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Abstract: Indonesia witnesses a continual annual surge in the vehicle count, with the Central Statistics Agency (BPS) projecting
a total of 148.2 million vehicles in 2022, marking a 6.3 million increase from the preceding year. This growth underscores the
escalating challenges associated with traffic management and violations. Hence, the development of a robust vehicle number plate
image recognition system becomes paramount for effective traffic control, accurate parking records, and streamlined identification
of vehicle owners. In this study, we introduce a modified YOLO v5 algorithm, enhancing its backbone to achieve richer feature
extraction from vehicle images. This modification aims to improve the model’s capacity to handle diverse conditions, such as low
lighting, intricate viewing angles, and blurred license plates. Utilizing the AOLP dataset, the modified YOLO v5 algorithm demonstrates
remarkable performance metrics, boasting a recall value of 99.7%, precision reaching 99.1%, mAP50 of 99.4%, and mAP50-95 of
84.8%. The enhanced precision signifies the model’s proficiency in minimizing identification errors, while the commendable recall
highlights its adeptness in accurately locating number plates. Additionally, the Optical Character Recognition (OCR) model, dedicated
to character recognition on number plates, achieves an accuracy level of 92.85%, underscoring its efficacy in deciphering alphanumeric
characters. This integrated approach leverages advanced algorithms and our backbone modifications to tackle the intricacies of real-
world scenarios, affirming its viability for enhancing traffic management systems and bolstering the efficiency of vehicle-related processes.
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1. INTRODUCTION

The annual growth of the vehicle population in In-
donesia persists, as indicated by statistics from the Central
Statistics Agency (BPS). In 2022, the total number of
vehicles is projected to reach 148.2 million, reflecting a
surge of 6.3 million compared to the preceding year. Every
vehicle, whether motorbike or car, must have a number plate
as proof that the vehicle has received permission from the
police and is being used on the road [1], [2]. A number
plate is a motor vehicle identification mark the police give
when the vehicle is first used [3].

As the number of vehicles on the road increases, prob-
lems with traffic violations also increase. This makes a
vehicle number plate image recognition system important
[4]. The vehicle number plate image recognition system can
be carried out using pattern recognition techniques or Deep
Learning and Computer Vision [5].

There are several studies on the use of computer vi-

sion for number plate detection, such as the [6] research,
which uses the YOLO-Darknet algorithm with datasets from
AOLP [7]. The same algorithm was also studied by [8], but
the results of recognizing the object of this research were
better, namely 98.22% compared to the [6] research which
only produced an accuracy of 97.1%. In the following year,
there was research conducted by [9] using the YOLO v4
method, followed by research from [10], which used YOLO
v5 with the RHNP dataset. This research resulted in mAP
of 98.8% on YOLO v4 and 90.8% on YOLO v5.

From this research, it can be concluded that the perfor-
mance of the YOLO algorithm can obtain high accuracy
regarding number plate detection. However, this research
does not take into account traffic problems such as plate
image conditions with low lighting, complex viewing an-
gles, and small or large number plates. It was blurred
so that it could reduce the performance of the number
plate recognition system as a whole. According to research
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conducted by [11] and [12], inconsistent lighting can affect
object recognition because it can change the appearance of
objects in the image. If the lighting is too bright or dark, the
object may look different from the image referenced by the
object recognition model. This can cause the model to fail
to recognize objects with low accuracy. Therefore, lighting
consistency is critical in image capture for accurate object
recognition.

Based on this problem, research was conducted to detect
number plates using the YOLO v5 algorithm with a vehicle
dataset called AOLP. The AOLP dataset includes vehicle
images under various imaging conditions. These include
low-light images and varying levels of image clarity. These
diverse imaging conditions reflect frequently occurring sit-
uations in traffic and pose a challenge for object detection
models to recognize license plates accurately. YOLO v5’s
performance reached 67.24% AP (Average Precision) on the
DOTA (emergency landing spot) dataset using an Nvidia
RTX 2070 GPU. This result is better than YOLO v4 with
an AP value of 64.818%. Therefore, this research will use
YOLO v5 because it was proven superior to YOLO v4 [13].

This research contributes to the development of ob-
ject detection techniques using YOLO v5 with two main
approaches. First, through modifications to the YOLO v5
backbone, this research introduces the addition of new
convolution layers to improve feature representation without
significantly increasing the number of parameters. Second,
this research performs careful hyperparameter tuning, op-
timizing critical parameters in the model training process
to improve detection performance. Thus, the contribution
of this research is expected to increase the accuracy and
reliability of object detection systems, especially in the
context of vehicle number plate detection in poor lighting
conditions and varying viewing angles.

2. RELATED WORK

Various research has been carried out in number plate
detection using multiple methods and models in computer
vision.

For example, in research by [14], CNN, RNN, and
LSTM models were used with the AOLP dataset consisting
of three image categories. The CNN model was trained with
four layers to classify license plate images, while RNN with
LSTM was used for character detection. The model in this
research produced a precision of 97.18%, recall of 97.19%
in object recognition, and accuracy of 86.22%. However, the
approach had limitations in handling diverse environmental
conditions and different license plate formats.

Another study by [15] proposed a hybrid CNN and SVM
approach for license plate classification and recognition,
the segmented characters were scaled to 2828 images
for subsequent processing. The CNN model, consisting of
seven layers—an input layer, convolutional layer, ReLU
layer, max-pooling layer, fully connected layer, classifica-
tion layer, and a softmax layer—was employed for fea-

ture extraction from the segmented regions. This method
achieved an impressive recognition accuracy of 98.45%.
However, one limitation of this approach is that it primarily
relies on a fixed image resolution (28%28), which may
not fully capture finer details in the characters, potentially
affecting the model’s performance on more complex or
noisy images. Furthermore, [16] used Fast-YOLO v2 with
adjustments to the input image and convolution kernel size.
This modification significantly improved the results of ob-
ject detection and character recognition, achieving 99.45%
recall in object detection and 96.9% accuracy in character
recognition. The main drawback was the complexity of the
modifications, making the model less adaptable to real-time
applications.

Sun et al. [17] compared YOLO v2 and YOLO v3 for
number plate detection and used CRNN-12 to read number
plates. The dataset was collected manually from various
locations with varying lighting conditions. Although both
YOLO models achieved high levels of accuracy, YOLO v3
showed slightly better performance in terms of Intersection
Over Union (IOU). Meanwhile, CRNN-12 managed to
achieve 98.86% accuracy in reading number plates. This
study highlighted the robustness of YOLO v3, but it also
showed that the model struggled with smaller license plates
and different angles. Further research was conducted by
[18] used CNN for license plate classification, the proposed
architecture was evaluated on three popular benchmarks,
namely the Stanford Cars dataset, the Indian License Plates
Dataset, and the Car License Plate Detection Dataset. The
model achieved an accuracy of 98% across these three
datasets. However, a potential limitation of this study is
that while it reports high accuracy, it does not provide de-
tailed insights into the model’s performance under varying
conditions such as different lighting, angles, or occlusions,
which are common challenges in real-world scenarios.

Lastly, [9] adopted YOLO v4 for vehicle type and
license plate character detection. Using this model on high-
resolution video datasets produced a high success rate
in detecting number plates, even on tiny number plates.
However, the high-resolution requirement limited its ap-
plication to certain types of cameras and environments.
Meanwhile, research by [10] explored SG-YOLO v5, a
modification of YOLO v5 with improved performance in
license plate detection. SG-YOLO v5 managed to achieve
a mean average precision (mAPO.5) of 94.5%.

YOLO v5 has been shown to have a balance between
object detection accuracy and computational speed, mak-
ing it suitable for license plate detection tasks in real-
time scenarios. This advantage is supported by research
results from [10], which show the superior performance of
YOLO v5 in terms of mean average precision (mAPO.5) of
94.5%. YOLO v5 also has high adaptability to variations in
object and environmental conditions, such as low lighting,
complex viewing angles, and small or blurred objects on
vehicle license plates. This capability meets the challenges
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of license plate detection in various traffic situations.

Thus, choosing YOLO v5 as a number plate detection
method has advantages in terms of accuracy, adaptability,
and speed, in accordance with the needs of this research.

3. RESEARCH METHODOLOGY
A. Research Flowcart
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Figure 1. Research flowchart

Figure 1 illustrates the research stages that will be
carried out in this research. The initial stage of this research
begins with collecting relevant datasets to train and test the
object detection model. After the dataset is collected, a pre-
processing process is carried out, including dividing training
and testing data and adding labels or annotations to objects
in the image. Next, the researchers designed the YOLO v5
object detection model architecture, which was adapted to
the characteristics of the dataset and research problems.
This process is followed by hyperparameter adjustments,
such as learning rate and batch size, to improve model
performance. Model training is carried out using a training
dataset involving loss calculations, backpropagation, and
weight updates to minimize prediction errors.

Once training is complete, the model is evaluated using a
validation dataset to measure object detection performance,
with metrics such as precision, recall, and mAP. Evaluation
results are used to determine whether model performance
is adequate or requires adjustment. If it is satisfactory,
the researcher continues to the testing stage using dataset
testing. However, if performance still needs to be improved,
hyperparameter fine-tuning is performed for better config-
uration. The trained and validated model is tested on a
testing dataset to test performance in realistic situations. The
process of detecting number plate characters using OCR is

involved in identifying the characters in the bounding box
that have been detected as vehicle number plates.

B. Dataset Preprocessing

The dataset processing process initiates with the careful
selection of a dataset tailored to meet the specific research
requirements. In this context, the researchers have opted
for the AOLP dataset, as introduced in the work by [7].
Comprising 2049 images captured under diverse lighting
conditions, this dataset proves particularly well-suited for
the development of object detection models capable of
robust performance across varying illumination scenarios.
The AOLP dataset includes car images taken under varying
conditions. The conditions represented in this dataset in-
clude dark images taken from CCTV and at night, as well
as images taken in parking lots and on roads, thus providing
different points of view. Figure 2 visually illustrates a
representative sample from the AOLP dataset, providing a
glimpse into its diverse and challenging image conditions.
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Figure 2. AOLP Dataset

The next step is to conduct the labelling process on the
images in the dataset. This labelling process is important
to provide information to the model about the location and
class of objects in the image. Tools such as CVAT (Com-
puter Vision Annotation Tool) can make labelling easier.
The output of labelling using CVAT is a file containing
information about the location and class of objects marked
on the images in the dataset [19]. CVAT will produce a label
file in the appropriate format. In this study, the output from
CVAT is a file with the extension .txt, which corresponds
to the model used in YOLO v5 [20]. In Figure 3, the
illustration visually elucidates the dataset labelling process
through CVAT, portraying the interface and functionality
of the annotation tool. The labelled objects, marked with
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bounding boxes and corresponding class labels, serve as an
essential input for training the object detection model.
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Figure 3. Labelling Process

Once the labelling process is finished, the dataset will
be categorized into three groups, namely training data,
validation data, and testing data. This categorization will
follow a split ratio of 7:2:1, ensuring a substantial por-
tion for training, followed by validation and testing sets.
This segmentation strategy aims to facilitate comprehensive
model training, robust validation, and accurate testing for
optimal performance evaluation.

C. YOLO v5 Architecture

Figure 4 is the proposed model configuration. The
YOLO v5 framework employs a mosaic data augmenta-
tion technique, which involves the processes of zooming,
cropping, arrangement, and stitching of input data. This
methodology is implemented to enhance the performance of
small object detection within the model. During the model
training process, the input from YOLO v5 is changed to
a uniform size, namely 416x416 pixels. The core network
(backbone) consists of two parts, namely Focus and CSP.
Focus is used to crop the image before inserting it into
the core network [21]. As shown in Figure 5, the original
image measuring 416x416x416 is cropped to 208x208x12,
and then fed into a convolution operation using the feature
map of 32 kernels. The Focus operation allows changing the
size of the image to a smaller one without using additional
parameters and still maintaining the information of the
original image [22], [23].

In Figure 6, the architectural illustration delineates the
YOLO v5 backbone. Initiated by the Focus-CSP1 1 process,
it unfolds through subsequent stages, including CSP1 3-
CSP1 3-SPP (Spatial Pyramid Pooling). The CSP1 modules
represent the cross-stage partial networks, which are integral
for feature extraction and information propagation across
stages of the network. The SPP stage incorporates spatial
pyramid pooling, contributing to the model’s capability to
capture features at different scales.

The neck segment functions as a network layer that
is responsible for merging image features and transmitting
them to the prediction layer. In YOLO v5, the neck section
adopts the FPN+PAN architecture [24], [25], [26]. As

shown in figure 7, FPN is tasked with developing high-
level feature information and combining it gradually from
top to bottom to obtain a feature map used for predictions.
Meanwhile, PAN is like a deep pyramid because it forms a
path that connects various levels of image resolution from
the bottom to the top [27].

The prediction layer or head functions to predict image
features and create bounding boxes to identify the object
type. YOLO v5 uses GIOU-Loss as a function to measure
the bounding box prediction error. In Figure 8, the head
architecture of YOLO v5 is depicted, comprising bottleneck
CSP (Cross-Stage Partial) and a 1x1 convolutional layer.
This architecture is designed to generate predictions and
facilitate the efficient identification of object types. The
bottleneck CSP module contributes to feature extraction and
information flow, while the 1x1 convolutional layer aids in
refining the predictions.

D. Improvement Backbone YOLO v5

In the development of an object detection model using
the YOLOVS architecture, the backbone assumes signifi-
cance in feature extraction from the input image. Modifica-
tions to the backbone section aim to enhance the model’s
capacity to capture pertinent and intricate features, thereby
enabling improved object detection across diverse condi-
tions, including low lighting and varying viewing angles.

Based on Figure 9, the YOLO v5 backbone modification
involves adding a 1x1 convolutional layer after block C3.
The following is a complete explanation regarding the
modification of adding layers to the YOLO v5 backbone.

e Added convolutional layer after layer 3xC3 (128):
Convolutional Layer (128, 1x1) is a convolutional
layer with 1x1 kernel and 128 filters. A 1x1 kernel
indicates that this layer only processes one pixel at
a time without changing the spatial dimensions of
the feature map. 128 filters indicate that this layer
produces 128 new feature maps from the input. This
layer is added after Block C3 to perform two main
functions. Firstly, this layer performs a linear trans-
formation of the feature map from Block C3. This
transformation can be seen as a matrix multiplication
operation, where the kernel weight matrix acts as
a linear transformation. This transformation allows
the model to learn complex non-linear relationships
between feature maps, resulting in richer and more
informative representations. The second function is
that this layer can help in adjusting the dimensions
of the feature map. In the YOLOVS architecture, the
feature map dimensions are changed at several stages.
The addition of a 1x1 convolutional layer allows
the model to flexibly adjust the dimensions of the
feature map, ensuring compatibility between stages
and improving computational efficiency.

e Added convolutional layer after layer 9xC3 (512):
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Figure 7. YOLO v5 neck illustration
Conv

(1024,3x3)

each pixel individually. This layer produces a new
3°C3 (1024) feature map with 512 channels, where the number
of 512 filters determines the output dimensions of
this layer. This layer has two main functions. The

Conv (256,3x3)

6°C3 (256) spp;g}uzq, first is that it helps change the dimensions of the
feature map before proceeding to the next stage in
Figure 6. YOLO v5 Backbone the architecture. Although the 1x1 kernel does not

change the spatial dimensions (height and width) of
the feature map, this layer can change the number
Convolutional layer (512 filters, kernel size 1x1) of feature map channels. This allows the model to
consists of a 1x1 kernel applied to the previous produce a more concise or richer representation of the
feature map. This kernel acts as a filter that processes data. Second, although the 1x1 kernel does not pro-
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Figure 9. Modifications to the YOLO v5 Backbone

cess spatial information, this layer is able to extract
high-level features from the feature map. Through
matrix multiplication operations with trained kernels,
this layer identifies non-linear relationships between
channels and produces more complex and informative
feature representations.

e Added convolutional layer after layer 3xC3 (1024):
Convolutional Layer (1024, 1x1) is a convolution
layer with 1x1 kernel and 1024 filters. A 1x1 kernel
indicates that this layer only processes one pixel at
a time without changing the spatial dimensions of
the feature map. 1024 filter indicates that this layer
produces 1024 new feature maps from the input. This

layer is added after Block C3 to perform two main
functions; the first is that this layer performs a linear
transformation of the feature map from Block C3.
This transformation can be seen as a matrix multipli-
cation operation, where the kernel weight matrix acts
as a linear transformation. This transformation allows
the model to learn complex non-linear relationships
between feature maps, resulting in richer and more
informative representations. Second, this layer can
help in adjusting the dimensions of the feature map.
In the YOLO v5 architecture, the feature map di-
mensions are changed at several stages. The addition
of a 1x1 convolutional layer allows the model to
flexibly adjust the dimensions of the feature map,
ensuring compatibility between stages and improving
computational efficiency.

These enhancements improve detection accuracy and
robustness compared to the standard YOLOvS backbone,
which, while efficient, may not capture intricate features as
effectively.

E. Optical Character Recognition (OCR) Architecture

This study employs EasyOCR as the Optical Character
Recognition (OCR) architecture, which is an accessible tool
for extracting text from images. EasyOCR relies on deep
learning models and employs a variety of techniques to
analyze images and extract textual information. The utilized
EasyOCR model is pre-trained, having undergone training
with diverse datasets to enhance its capability in recognizing
text across different visual scenarios. Figure 10 illustrates
the architecture of the EasyOCR model.

1) Image Preprocessing

During the image pre-processing stage, which aims
to enhance its quality and suitability for text recogni-
tion, EasyOCR executes various operations, including noise
elimination, binarization, and correction of skewness. These
operations are crucial in priming the image for a more
precise text recognition process.

2) Detect Regions in Images that Contain Characters

CRAFT (Character-Region Awareness For Text detec-
tion) is a highly effective text detection system renowned
for its efficiency and precision in identifying text of di-
verse sizes, orientations, and letter variations. Employing
a Convolutional Neural Network (CNN) architecture, this
model generates two distinct output maps, namely one for
character region scores and another for affinity scores.

3) Preparing Character Recognition

The CRNN architecture includes convolutional layers,
recurrent layers, and decoding via CTC (Connectionist
Temporal Classification). Convolution Layers function to
extract visual features from input images. Typically, mul-
tiple convolution layers with different filters are used to
capture different levels of visual information. The Recurrent
Layer receives the output from the convolution layer and
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Figure 10. EasyOCR Architecture

processes it sequentially. Recurrent layers, such as LSTM,
are able to learn temporal dependencies between characters
in a license plate. Decoding converts the output from the
recurrent layer into probabilities for each character. CTC
(Connectionist Temporal Classification) is a commonly used
algorithm for decoding text from images.

4) Decode Results from Character Recognition

Decoding, especially in CTC-based decoders, is com-
monly utilized to determine the most probable character
sequence based on the generated output probability. The
Greedy decoder employed in this model operates by select-
ing the character with the highest probability at each se-
quence step. The recognition model generates a probability
distribution across all feasible characters for every character
within the sequence. The Greedy decoder straightforwardly
selects the character with the highest probability at each
step and adds it to the eventually recognized text.

5) Post-Process Character Recognition

Post-processing is an important stage in OCR that aims
to correct errors and inconsistencies in recognized text and
improve the overall quality of the text. Post-processing tech-
niques used include spell-checking, language modelling,
and text normalization.

F. Model Evaluation

The data that will be tested in this research is image
data with various lighting conditions and viewing angles.
Image testing is carried out using a resolution level of
416x416 pixels so that the computing process is light, and
this process will be carried out on the Google Colaboratory
service. The acquired findings include of metrics such as
precision, recall, and mAP. In evaluating the performance of
the model, researchers compared it with research conducted
by [14], [16], [28], [6], [29], and [30]. Then, it will also be

compared with the YOLO v5 Flat model (without modifi-
cation), which has been trained using the AOLP dataset
with the same hyperparameter configuration. The results
of related studies can be a benchmark for researchers to
determine the extent to which the proposed model can excel
in vehicle number plate detection and recognition.

4. EXPERIMENTAL AND RESULT ANALYSIS
A. Experimental Environment and Parameter Settings

Experiments were conducted using the Google Colab
platform, which provides a cloud computing-based research
environment with powerful computing resources. Google
Colab facilitates research and development in various fields,
including deep learning, without the need for expensive
local computing infrastructure. In this experiment, Google
Colab provides access to system resources that include 51
GB of system RAM and a V-100 type graphics processing
unit (GPU) with a RAM capacity of 16 GB.

In the Modified-YOLO v5 training phase, the model is
trained using 100 iterations (epochs). These iterations reflect
how often the entire training dataset is provided to the
model to update and adjust. Additionally, the input image
size during training is set to 416x416 pixels with three
colour channels (R, G, B), creating an input tensor the size
of 416x416x3. In this research, the YOLO hyperparameter
configuration was carried out to improve the model’s per-
formance in detecting number plate objects in the dataset.
Training is carried out using 6 different hyperparameter
configurations by changing the learning rate, batch size,
momentum, and decay values as shown in Table I. (table)
The choice of learning rate is based on balancing model
convergence and preventing overshooting. A lower learning
rate, such as 0.0001, achieves more accurate convergence.
Batch size affects how many samples are used to calculate
the gradient. Smaller batch sizes, such as 4, can provide




TABLE I. MODIFIED-YOLO V5 HYPERPARAMETER TUNING

Model Leﬁ;lt]éng BSaiI;h Momentum | Decay
1 4 0.9
2 [10] 0.01 10 0.937
3 16 0.95
4 [31] 4 0.9 0.0005
5 [32] 0.001 10 0.937
6 16 0.95

more accurate results but at a higher computational cost.

Momentum determines how quickly the model accu-
mulates information from previous gradients. Experiments
are used to select momentum values that achieve conver-
gence acceleration without significant overshooting. Decay
reduces the learning rate over time and prevents the model
from overfitting. A low decay value, such as 0.0005, is used
to maintain a balance between convergence and generaliza-
tion.

It is imperative to acknowledge that the hyperparame-
ter configuration for model 2 has been derived from the
scholarly work of [10], while the configuration for model
4 is adopted from [31], and the configuration for model
5 is sourced from [32]. In contrast, the hyperparameter
configurations for models 1, 3, and 6 represent the proposed
settings introduced in the course of this research.

B. License Plate Detection

This chapter will present the findings from the perfor-
mance assessment of the Modified-YOLO v5 model on the
specific dataset employed in this study. The YOLO model
underwent 100 epochs of training using the training dataset.
The evaluation results of the Modified-YOLO v5 model for
detecting number plates in six different experiments have
been measured using precision, recall, mAP50, and mAP50-
95 metrics. The evaluation produces exciting and relevant
data for understanding model performance.

TABLE II. VALIDATION RESULTS ON HYPERPARAMETER
TUNING MODIFICATION-YOLO V5

g“;d“(:’g:l Precision | Recall | mAP50 | mAP50-95
1 0983 | 0973 | 0.994 0.848
2 0.994 096 | 0993 0.845
3 0.991 0.997 | 0.994 0.848
g 0983 | 0971 | 0.993 0.827
5 0976 | 0.977 | 0.994 0.833
6 0977 | 0.983 | 0.99%4 0.837

The results from the experiments presented in Table II

highlight the impressive efficacy of the Modified-YOLO v5
model in identifying license plates. The remarkably high
precision levels, ranging from 0.976 to 0.994, indicate that
the majority of detections performed by the model are

accurate. High precision means the model rarely gives false
alarms. This is important in applications such as law en-
forcement, where detection errors can cause inconvenience
or law enforcement errors.

The high recall rate, ranging from 0.96 to 0.997, in-
dicates that the model tends to find most existing license
plate instances. High recall means the model can detect
almost all existing objects. This is especially important in
applications such as traffic monitoring, where failure to
detect violations can have fatal consequences. The very high
level of accuracy of mAP50, reaching a range of 0.993
to 0.994, shows that the model effectively identifies and
determines bounding boxes with a high level of accuracy.
This confirms the model’s ability to provide predictions with
a high level of confidence in license plate detection at an
IoU of 0.5. The mAP50-95 results remain high, ranging
from 0.827 to 0.848, indicating the model’s ability to detect
license plates at various IoU levels. This shows the model’s
consistency in providing good predictions even at higher
IoU levels, which is often a challenge in object detec-
tion tasks. In the experimental results, one configuration
stands out, namely in the third experiment. This experiment
achieved the highest performance with a recall value of
0.997, mAP50 of 0.994, and mAP50-95 of 0.848. These
results indicate that the hyperparameter configuration in the
third experiment made a positive contribution to improving
the model’s ability to detect number plates.

In Figure 11(a), it can be seen that the training loss
graph shows a significant decreasing trend from the start
of training. Starting with a value of 0.02, there was a
rapid decline until it reached a value of 0.006 at the 10th
epoch. Next, a slower decline was seen until it reached a
value of 0.0025 at the 100th epoch. This indicates that the
model effectively learns from the training data during the
training process. Meanwhile, in Figure 11(b), the validation
loss graph also shows a very fast decline from the initial
value of 0.10 to a value of 0.004 in the epoch 1-10 range.
However, after the 10th epoch, the validation loss graph
experienced insignificant fluctuations. Even though there
were fluctuations, the lowest value was recorded at the 60th
epoch with a value of 0.001 before then increasing to reach
a value of 0.0034 at the 100th epoch. This indicates that
the model is able to generalize well to data that has never
been seen before. Judging from the comparison of the two
graphs, there are slight signs of overfitting in the training
data, namely when the model focuses its learning too much
on specific training data and loses the ability to generalize
to new data. However, the impact of overfitting does not
directly affect the overall quality of the model.

After completing training, the next stage involves testing
the Modified-YOLO v5 model using testing data. The
dataset used consists of 206 images, which are taken from
the AOLP dataset and have never been seen by the model
before. To match the input size of the Modified YOLO v5
model, each image was resized to 416x416 pixels. In the
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Figure 11. (a) Training Loss Results and (b) Validation Loss Results

test results, the model was able to detect number plates well
in 200 images out of a total of 206 images, resulting in a
testing accuracy rate of 97.08%.

Figure 12 visually presents sample detection outcomes,
showcasing the model’s capability to recognize and annotate
number plates in test images. In Figure 12(a), the model
succeeds in detecting number plates well in busy traffic,
showing its ability to detect relatively small plates. Mean-
while, in Figure 12(b), the model is able to identify number
plates on quieter roads, showing its reliability in detecting
up to three vehicles at once. Figure 12(c) shows the success
of the model in detecting number plates in the parking area
from a side view. Not only that, in Figure 12(d), the model
remains effective in detecting number plates even in low
light conditions, such as in the image with two cars and
one number plate exposed to inadequate light.

C. Comparative Study

A series of comparison experiments were carried out to
evaluate the performance of the Modified-YOLOvS model
proposed in this study regarding license plate detection. In
this context, Modified-YOLO v5 is compared with a number
of other YOLO algorithms. Experimental results, including
precision and recall values, are presented in Table III.

When compared to the CNN model, the modified-YOLO
vS model shows a significant performance increase, with
Precision increasing by 1.92% and Recall increasing by
2.51%. This means that the modified-YOLO v5 model is
better able to produce accurate predictions and detect most
of the objects that should be identified.

TABLE III. COMPARISON OF MODIFIED-YOLO V5 RESULTS
WITH BASELINE

Model Precision | Recall

CNN 97.18% 97.19%

Fast-YOLO v2 - 99.45%
SWSCD-YOLO Darknet 98.2% 97.9%
YOLO v5 98.6% 96.7%
Modified-YOLO v5 (proposed) 99.1% 99.7 %

Compared with the Fast-YOLO v2 model, the proposed
model, namely Modified-YOLO v5, shows an increase in
Recall of 0.25%. These results indicate that Modified-
YOLO v5 is more effective in detecting and recognizing ob-
jects overall when compared to Fast-YOLO v2. Meanwhile,
when compared with the SWSCD-YOLO Darknet model,
the Modified-YOLO v5 model produces an increase in both
Precision by 0.9% and Recall by 1.8%. This indicates that
Modified-YOLO VS5 is not only more accurate in providing
positive predictions but also more efficient in detecting
the majority of existing target objects when compared to
SWSCD-YOLO Darknet. The Modified-YOLO v5 model
was also compared with the YOLO v5 original (without
modification), which had been trained using the AOLP
dataset with the same hyperparameter configuration, Results
of the Modified-YOLO v5 showed an increase in precision
of 0.5%, and recall of 3%.

Through this comparison, it can be seen that Modified-
YOLO v5 as the proposed model consistently shows a
higher level of accuracy compared to the baseline model,
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Figure 12. Number Plate Detection Testing

indicating its potential in license plate detection. These
results provide a solid basis to highlighting the contribution
and advantages of Modified-YOLO v5 in the context of
license plate object detection.

D. License Plate Recognition

Before applying EasyOCR, we applied license plate
image extraction using the Modified-YOLO v5 model. This
process aims to improve image quality and ensure the
number plate region is clearer. After obtaining the license
plate image, the following preprocessing steps are applied to
improve the writing detection and recognition performance:

o Resize: The image is resized to 600x480 pixels. This
is done so that the image size matches the input
size expected by the EasyOCR model. Resizing helps
ensure consistency and suitability to detection model
requirements.

Grayscale: The image is converted to grayscale for-
mat. Conversion to a grayscale is carried out to
reduce the complexity of the writing detection pro-
cess. In grayscale format, color information is no
longer needed, and the basic structure of objects, such
as writing, can be easily identified. In Figure 13,
the outcome of this grayscale operation is visually
depicted. The converted grayscale image serves as
a foundational step in enhancing the efficiency of
subsequent writing detection algorithms.

Binarization: involves converting the image into bi-
nary format through a specific method. This trans-
formation results in an image where the object, such
as text, is isolated from the background, creating a
clear contrast. The primary objective is to facilitate
the detection and recognition of text by enhancing
its visibility against the background. As depicted in
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Figure 14, this binarization technique enables a dis-
tinct separation between the text and its surroundings,
thus providing a solid foundation for improved text
detection algorithms.

e Text Detection: At this stage, text detection is carried
out using EasyOCR, where the model produces out-
put in the form of text that matches the image. Figure
15 shows the result of the text detection process,
clearly showing the inscription on the number plate
as "7456TH”. EasyOCR managed to detect it with
good accuracy.

The final stage was the testing stage, using 70 images
that had not previously been seen by the YOLO model.
From the test results, 69 images were successfully read
correctly by the EasyOCR model, achieving an accuracy
level of 98.57% as shown in Table IV. The EasyOCR model
shows significant improvements when compared to several
baseline models used.

TABLE IV. COMPARISON OF EASYOCR RESULTS WITH
BASELINE

Model Accuracy
EasyOCR [29] 80%
EasyOCR [30] 95%

EasyOCR (proposed) | 98.57%

Furthermore, as shown in Table IV, the proposed Easy-
OCR model achieves a remarkable accuracy of 98.57%, sig-
nificantly outperforming previous implementations. Specif-
ically, the proposed EasyOCR model demonstrates an
18.57% improvement in accuracy compared to the imple-
mentation by [29], which achieved an accuracy of 80%.
Additionally, it surpasses the accuracy reported by [30],
which was 95%, showing a notable increase of 3.57%.
These substantial improvements indicate that the proposed
EasyOCR model is far more effective in recognizing license
plate characters than earlier versions.

The results of text detection and recognition using the
EasyOCR model can be seen in Figure 4.14. Figure 16(a)
with the number plate “DL2229” is correctly predicted
by the model, while figure 16(b) with the number plate
”LI8850” 1is incorrectly predicted as “LF8850” by the
EasyOCR model. The error in predicting the right image
is caused by the presence of black noise under the letter
”1” This noise causes the EasyOCR model to predict the
character as the letter ”f.” The presence of noise in the
image can affect the performance of the EasyOCR model
by making character interpretation less accurate.

5. ConcrusioNs AND FUTURE WORK

The conclusion of a series of experiments carried out
in this research shows positive results in the development
of a number plate detection and recognition system us-
ing the Modified-YOLO v5 and EasyOCR models. The
implemented YOLO v5 model modifications succeeded in

achieving a very good level of accuracy, with a recall value
of 0.997, precision of 0.991, mAP50 of 0.994, and mAP50-
95 of 0.848. In object detection, the Modified-YOLO v5
model experienced an increase in precision by 0.9% and
recall by 0.25% compared to the baseline models, namely
SWSCD-YOLO Darknet and Fast-YOLO v2. In addition,
the test results also show that the Modified-YOLO v5 model
is able to overcome the challenges of detecting small license
plate objects, confirming the model’s reliability in handling
real-world scenarios where license plates can appear in
various sizes and conditions. Meanwhile, the EasyOCR
model used for character recognition on number plates
achieved an accuracy level of 98.57%, which experienced
an increase in accuracy of 3,57% compared to the baseline
model.

For future research, considering computational limita-
tions, it is recommended to train the YOLO model with
a more extensive and more diverse dataset. Large datasets
that include license plates from various countries will enable
license plate detection models to become more reliable and
able to cope with a wide variety of license plates around
the world. Thus, the use of a more diverse dataset will help
increase the generalization of the model so that the model
can be more effective in detecting and recognizing license
plates in a variety of different conditions and environments.
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