid, A. Anwar, R. Alroobaea,
S. Hussain, J. Almotiri, S. S. Ullah, and A. Yasin, “Classification of
eeg signals for prediction of epileptic seizures,” Applied Sciences,
vol. 12, no. 14, p. 7251, 2022.

[12] A. Altameem, J. S. Sachdev, V. Singh, R. C. Poonia, S. Kumar,
and A. K. J. Saudagar, “Performance analysis of machine learning
algorithms for classifying hand motion-based eeg brain signals.”
Computer Systems Science & Engineering, vol. 42, no. 3, 2022.

[13] X. Xu, Y. Zhang, R. Zhang, and T. Xu, “Patient-specific method for
predicting epileptic seizures based on drsn-gru,” Biomedical Signal
Processing and Control, vol. 81, p. 104449, 2023.

[14] Y. Gao, Z. Zhao, Y. Chen, G. Mahara, J. Huang, Z. Lin, and
J. Zhang, “Automatic epileptic seizure classification in multichannel
eeg time series with linear discriminant analysis,” Technology and
Health Care, vol. 28, no. 1, pp. 23–33, 2020.

[15] S. Urbina Fredes, A. Dehghan Firoozabadi, P. Adasme, D. Zabala-
Blanco, P. Palacios Játiva, and C. Azurdia-Meza, “Enhanced epilep-
tic seizure detection through wavelet-based analysis of eeg signal
processing,” Applied Sciences, vol. 14, no. 13, p. 5783, 2024.

[16] S. Y. Shah, H. Larijani, R. M. Gibson, and D. Liarokapis, “Epilep-
tic seizure classification based on random neural networks using
discrete wavelet transform for electroencephalogram signal decom-
position,” Applied Sciences, vol. 14, no. 2, p. 599, 2024.

[17] D. Hernández, L. Trujillo, E. Z-Flores, O. Villanueva, and O. Romo-
Fewell, “Detecting epilepsy in eeg signals using time, frequency and
time-frequency domain features,” Computer science and engineer-
ing—theory and applications, pp. 167–182, 2018.

[18] M. G. Tsipouras, “Spectral information of eeg signals with respect
to epilepsy classification,” EURASIP Journal on Advances in Signal
Processing, vol. 2019, no. 1, pp. 1–17, 2019.

[19] K. Akyol, “Stacking ensemble based deep neural networks model-
ing for effective epileptic seizure detection,” Expert Systems with
Applications, vol. 148, p. 113239, 2020.

[20] M. K. M. Rabby, A. K. Islam, S. Belkasim, and M. U. Bikdash,
“Wavelet transform-based feature extraction approach for epileptic
seizure classification,” in Proceedings of the 2021 ACM southeast
conference, 2021, pp. 164–169.

[21] J. Jing, X. Pang, Z. Pan, F. Fan, and Z. Meng, “Classification and
identification of epileptic eeg signals based on signal enhancement,”
Biomedical Signal Processing and Control, vol. 71, p. 103248, 2022.

[22] S. Mishra, S. Kumar Satapathy, S. N. Mohanty, and C. R. Pattnaik,
“A dm-elm based classifier for eeg brain signal classification for
epileptic seizure detection,” Communicative & Integrative Biology,
vol. 16, no. 1, p. 2153648, 2023.

[23] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David,
and C. E. Elger, “Indications of nonlinear deterministic and finite-
dimensional structures in time series of brain electrical activity:
Dependence on recording region and brain state,” Physical Review
E, vol. 64, no. 6, p. 061907, 2001.

[24] D. Thara, B. PremaSudha, and F. Xiong, “Auto-detection of epileptic
seizure events using deep neural network with different feature
scaling techniques,” Pattern Recognition Letters, vol. 128, pp. 544–
550, 2019.

[25] T. Liu, M. Z. H. Shah, X. Yan, and D. Yang, “Unsupervised
feature representation based on deep boltzmann machine for seizure
detection,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 31, pp. 1624–1634, 2023.

[26] Y. Pan, X. Zhou, F. Dong, J. Wu, Y. Xu, and S. Zheng, “Epileptic
seizure detection with hybrid time-frequency eeg input: A deep
learning approach,” Computational and Mathematical Methods in
Medicine, vol. 2022, no. 1, p. 8724536, 2022.

[27] K. Singh and J. Malhotra, “Two-layer lstm network-based predic-
tion of epileptic seizures using eeg spectral features,” Complex &
Intelligent Systems, vol. 8, no. 3, pp. 2405–2418, 2022.

[28] Aayesha, M. B. Qureshi, M. Afzaal, M. S. Qureshi, and M. Fayaz,
“Machine learning-based eeg signals classification model for epilep-
tic seizure detection,” Multimedia Tools and Applications, vol. 80,
no. 12, pp. 17 849–17 877, 2021.

[29] T. Islam, R. Islam, M. Basak, A. D. Roy, M. A. Arman, S. Paul,
O. Shandra, and S. R. Ali, “Performance investigation of epilepsy
detection from noisy eeg signals using base-2-meta stacking classi-
fier,” Scientific Reports, vol. 14, no. 1, p. 10792, 2024.

[30] S. Chatterjee and Y.-C. Byun, “Eeg-based emotion classification
using stacking ensemble approach,” Sensors, vol. 22, no. 21, p. 8550,
2022.


	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	Data Acquisition
	BEED EEG Dataset
	BONN EEG Dataset

	Data Preprocessing
	Temporal Features Using UMAP
	Spectral Features Using FFT
	Model Selection Criteria
	Sequential Boosting Network (SeqBoostNet)
	Long Short-Term Memory (LSTM)
	Extreme Gradient Boosting (XGBoost)
	Gradient Boosting (GB)
	Adaptive Boosting (AdaBoost)
	Stacking Classification Framework
	Inferences

	Performance Evaluation Metrics

	RESULTS AND DISCUSSION
	Performance analysis of BEED Data
	Performance analysis of BONN Data
	Comparative Analysis
	Comparision of existing literature with proposed model
	Comparison with Feature Extraction Techniques
	Comparison with Stacking Models


	Conclusions and Future Work
	Acknowledgement
	References

