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Abstract: Landmine detection faces a significant challenge in identifying buried explosives that complicate efforts to ensure the safety
of affected areas. These buried explosives substantially threaten human lives, hindering economic growth and development efforts.
Traditional methods for landmine detection often need to be revised, as they rely on time-consuming manual techniques and cannot
identify non-metallic landmines. Fortunately, Advancements in technology offer various methods for locating buried landmines. Ground
penetrating radar (GPR) has emerged as a powerful tool for subsurface exploration, emitting electromagnetic waves and recording
reflections to create an image of buried objects. However, GPR data presents a complex image containing reflections and clutters from
underground utilities besides landmines, complicating the detection process. Effective detection of landmines relies on successfully
separating the target signals of landmines from background clutter and noise. This paper presents a comparative study of feature
extraction and classification techniques for GPR-based landmine detection. The initial stage involves feature extraction, where the
algorithms identify key characteristics within the GPR data that discriminate landmines from other objects. Various feature extraction
approaches are discussed, including image processing techniques such as edge detection through the Scharr and Sobel operator, spatial,
and spectral features retrieval, and many statistical methods for analyzing signal intensity variations. Classification algorithms, including
support vector machine (SVM) and k-nearest neighbors (K-NN), can effectively learn and classify discriminatory features from labeled
GPR datasets containing landmines. This paper evaluates and compares the effectiveness of various feature extraction and classification
algorithms using performance metrics such as the probability of detection (Pd), accuracy, and false alarm rate (FAR).
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1. Introduction
Landmines remain a significant global threat to human

safety, hindering economic growth and impeding develop-
ment efforts. These explosive devices are buried under the
ground and detonated upon contact with a person, vehicle,
animal, or pressure [1]. The blast of a mine can cause direct
and indirect damage through explosive force and shrapnel.
Beyond immediate casualties, landmines also have a lasting
impact, disrupting agricultural land use and harming the
environment [2].

Effective landmine detection is a complex task influ-
enced by various factors. However, the performance of each
technique varies depending on the type of explosive used,
the landmine shape, the properties of the soil, and the
materials used in its construction [3]. Researchers employ
surrogate or simulated landmines and non-mine objects
generated through gprMax software [4] buried at various

depths and sizes during data collection and some researchers
used experimental and real-world data.

Many countries around the world face a life-threatening
danger from landmines. It is estimated that 80 countries
remain affected by landmine contamination. These hidden
explosives claim a devastating toll each year, with casualties
ranging from 15,000 to 25,000 people killed or maimed [5].
About 80% of casualties by landmines are civilians, par-
ticularly children. Landmine Monitor 2020 [6] emphasizes
the urgent need to remove landmines to ensure the safety
of affected communities, facilitate the return of displaced
populations, and support post-conflict recovery and devel-
opment efforts. Figure 1 shows the landmine contamination
status for 2020. Many countries have adopted the global ban
on landmines, and international funding supports demining
operations. The Ottawa Treaty enforces the AP landmine
ban convention, mandating landmine clearance by 2025 [7].
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Figure 1. Mine Contamination Status Report 2020 [6]

Figure 2. Process of Ground Penetrating Radar [8]

Landmine detection and demining are inherently chal-
lenging, time-consuming, and often dangerous. Fortunately,
advances in sensor technology, image processing, and ma-
chine learning are providing promising solutions to detect
landmines. GPR is a valuable tool for landmine detection
and also detects other buried utilities. It uses electromag-
netic (EM) signals to image objects buried beneath the
ground surface. The transmitter antenna sends the EM wave
towards the object, and the receiver antenna records the
reflected energy. Differences in the electromagnetic proper-
ties of subsurface objects cause anomalies in the received
signal. The software then processes these anomalies to
generate an image. Figure 2 illustrates the entire process
of ground-penetrating radar involved in landmine detection
[8]. GPR has built-in memory to store data at the end of the
examination. It is a non-invasive subsurface sensing method
to detect landmines made of metal, non-metal, and plastic.

Significant research focuses on automating landmine
detection using GPR data. However, challenges arise due to
clutter in the image data caused by surface scattering, target
interaction, and variations in the subsurface. Fortunately,
various algorithms and techniques can distinguish between
landmines and clutter based on their specific character-
istics. These methods extract features from GPR images
to determine the presence or absence of landmines. Soil
composition can significantly impact the effectiveness of

Figure 3. Types of Anti-Tank Landmines [9]

GPR-based landmine detection methods. These methods
underscore the ongoing challenges in this field and the
needed improvement in various detection techniques. An
overview and comparison of GPR-based landmine detection
technologies are presented.

Section 1 introduces landmines and provides the current
state of landmine detection. Section 2 categorizes landmines
and explains the demining process. Section 3 analyzes the
various explosive detection techniques for identifying buried
objects. Section 4 reviews landmine detection methods
utilizing GPR technology. Section 5 compares the different
feature extraction and classification algorithms used for
landmine detection based on GPR techniques. The compar-
ison also discusses the corresponding advantages, limita-
tions, datasets involved, and performance metrics achieved.
Finally, section 6 summarizes findings and future research
directions.

2. Categories of Landmines and Demining
A. Types of Landmines

Landmines come in two distinct categories: Anti-Tank
(AT) and Anti-Personnel (AP). AT landmines, also known
as anti-vehicular landmines, typically have cylindrical or
square shapes ranging from 150-300 mm in diameter and
50-90 mm in thickness. It contains powerful explosives
such as TNT, Composition B, or RDX [5]. It comes in
various shapes and sizes, including metal, plastic, or wood
casings material used for landmines to make them difficult
to detect. They detonate when subjected to a minimum
pressure of 200 kilograms, typically triggered by vehicles
driving over them. These landmines, primarily used on
battlefields, are designed to destroy tanks and trucks. These
weapons can cause casualties for people inside and around
the targeted vehicle, posing a significant threat to civilians
caught in conflict zones. Figure 3 showcases various anti-
tank landmines [9].

In contrast to AT landmines, AP landmines target only
individuals. These disc-shaped devices are compact, typ-
ically measuring 20-125 mm in diameter, 50-100 mm in
length, and weighing 30 grams. Common explosives used
in AP landmines include TNT, Tetryl, and Comp B [5].
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Figure 4. Types of Anti-Personnel Landmines [10]

Detonation occurs under pressure as low as 2 kilograms
or when someone steps on the mine. Figure 4 provides
the various anti-personnel landmine products [10]. There
are two main subcategories of AP landmines: blast and
fragmentation mines [11].

Unexploded ordnance (UXO), which are explosive de-
vices that failed to detonate as intended [12]. The rise
of improvised landmines further complicates detection ef-
forts and increases civilian casualties. Landmine-triggering
mechanisms vary considerably, including pressure-based
activation systems, electronic triggers, remote detonation,
light or sound sensitivity, and magnetic influences.

B. Types of Demining Methods
Landmines can remain active over five decades, neces-

sitating demining efforts to prevent casualties. Demining
refers to removing landmines from contaminated areas. Two
primary methods exist for demining process are military and
humanitarian demining.

1) Military Demining
The military demining method prioritizes speed over

the complete removal of landmines. It employs a brute
force approach, utilizing vehicles to clear paths through
minefields. Despite achieving an estimated 80% clearance
rate, it accepts a certain level of casualties and leaves behind
a significant portion of landmines.

2) Humanitarian Demining
A more intricate and meticulous process is humanitarian

demining, which focuses on the safe and complete removal
of landmines with minimal environmental impact. It aims
for a near-perfect 99.6% clearance rate. However, this safer
method comes at a higher cost per landmine removal. It
exposes deminers to risk, with an estimated one fatality for
every 2,000 landmines clearance [5] [13].

3. Explosive Detection
Researchers have explored various landmine detection

techniques such as biological, electromagnetic, acoustic,
mechanical, optical, and nuclear.

A. Biological Detection
Biological detection techniques utilize trained animals

such as rats, dogs, insects like bees, and ants alongside
plants and bacteria to sense the presence of explosive

materials. This type of sensor detects landmines, but their
effectiveness depends on various factors. Table I compares
biological sensor’s requirements, performance, and prob-
lems.

B. Electromagnetic Detection
The electromagnetic detection method identifies vari-

ations in the electromagnetic properties of buried objects
compared to the surrounding ground surface. The transmit-
ter emits signals within a specific frequency range, and the
receiver interprets the reflected signals to detect anomalies.
Table II shows the various electromagnetic sensor’s require-
ments, performance, and problems.

C. Acoustic Detection
Acoustic sensors project acoustic waves toward the

ground. These waves reflect off the materials they en-
counter, depending on the acoustic properties of those ma-
terials, which can cause vibrations due to their mechanical
characteristics. Table III presents the acoustic detection
techniques, outlining their requirements, performance, and
problems.

D. Mechanical Detection
Mechanical detection of landmines utilizes physical

interaction with the ground to locate buried explosives by
machines and probes. Table IV details mechanical detection
techniques with requirements, performance, and problems.

E. Optical Detection
It penetrates the optical wave to buried materials and

measures the soil surface property. Table V displays the op-
tical detection techniques with requirements, performance,
and problems.

F. Nuclear Detection
The standard nuclear detection technique is nuclear

quadrupole resonance (NQR), which uses radio-frequency
and neutron-based techniques. Table VI reports nuclear
detection techniques with requirements, performance, and
problems.

Landmine detection remains a complex task due to lim-
itations in current technologies. Both metal detectors (MD)
and GPR are widely used for the identification of landmines,
and each has advantages and disadvantages. Techniques like
Bacterial and NQR show promising results with low false
alarm rates, but widespread adoption might be limited. MDs
are prone to false alarms when encountering even small
amounts of metal debris.

Ideally, a landmine detection system should be efficient,
accurate, and have a minimal false alarm rate. Unfortu-
nately, no single sensor or method can guarantee com-
plete detection across all scenarios. Several factors hinder
landmine identification, including obstacles such as rocks
or vegetation, the presence of metallic debris, variations
in temperature and humidity, and different types of soil
composition. Therefore, multiple sensor usage is crucial to
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TABLE I. Biological sensors requirements, performance, and problems

Sensors Requirements Performance Problems

Rats [11] Food reward training to locate
explosives

Increased detection rate with
more numbers of rats Susceptible to tropical diseases

Dogs [14] Extensive training in explosives High success rate for detecting
explosives

Mood, time, and behavioral vari-
ations

Plants [15] Genetically modified plants need
a controlled environment

Detect the presence of nitrogen
dioxide Prone to false alarms

Ants [16] No training is required, can self-
deactivate

Capable of locating explosives
back to the nest

Limited range and detection capa-
bilities

Bacteria
[17]

A genetically modified bacteria
sprayed in the field

Covers large areas and detects
TNT

Highly sensitive, leading to false
positives

Bees [18] Trained to associate a chemical
odor with food reward Effective at detecting landmines Limited operation range due to

temperature restrictions

TABLE II. Electromagnetic sensors requirements, performance, and problems

Sensors Requirements Performance Problems

Metal Detector [19] Measure the reflected current
induced by the field

Prone to false alarms; Cannot
detect a non-metallic object

Difficult to detect in highly
conductive soils

Ground Penetrating
Radar [20]

Transmit and receives radio
waves to detect reflected sig-
nals

Effective for metallic and non-
metallic objects detection

Inconsistent in homogeneous
soil

Microwave Radar
[21]

Transmit microwaves and ana-
lyze reflected signals Detect small and large objects Performance can be slow in

wet soil conditions
Millimeter-Wave
Radar [22]

Send millimeter wave and col-
lect reflected radiation

Penetrate on obstacles like
clouds, smoke, and dry soil

Challenges faced across vary-
ing soil conditions

Electrical
Impedance
Tomography [23]

Measure current to map under-
ground properties

Suitable for wet soil and de-
tect all types of objects

Background noise that can
hamper performance

X-ray Backscatter
[24] Pass x-ray photons and analyze Effective for shallowly buried

objects Difficult to detect deep objects

Infrared [25] Detect variations in tempera-
ture and light properties

Detect non-metallic
landmines

Ineffective to detect deep ob-
jects

TABLE III. Acoustic sensors requirements, performance, and problems

Sensors Requirements Performance Problems
Ultrasound
[26]

Sound waves emitted by acoustic sensors and
reflect off the ground

Propagate in wet areas and un-
derwater

Not efficient in
sand

Acoustic to
Seismic [27]

Generates acoustic or seismic waves and analyzes
the vibration based on mechanical properties

Detect both types of landmines
and gives low false alarm rates

Detection speed
is slow

TABLE IV. Mechanical detection requirements, performance, and problems

Sensors Requirements Performance Problems
Clearing Machines
[13]

Machines are rolling in the
field to clear the path

Take a short time to remove
landmine

Trigger landmine when the use
of heavy-sized machines

Prodder and Probes
[28] [29]

Scan shallow area at a 30-
degree angle

Identify the unusual object
based on sound

Explode when prodding, become
hazardous
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TABLE V. Optical sensors requirements, performance, and problems

Sensors Requirements Performance Problems
LIDAR
[10]

Identifies the polarization changes
in the backscattered energy

Detect metallic and non-metallic
objects and covers large areas

Highly vegetated areas are not
suitable

Light [12]
[13]

Capturing light waves from the
object

A large area scanned only on flat
land in a shorter time

Less effective in poor lighting
conditions

TABLE VI. Nuclear detection requirements, performance, and problems

Sensors Requirements Performance Problems
Nuclear Quadrupole
Resonance [30]

Used radio frequency and identify
nitrogen atom nuclei in TNT

Effective in the detection of
TNT or RDX explosive

Identify landmines with a
strong signal

Nuclear Magnetic
Resonance [31] Used along with a metal detector Detect nitrogen present in

TNT
Detect only landmine objects
placed inside the coil

enhance the accuracy and reliability of landmine detection.
These sensors collect diverse data to aid in the exact
identification of landmines. GPR, in particular, offers a
variety of feature extraction and classification techniques.
GPR can analyze these features to identify buried landmines
through proven classification algorithms.

4. Review of Feature Extraction and Classification
Methods used for Landmine Detection
Bhuiyan and Nath [32] used a seeded region growing

segmentation (SRGS) to extract features and classify them
through a feed-forward neural network (FFNN). The input
x j mentioned in Equation (1) is given to the neural network
(NN), and to produce output y from Equation (2) which
identified the pattern as a landmine or not, where n is the
length of the pattern and f as activation function. wi, and wi j
denoted the weight connected to the output and the hidden
layer neuron. Figure 5 shows the SRGS-oriented feature
extraction and FFNN as classification.

x j = I( j) (1)

y =
∫  m∑

i=1

wi fi
n∑

j=1

wi jx j

 (2)

Z. Ma compared the Hidden Markov Model (HMM),
edge histogram descriptors (EHD), spectral correlation fea-
ture (SCF), and Geometric (GEOM) discrimination method-
ologies to recognize landmines and clutter objects using
vehicle-mounted GPR [33]. Using EHD, H. Frigui and
P. Gader extracted translation-invariant features from the
identified regions of interest (ROI). Then, a probabilistic
K-NN is used to determine the confidence value Con f (S T )
mentioned in Equation (5) based on the mine Con f (M)(S T )
Equation (3), and the clutter Con f (C)(S T ) Equation (4)
classes for accurate detection [34].

Con f (M)(S T ) =
1
K

K∑
k=1

(
µ̃M(Rk) · w(p)(S T ,Rk)

)
(3)

Figure 5. Seeded Region Growing Segmentation and Feed Forward
Neural Network Architecture [32]

Figure 6. Hidden Markov Model for Discrimination of Landmine
and Clutter Signatures [35]

Con f (C)(S T ) =
1
K

K∑
k=1

(
µ̃C(Rk) · w(p)(S T ,Rk)

)
(4)

Con f (S T ) =
√

Con f (M)(S T ) ×
(
1 −Con f (C)(S T )

)
(5)

HMM was proven to be an effective technique used for
landmine detection based on GPR data. This framework
extracted the gradient features from GPR signatures. K-
NN classifier and bar histogram used EHD to retrieve the
features of buried objects. Figure 6 shows the HMM for
discrimination of landmine and clutter signatures [35]. A
supervised learning model retrieved spectral features of
identified ROI by using the least mean square (LMS). Equa-
tion (6) normalizes the magnitude of Fourier-transformed
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Figure 7. Feature Extraction and Classification using Fourier Trans-
form and Support Vector Machine [36]

Figure 8. Minimum Connected Component-based Feature Extraction
for Landmine Detection [37]

data (Pk) to reduce its dependency on soil losses. A. Dyana
et al. base this normalization on the N-point discrete Fourier
transformed data (|S k |), and frequency (k). Figure 7 displays
Fourier Transform (FT) for feature extraction and SVM’ for
classification process [36].

Pk =
|S k |∑N−1

k=0 |S [k]|/N
(6)

Ramasamy et al. proposed a minimum connected com-
ponent (MCC) based on graph theory to identify cov-
ered objects from 2D GPR images. Figure 8 illustrates
the conversion process from landmine matrix to MCC
and MCCGray [37]. Camilo et al. used the bag of visual
words (BOV) and fisher vector (FV) as feature-learning ap-
proaches for forward-looking GPR data processing. Based
on the background mean µ and standard deviation σ, the
normalized feature (X’) was extracted from image X using
Equation (7).

X′ =
|X| − µbg

σbg
(7)

The final BOV and FV features were retrieved using
equations (8) and (9) based on the dimensionality of raw
and scale-invariant feature transform (SIFT) descriptors
intensities under various soil conditions. Figure 9 shows
the feature learning approach for feature extraction using
BOV and FV [38].

ψBOV (X | D) =
{
max

t
γt(k) ; k = 1, . . . ,K

}
(8)

ψFV (X | uλ) = {gX
µk

gX
σk

; k = 1, . . . ,K} (9)

Figure 9. Feature Learning approach using Bag of Visual Words and
Fisher Vector [38]

Figure 10. Robust Principal Component Analysis-Go Decomposition
based Feature Extraction and Detection [39]

Song et al. proposed robust principal component anal-
ysis (RPCA) to prescreen AP mine (APM) from GPR im-
ages and employed GoDecomposition (GoDec) to retrieve
the target. Figure 10 displays the RPCA-GoDec feature
extraction and landmine identification process [39]. Yuan
et al. developed the twin gray statistics sequence (TGSS)
to classify GPR features using row and column vectors
of a B-scan image. This method involves calculating the
twin gray sequence from the image’s gray statistics level h
defined using Equations (10) and (11), utilizing a gray-level
co-occurrence matrix (GLCM) for classification. Figure 11
illustrates the feature classification process using TGSS
[40].

ui(h) =
1
N

N∑
y=1

δ(G(i, y) = eh) (10)

vi(h) =
1
M

M∑
x=1

δ(G(x, y) = eh) (11)

Harkat et al. proposed a multi-objective genetic algo-
rithm (MOGA) for classification. The MOGA classifier
used features retrieved using higher-order statistics (HOS)
and mutual information feature selection (MIFS). Figure
12 details the classification process involving the multi-
objective genetic algorithms [41]. Mesecan et al. calculated
feature on row and column indices using Equations (12)
and (13) for the data x and derived the final feature vector
(FV) using Equation 14, as shown in Figure 13 [42].

Featurec =

√√√Rows∑
r=2

(
xrc − x(r−1)c

)2 (12)
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Figure 11. Feature classification using Twin Gray Statistics Sequence
[40]

Figure 12. Process of Classification through Multi-Objective Genetic
Algorithm [41]

Featurer =

√√√Cols∑
c=2

(
xrc − xr(c−1)

)2 (13)

FVrc = [Featurer, Featurec] (14)

N. Smitha and V. Singh extracted three and five fea-
tures from GPR images and classified them via SVM
and NN. Figure 14 displays three and five features of
feature extraction with a neural network classifier [43].
A. Gharamohammadi and A. Shokouhmand calculated a

correlation coefficient between the scattering parameter and
the whitening algorithm to detect the anomaly. The RPCA
observed the data matrix X using Equation (15) from low-
rank component G, sparse component S, and noise N [44].

X = G + S + N (15)

Figure 13. Feature Vector for Underground Object Detection from
GprMax [42]

Figure 14. Five Features of Feature Extraction with Neural Network
Classifier [43]

Figure 15. Gradient-Based Clutter Suppression and Wavelet-Based
Denoising [47]

The initial low-rank matrix G0 and the sparse matrix S 0
calculated using Equations (16) and (17) based on data
matrix X and transposition vector T.

G0 =

 1
N

N∑
i=1

xi

 1T
(N×1) (16)

S 0 = X −G0 (17)

J. F. Lozano et al. proposed an intelligent multi-agent
system using various sensors. Each agent operates inde-
pendently to optimize data acquisition and local decision-
making (LDM), sharing information with other agents.
The final decision arises on collaborative details in the
cooperative decision-making (CDM) system. Features are
calculated for visible spectrum (VS), infrared (IR), and
ultraviolet (UV) sensors using Equation (18) [45].

Γ = [Λ, λ, µ, σM , ξ,K, ζ, ρ, ϵ, ϕ] (18)

A. D. Pambudi proposed a likelihood-ratio test (LRT)
using FLGPR [46] to construct a band of feasible prob-
ability densities for each hypothesis. B. S. Kumar et al.
employed gradient magnitude with thresholding to remove
unwanted clutters and utilized wavelet-based denoising to
eliminate noise from the GPR images. The approach mea-
sured the peak signal-to-noise ratio (PSNR) using Equation
(19) based on mean square error (MSE) and image entropy
(IE) using Equation (20). Figure 15 displays the process of
clutter suppression and denoised data for classification [47].

PS NR(dB) = 10 log10

(
L2

MS E

)
(19)

H =

(∑M−1
m=0

∑N−1
n=0 B2(m, n)

)2∑M−1
m=0

∑N−1
n=0 B4(m, n)

(20)

P. Bestagini et al. analyzed the framework trained on
GPR data captured in landmine-free areas using autoen-
coders. It used different polarizations to analyze GPR
images but required improvement in localizing the anomaly
[48]. M.M. Omwenga et al. proposed an autonomous cog-
nitive GPR (AC-GPR) using deep reinforcement learning
(DRL) with a reward system for detecting ROI and clas-
sifying objects. Deep Q-learning networks (DQNs) were
created to handle dimensionality issues in state space and
help the system learn effective policies [49]. F.M. El-
Ghamry et al. presented the Gauss gradient and speeded up
robust feature (SURF) descriptor method. Gauss gradient
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Figure 16. Feature Extraction using Cumulative Histogram of Ori-
ented Gradients and SURF Descriptor [50]

Figure 17. Convolutional Auto-Encoder Architecture to Remove
Clutter [51]

algorithm estimated the cumulative HOG using Equation
(21) using the image details D f x and D f y. SURF detector
identified the feature vector v using Equation (22) from
the 4x4 sub-region in horizontal direction dx and vertical
direction dy.

D f xy = |D f x| + |D f y| (21)

v =
[∑

dx,
∑
|dx|,

∑
dy,

∑
|dy|

]
(22)

Figure 16 illustrates the feature extraction based on HOG
and SURF descriptor for landmine detection [50].

The convolutional auto-encoder (CAE) removed clutter
from images, directly highlighting target components. Its fil-
ter coefficients depended on the kernel size and the number
of filters in both the encoder and decoder. The signal-to-
clutter ratio (SCR) measured the CAE’s effectiveness on
actual data. Figure 17 displays the CAE architecture to
remove clutter from the GPR image [51]. M. N. Motafram
et al. used a CNN to extract information from B-scans and
an RNN to model differential data and retrieve features from
cross and down-track scans [52]. M.G. Fernandez et al. [53]
enhanced the airborne GPR systems to detect landmines by
addressing issues of height information and antenna tilt.

N. Barkataki et al. [54] presented a CNN model to
predict the size of buried objects based on edge detection
techniques using the Sobel and Scharr operator to pre-
process the GPR B-Scans images. H. Zhou et al. [55]
introduced a particle center AdaBoost (PCAD) method of
improved target classification in full-polarimetric ground-

penetrating radar (FPGPR), enhancing the identification
of underground objects as landmines. F. Xie et al. [56]
enhanced the GPR tool by modeling uncertainty in target
depth before and after surveys, finding that uncertainty
increases with depth on pre-survey. In contrast, post-survey
uncertainty is influenced by reflection data noise. S. Ghan-
bari et al. [57] improved subsurface utility detection by
employing a data acquisition and processing strategy that
includes compensated time reversal (CTR) techniques.

M. Elbadry et al. [58] utilized a finite element (FE)
framework to study the coupled electromagnetic and me-
chanical behavior of buried targets, using the Lorentz force
of mechanical equations. H. Liu et al. [59] used the You
Only Look Once version 3 (YOLOv3) model to identify
pipelines under the subsurface. The iterative threshold trans-
formed the hyperbolic response into a binary image to
determine a buried pipeline position and depth. Y. Su et
al. [60] used key point–regression mode to retrieve the
ROI and hyperbola. N. Barkataki et al. [61] proposed an
artificial neural network (ANN) to detect the size of buried
objects from GPR A-Scan images with a minimum mean
absolute percentage error (MAPE) of 1.89%. Y. Yu and C.C.
Chen [62] classified UXO components using entropy-based
polarimetric features. A. Afrasiabi et al. [63] presented a
Kalman Filter (KF)-with a MOGA optimization algorithm
for GPR that reduces noise and improves the detection of
buried utilities with less user input.

F. Cui et al. [64] introduced a multi-polarization
GPR array that uses multiple antenna dual-field domain-
decomposition time-domain finite-element methods
(DFDD-TDFEM) to enhance detection resolution and
data acquisition. N. Q. Hoang et al. [65] employed
SwinIR, RCAN, and MSRN combinations to improve
the quality of GPR images to find the anomaly with an
excellent structural similarity index (SSIM) measure and
an enhanced anomaly detection in GPR images using
a novel loss function that combines cross-entropy and
reconstruction loss [66]. G. Junkai et al. [67] presented
GPR-TransUNet, an inversion network of deep learning for
GPR that utilizes a self-attention mechanism and regression
techniques.

5. Comparison of Gpr Sensors Data with Feature Extrac-
tion and Classification
Table VII compares GPR data processed through various

algorithms to identify specific features for landmine classi-
fication. Each technique has its advantages and limitations,
and the data used for implementation reflects accuracy
(Acc), probability of detection, and false alarm rate.

A. Feature Extraction Methods
Landmine detection is crucial to distinguish landmines

and non-mines from their surroundings when they have
distinct shapes and sizes. Various feature extraction methods
were used to retrieve features from B-Scan images of land-
mines generated through gprMax. Spectral feature retrieval
is employed in [33] and [36] to identify the ROI from
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TABLE VII. Comparison of GPR sensor data with an algorithm, features, advantages, limitations, dataset, and performance metrics

Algorithm Features Advantages Limitations Dataset Metrics
Median
Filtering,
SRGS, FFNN
[32], 2006

Region-
Based

Efficient and reliable for
accurately detecting and
classifying AP mines

Tested on a small amount
of actual data

DeTeC at
the EPFL Pd-80%

HMM, GEOM,
SCF, EHD [33],
2007

Edge,
Geom,
Spectral

HMM delivered the best
performance on the data
collected

HMM algorithms take
longer times to process
each alarm than EHD

NIITEK
data

Pd-90%,
FAR-0.002

EHD, KNN
[34], 2009 Edge

Fuzzy techniques distin-
guished false alarms from
accurate detection

Factors appear to be in-
fluenced by geography and
the environment

NIITEK
data Pd - 90%

HMM [35],
2012

Gradient,
Gabor,
Bar, Edge

Histogram detected 13
types of AT landmines

EHD was less effective
than other algorithms

NIITEK
data

Pd-95%
(EHD),
FAR-0.0118

SVM [36], 2017 Spectral
Performed better for land-
mine detection than edge
and gradient features

Multiple features can en-
hance classification accu-
racy

Real-world
data Acc-0.83

MCC [37],
2017

High-
Intensity
Edges

Efficient landmine detec-
tion was achieved using
grayscale images

The effectiveness of feature
extraction alone was not a
major factor in detection

Grayscale
landmine
image

Confidence
Level-95%

SVM, SIFT
Descriptor [38],
2017

BOV, FV
Performed well with BOV
and FV methods applied to
images in HH polarization

Feature learning did not
perform well for other fea-
ture sets in all polarizations

Western US
Army Data FAR-0.02

RPCA-GoDec
[39], 2018

Sparse
Compo-
nent

GoDec with thresholds of-
fered fast computation and
robustness against clutter
and noise

Target discrimination had
to be focused more

Georgia
Technology
Institute

Pd- 99%

TGSS [40],
2019

Twin Fea-
ture

Performed well in dimen-
sion reduction

Accuracy rate varied when
changes in the training data Real data Acc-82.77%

MOGA [41],
2019 HOS

MOGA performed well on
the training set and showed
strong results on the valida-
tion and testing data

Design time was longer
than neural networks but
faster than SVM

Maas and
Schmalzl
Data

Acc-91.03%

KNN, SVM,
HOG [42],
2019

Gradient HOG produced better re-
sults when KNN used

Reduced the noise level in
signals

Synthetic
Data

Average
Performance-
92.6%

SVM and NN
Classifier [43],
2020

Five Fea-
ture Set

NN method outperformed
SVM

Did not include different
soil types and moisture

Surrogate
Data

Acc (NN -
95%)

Whitening
Algorithm [44],
2020

S-
Parameter

ZCA-correlation whitening
algorithm performed well
on the simulated database

The simulation did not con-
sider soil inhomogeneity

Georgia
Tech

Correlation
Coefficient-
89.74%

CDM [45],
2020

LDM and
CDM

The system detected IEDs
of any shape, material, and
type

GPR, TS performed worse
than VS, showing improve-
ment only in CDM

Fabio
Caraffini
Data

Acc-0.7778
(IR)

LRT in Density
Band and Out-
lier [46], 2020

Feasible
probabil-
ity density

Reduced false alarms and
missed detections in a ro-
bust outlier

Hypothesis test is neces-
sary to properly assess the
accuracy of the LRT

US Army FA-8, MD-2

PCA, Wavelet
denoising [47],
2021

Gradient

Performed well in clut-
ter suppression, PSNR, and
entropy in a homogeneous
medium

Testing in heterogeneous
soil and rough surface con-
ditions is essential

Synthetic
and
measured

PSNR-
37.28,
IE-698.4

Autoencoder
[48], 2021

Multi-
polarization

Horizontal and vertical po-
larization achieved better
accuracy

Autoencoder enabled only
a limited amount of data Real data Acc - 93%
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TABLE VII. Comparison of GPR sensor data with an algorithm, features, advantages, limitations, dataset, and performance metrics (Continued)

Algorithm Features Advantages Limitations Dataset Metrics

DRL [49], 2021 DQN
Performed well in object
detection and classification
accuracy

Worked only in a homoge-
neous environment

Simulated
(gprMax)

Classification-
7.12X103

Cumulative
HOG, SURF
Descriptor [50],
2022

Gradient
and SURF

SURF achieved a higher Pd
with no false alarms than
Gaussian gradients

Interpolation restored the
original image after deci-
mation reduced its size

Real data Acc-89%

CAE, DCAE
[51], 2022 Texture

Effectively removed clut-
ters and provided the sim-
ulated target

Performed slightly worse
on real data compared to
LRSD-based methods

Vrije
Universite
Brussel

Clutter-
0.119(CAE),
0.197(DCAE)

CNN-RNN
[52], 2022 LSTM Feature extracted using

both CNN and RNN
Possible only when using
deep learning algorithms Real Pd-0.9

Distance-based
SVD filtering
[53], 2022

Extract
Height In-
formation

Different radar angles im-
prove GPR-SAR image fo-
cus and reduce clutter

Co-registration must to
compensate the different
antenna tilt

GPR-SAR
images

Detection-
100%

Deep CNN
[54], 2022

Scharr op-
erator

The Scharr operator with
the CNN yielded the best
results

Successful training requires
many images

Simulated
(gprMax) MAPE-6.74

PCAD [55],
2022 FP-GPR

Selected optimal parame-
ters with higher classifica-
tion accuracy

Multiple parameters have
been used Laboratory Acc-87.8%

Uncertainty
[56], 2022

Scattering
noise

Improving reliability in en-
gineering applications Estimated only depth IFSTTAR

Confidence
interval-
95%

CTR [57], 2022 Kirchhoff
migration

Offered better resolution
and higher signal-to-noise

Location identified by
drilling Simulated Precise util-

ity location
FE Framework
[58], 2022

Lorentz
Force

Detected buried object in
heterogeneous medium

Permittivity was not con-
sidered Simulated Target depth

R-CNN [59],
2023 YOLOv3 YOLOv3 recognized the

regions of the pipeline
Took longer to divide the
image into areas of interest Real Precision-

95.6%
End-End DL
[60], 2023

Key point
regression

Support good accuracy and
maintain operating speed

Parameters cannot be opti-
mized with deep learning

Real and
simulated Acc-97.01%

Deep Learning
[61], 2023 ANN

Exact features retrieved
through several layers of
neurons

Highest errors occurred for
non-metallic targets with
smaller diameter values

Real Data MAPE-
1.89%

Scattering [62],
2023

Entropy-
Based

Fully polarimetric radar
data used

Need to determine the best
features

US UXO
test site ROC Curve

MOGA [63],
2023 KF More efficient approach to

GPR data processing Semi-autonomous nature DZT GGSI Acc-91.4%

DFDD-TDFEM
[64], 2023

Signal ag-
gregation

System improves signal
quality

Only concentrated on Qual-
ity of images Simulated

Improved
signal-to-
noise ratio

Ensemble Net-
work [65], 2024

SwinIR,
RCAN,
MSRN

Reduces misclassification
and improves classification
accuracy

Not suitable for blurred
GPR images Simulated SSIM-0.980

ViT [66], 2024 Cross-
entropy

Background and white
noise enhances detection
performance

Weighted factor used be-
tween 0 to 10 only Simulated Acc-92.5%

TransUNet
[67], 2024

Self-
attention

Superior performance in
training stability and inver-
sion accuracy

Computational Complexity
Simulated
and
Guangxi

Permittivity
inversion
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GPR B-Scan images. Translation-invariant features were
used to get the edge of the landmine within an image in
[34], [35], and [37] based on edge histogram descriptors.
The gradient method was used in [35], [36], [42], [47],
and [50], while various feature sets have been employed,
including the twin feature set in [40], the two feature sets
in [38], and the five feature sets in [43]. Statistical feature
extraction methods were selected for their ability to quantify
image properties such as texture and intensity distributions
[51], making them helpful in distinguishing between types
of objects and backgrounds based on variations in soil and
landmine features. The above methods were chosen because
they provide the most essential features of landmines and
their surroundings.

B. Classification Algorithms
The classification algorithms were chosen based on

the nature of the feature data extracted. SVM and K-NN
are used for classification when there is complex feature
space and high-dimensional data with non-linear decision
boundaries. The SVM method is employed in [36], [38],
[41], [42], and [43] because of its robustness in the usage
margin between classes. K-NN is selected for multiclass
problems in [42].

C. GPR Datasets
Developing robust landmine detection and analysis mod-

els requires variation in characteristics. The GPR datasets
vary in characteristics, including the type of casing material,
metallic and non-metallic, soil type, shape, size, orien-
tation, depth penetration, environmental conditions, scan
dimensions, and number of scan traces. Some datasets may
include high-resolution subsurface scans, while others may
have a lower resolution but cover a larger area. The datasets
were divided into three subsets for evaluating machine
learning algorithms: training, validation, and testing.

D. Incorporation of Deep Learning
CNNs’ ability to handle complex image data and auto-

matically extract features may offer considerable advantages
in landmine detection. The paper discusses and compares
these advanced techniques involved in normalization, re-
sizing, and data augmentation. The study would present a
more thorough analysis and demonstrate the potential for
improved detection performance. Deep learning techniques
employed in [49], [52], [54], [59], [60], [61], and [67] are
helpful for feature extraction from GPR B-Scan images
because they can learn hierarchical features automatically.
The architectures range from simple to complex, utilizing
varying convolutional layers, such as ResNet and U-Net,
based on the dataset’s size and complexity. CNNs are
adept at adapting to a wide range of features and patterns
present in GPR images, which can significantly enhance
the accuracy of landmine detection compared to traditional
methods like SVM and K-NN.

E. Evaluation of Computational Efficiency
Deep learning shows varying levels of complexity,

which scale with the number of layers and the size of

the kernels. Training CNN requires GPUs or specialized
hardware resources, and to enhance processing speed for
real-time applications, optimized libraries and hardware
accelerators can be employed. Furthermore, optimization
techniques commonly utilized for SVM and K-NN, such as
dimensionality reduction, parallel processing, and efficient
data structures, can enhance computational efficiency. Sev-
eral strategies are used for CNNs, including quantization,
pruning, and lightweight architectures like EfficientNet and
MobileNet, to reduce computation load. Together, these
approaches make deep learning models more effective for
real-time applications.

F. Comparison with Baseline Models
As per the study, Traditional baseline models in GPR-

based landmine detection include statistical, spectral [33],
edge detection [33], [34], [35], [37] and [54], gradient [35],
[42], [47] and [50], and machine learning classifiers features
to learn landmine signatures from GPR B-Scan images.
Deep learning methods might include advanced machine
learning approaches such as ensemble methods [62].

G. Ablation Study
Evaluate the performance of feature extraction methods

using only edge detection without statistical features; it
understands the impact of edge-based features alone on
detection accuracy. However, statistical methods without
edge detection isolate the effect of statistical features on
the overall performance.

The performance of SVM compared to other classifica-
tion algorithms, such as random forest, decision trees, or
gradient boosting machines, evaluates how different classi-
fiers impact detection accuracy and robustness. Similarly,
the performance of K-NN with alternative classifiers will
be compared to determine its relative effectiveness.

The authors [33], [35], [50], and [62] have compared
the results with other feature extraction techniques and
compared the performance based on evaluation metrics such
as accuracy, precision, recall, F1 score, and probability
detection.

H. False Alarm Rate
FAR measures underground objects incorrectly identi-

fied as landmines. According to the comparative study, a
lower FAR is essential for reliable landmine detection, as
false positives can lead to unnecessary disruptions and risks.
Techniques such as feature selection, classifier optimization,
and post-processing filtering are utilized to minimize FAR.
Ensemble methods like bagging and boosting can enhance
performance by leveraging the strengths of multiple algo-
rithms, reducing FAR while improving Pd.

There is often a trade-off between Pd and FAR. Increas-
ing Pd typically requires lowering the detection threshold,
which can raise FAR due to more false positives. Con-
versely, reducing FAR may necessitate a higher threshold,
potentially lowering Pd.
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Figure 18. Images before and after applying Gradient Magnitude
[47]

Figure 19. Images before and after applying the Gauss gradient [50]

SVM can be adjusted using different kernels and reg-
ularization parameters to balance Pd and FAR, whereas,
in K-NN, the number of neighbors and distance metrics
influence this trade-off. Various thresholds and architecture
adjustments can be used to adjust deep learning models.

I. Visualization
Visualization includes the input and output of GPR

B-scan images before and after applying algorithms to
reduce clutter and extract landmine-related features. Figure
18 displays the images before and after applying Gradient
Magnitude [47]. Figure 19 shows the images before and
after applying the Gauss Gradient to retrieve features of
landmines GPR B-Scan images [50].

J. Limitations
The performance and limitations of the algorithms are

presented in Table VII. The data availability is crucial for
landmine detection, serving as the foundation for training
and evaluating detection algorithms. It may vary by tech-
nique, soil type, and depth of burial. However, specific
algorithms may perform better in dry, sandy soils than
in clay or loamy soils based on differences in EM wave
propagation and attenuation. Environmental factors such as
moisture content, temperature, and the presence of other
subsurface materials can also affect algorithm performance
and introduce noise or distortions in GPR signals; the depth
of the buried objects can significantly impact signal quality
and accuracy.

K. Findings
This study compared feature extraction and classification

algorithms for landmine detection using GPR data, aimed to
identify the most effective approach to maximize detection
probability while minimizing false alarms. The analysis
revealed that clutter on GPR data, caused by buried objects
and soil variations, significantly hinders accurate landmine

identification. Several researchers explored many clutter
reduction algorithms, like SURF descriptors [50], Sobel
and Scharr operator for pre-processing [54], and machine
learning features such as two [38] and five-feature sets
[43], BOV, FV [38], and CAE [51] parameters involved
to mitigate the challenges. These techniques were designed
to retrieve salient features and reduce clutter, eventually
enhancing detection accuracy.

In addition, the study evaluated the performance of
several classification algorithms, including SVM [36], [38],
[42], and [43], NN [43], KNN [34], and [42], and FFNN
[32], to distinguish landmines from non-mines. In this
context, spectral feature-based classifiers, especially SVMs,
performed better than NN classifiers using gradient and
edge features. These findings underscore the critical role of
effective clutter reduction and feature extraction in GPR-
based landmine detection. The promising performance of
SVM classifiers highlights their potential for real-world
applications.

6. Conclusion and FutureWork
This paper presents the challenges faced by various

landmine detection techniques. Particularly, GPR offers a
promising solution due to its non-invasive nature and ability
to detect subsurface objects. However, the complexity of
GPR data necessitates robust feature extraction and classi-
fication techniques to distinguish landmine signatures from
clutter and noise effectively. This study also highlights
the comparative performance of various feature extraction
methods, such as edge detection and statistical methods,
alongside classification algorithms like SVM and K-NN.
Continued technological advancements and interdisciplinary
collaboration will be essential for improving landmine
detection systems and ensuring safety in affected regions.
However, some researchers concentrate on specific aspects,
such as clutter reduction, feature extraction, or classifica-
tion. Effective landmine detection requires a multifaceted
approach that integrates pre-processing, clutter reduction,
feature extraction, and classification methods.

In the future, Researchers should focus on deep learning
techniques for clutter reduction, feature extraction, and clas-
sification of GPR data, including CNNs, which have shown
considerable promise in signal processing tasks. Developing
deep learning models tailored to GPR signal characteristics
can enhance robustness against varying soil conditions and
signal noise, paving the way for more effective landmine
detection solutions.
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