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Abstract: Artificial intelligence jargon encompasses deep learning that learns by training a deep neural network. Optimization is an
iterative process of improving the overall performance of a deep neural network by lowering the loss or error in the network. However,
optimizing deep neural networks is a non-trivial and time-consuming task. Deep learning has been utilized in many applications ranging
from object detection, computer vision, and image classification to natural language processing. Hence, carefully optimizing deep neural
networks becomes an essential part of application development. In the literature, many optimization algorithms like stochastic gradient
descent, adaptive moment estimation, adaptive gradients, root mean square propagation etc. have been employed to optimize deep
neural networks. However, optimal convergence and generalization on unseen data is an issue for most of the conventional approaches.
In this paper, we have proposed a variance adaptive optimization (VAdam) technique based on Adaptive moment estimation (ADAM)
optimizer to enhance convergence and generalization during deep learning. We have utilized gradient variance as useful insight to
adaptively change the learning rate resulting in improved convergence time and generalization accuracy. The experimentation performed
on various datasets demonstrates the effectiveness of the proposed optimizer in terms of convergence and generalization compared to

existing optimizers.
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1. INTRODUCTION

Deep learning has developed as an effective method for
handling complicated problems in a variety of disciplines,
including computer vision and natural language process-
ing. However, optimizing deep learning models strongly
relies on effective optimization strategies. Deep learning
model convergence and generalization are essential ele-
ments that have a direct influence on their performance
and applicability in real-world circumstances. Convergence
relates to a model’s capacity to find an optimal solution
during the training phase, whereas generalization refers to
the model’s ability to function effectively on previously
unknown data. In deep learning, optimization techniques
including Stochastic Gradient Descent (SGD), Adagrad,
Adadelta, RMSProp and its derivatives have been frequently
utilized [1]. DNN architecture consist of the input layer,
hidden layers, and output layers. Deep neural networks are
sequential feed-forward network, which processes an input
and provide it to hidden layers for further processing. The
hidden layer stores the necessary information and passes it
to the output layer for processing. The output layer supports

different types of distributions in the output unit. Primarily
it uses Gaussian distribution for linear output units, bi-
nomial distribution for binary classification problems and
multinouli distribution for multiclass classification [2]. The
hidden unit utilizes activation functions like sigmoid, tanh,
softplus and ReLu based on the input and desired output.
With the ability to learn complex patterns and representa-
tions from data, type of machine learning model is called
a deep neural network (DNN), made up of numerous
layers of interconnected nodes. To handle specific chal-
lenges presented by language data, DNN designs in NLP
have undergone substantial evolution, adding specialized
layers and methods. For example, recurrent neural networks
(RNNs) are well-suited for tasks like sentiment analysis,
machine translation, and language modelling because of
their recurrent connections, which enable them to analyze
sequences of inputs. To capture long-range dependencies
in sequences, classical RNNs are limited by vanishing and
exploding gradient problems. Deep architectures like Gated
Recurrent Units (GRUs) and Long Short-Term Memory
Networks (LSTMs) have been created to overcome this
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constraint of vanishing and exploding gradients. Further-
more, transformer-based models, first described by Vaswani
et al. in 2017 [3], have become the prevailing paradigm
in NLP. Transformers use self-attention methods to capture
global dependencies in input sequences, allowing them to
mimic long-term interactions more effectively than typical
recurrent architectures. Models such as BERT (Bidirectional
Encoder Representations from Transformers) [4] and GPT
(Generative Pre-trained Transformer) [5] have demonstrated
cutting-edge performance across a wide range of NLP tasks,
including question answering, language comprehension, and
text generation. The primary objective of deep neural net-
works is to diminish the difference between likely results
and expected results. This is the process of optimization
where 6(w, b) parameters are tuned to reduce the loss or
error that occurs. The optimization algorithm plays a signif-
icant role in forward and backward propagation during the
neural network training process. An optimization algorithm
helps in driving the solution to the global optimum. The
most popular optimization algorithm is gradient descent.
It comes in three flavours: vanilla or batch gradient de-
scent, stochastic gradient descent, and mini-batch gradient
descent. While these approaches have achieved amazing
success, they frequently encounter difficulties in terms of
convergence speed and generalization performance. Deep
learning models are complicated and high-dimensional,
making it difficult to strike the correct balance between
convergence and generalization. When it comes to non-
convex optimization, gradient-based approaches struggle
to converge. The best approach to overcome the non-
convex optimization problem is to improvise gradient-based
learning using a momentum-based approach and learning
rate adaption [6].

In the deep learning process learning is an important
parameter to set. Choosing the ideal learning rate is the
most critical aspect of training deep neural networks as it
affects overall network performance. Setting small learning
leads to slower or delayed convergence and configuring a
large learning rate may result in overshooting the global
optimum. Therefore, finding the best learning rate is a
process of finding a tradeoff between small and large val-
ues. Algorithms like adaptive gradient (Adagrad), Adadelt,
RMSProp, Adaptive moment estimation (ADAM), and Nes-
terov ADAM (NADAM) provide a platform for adaptive
change learning rate based on the model’s performance
[7]. However, most of above mention optimization conver-
gence poses some issues and sometimes results in delayed
convergence. Convergence is a common problem for deep
neural networks during training. The reason behind this is
optimization process involves going through complex, non-
convex loss surfaces with several saddle points and local
minima. Standard optimization techniques, such as Stochas-
tic Gradient Descent (SGD), tend to converge slowly, partic-
ularly when dealing with deep models and high-dimensional
data. Another significant problem for neural networks is
ensuring that they generalize well to new input. When deep
models overfit the training set, noise is captured instead of

the underlying patterns. On the other hand, models may
underfit, failing to account for the complexities of the data.

X

Figure 1. Convex Optimization

Starting pt.

Local minima

Global minima
Figure 2. Non-Convex Optimization

To address these issues, this work presents a unique
variance adaptive optimization technique for improving
deep learning model convergence and generalization. The
suggested approach tries to change the learning rate dy-
namically depending on gradient variance, allowing for
adaptive and fine-grained optimization during training. The
suggested approach tries to enhance convergence time while
avoiding overfitting and boosting generalization capabilities
by introducing variance information into the optimization
process. In this work, we undertake a thorough investigation
to assess the efficacy of the suggested variance adaptive
optimization approach. We compare its performance to that
of known optimization methods, considering a variety of
benchmark datasets and assessment measures. We study
the convergence speed, generalization performance, and
other relevant parameters through thorough experiments
to determine the efficacy of the suggested approach. This
research paper’s contributions are as follows: First, we
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provide a unique variance adaptive optimization strategy
that dynamically adapts the learning rate depending on
gradient variances. Second, we present a comprehensive
study and comparison of the proposed strategy with ex-
isting optimization methods, highlighting its strengths and
limits. Third, we offer experimental data demonstrating the
usefulness of the suggested strategy in terms of improving
convergence and generalization in deep learning models.

2. RELATED WORK

Gradient-based learning is a famous and widely used
optimization technique in machine learning and deep learn-
ing [8]. Gradient-based learning works effectively in con-
vex problem space. Figure 1 shows the convex optimiza-
tion problem. Gradient-based learning struggles to reach
the global optimum in non-convex optimization. Figure 2
shows non-convex optimization. Gradient-based approach
get stuck in local minima making it difficult to get out of
it. The mini-batch gradient descent algorithm manages to
escape shallow local minima; however, it struggles to get
out of deep local minima. Deep learning is an important
development in the domain of Al it leverages machines to
comprehend and understand patterns in a human way [9].
Deep learning provides state-of-the-art architectures like
convolutional neural networks, recurrent neural networks
and autoencoders to handle a wide variety of problems.
Deep learning models are complex and tend to overfit
many times. Optimizing the deep neural network is an
important aspect of deep learning. Various optimizers have
been offered to train deep neural networks. A very common
approach used by most of the deep neural networks is
gradient descent algorithms. To achieve better convergence
gradient-based learning is categorized into two major parts:
1) momentum-based optimization and 2) adaptive learning
rate-based optimization. Momentum-based approaches ac-
cumulate historical gradients to update the weights. How-
ever, it results in oscillating over the global optimum before
it converges. Misra [10] proposed a new activation function
to advance the general functioning of stochastic gradient
descent and adaptive moment-based estimation. Wang et al.
[11] their investigation presented an optimization strategy
that combines the best properties of ADAM and stochas-
tic gradient descent algorithms. Experimental confirmed
the usefulness of the suggested optimizer for non-convex
problem spaces. The vanishing gradient problem is very
prominent in deep learning because squashing activation
functions like sigmoid and tanh tend to get the update values
close to zero, resulting in no progress during the learning
process. Authors [12] have proposed an evolved gradient
direction optimizer to handle the aforementioned issues.
The weights here are updated utilizing first-order gradients
and hyperplane values. Kim and Choi [13] have proposed an
Adam-based hybrid optimization algorithm specifically for
convolutional neural networks. The proposed optimization
algorithm provided robust and stable performance in a
convolutional neural network. In [14] Using dynamic coef-
ficients and composite gradients based on stochastic block
coordinate descent, Liu et al. have attempted to overcome

Adam’s slow convergence. The gradient deviation value is
adjusted using adaptive coefficients to adjust the direction
of momentum. The random block coordinate determines
the gradient update mode. Reyad et al. modified Adam
optimizer for deep neural network optimization [15]. The
proposed approach adjusts step size automatically over the
epochs. The updates are calculated based on the norm values
of gradients and utilized dynamically in step updates. Au-
thors of [16] created a new optimization algorithm utilizing
the training dataset batch size to increase learning rate
adaptively. Lie et al. [17] presented the RAdam algorithm
to rectify variance in learning rate. To tackle the problem
of local minima, authors of [18] have proposed boosting-
based gradient Adam for optimization. Yan and Cai [19]
have addressed the issue of poor model generalization by
proposing an AdaDB optimizer which works by constrain-
ing the learning rate on the upper bound and lower bound
of the data. In [20] authors have improved the performance
of Adam by adjusting the value of the division coefficient
epsilon. In [21] authors have proposed an optimized fuzzy
deep learning model utilizing non-dominated sorting ge-
netic algorithm-II for optimization. It addresses the issues
of imprecise and uncertain data and noise-sensitive data.
It combines deep learning with fuzzy learning and non-
dominated sorting genetic algorithm II. The author of [22]
has demonstrated the use of deep learning networks using
adaptive optimization like RMSprop for the detection of
industrial cyber-physical attacks. Reyad et al. in proposed
modified version of Adam called as HN-Adam optimizer
which automatically adjusts step-size during optimization.
HyperAdam is another optimizer which utilizes Adam as
baseline optimizer. It uses concept of learning to optimize
[23]. Following table 1 provides the recent optimizers and
their shortcomings. Our research is trying to mitigate issues
related to latest Adam based optimizers.

3. PROPOSED METHODOLOGY

The proposed variance adaptive optimization technique
is a unique technique for addressing the issues of deep
learning convergence and generalization. This approach
tries to dynamically alter the learning rate depending on
gradient variance, allowing adaptive optimization during
the training process. The suggested approach attempts to
create a compromise between convergence speed and gen-
eralization performance by using variance information. The
proposed variance adaptive optimization approach is based
on the idea that gradient variance might give useful insights
into the optimization landscape. It uses this data to change
the learning rate for every parameter in the deep learning
model adaptively. The main concept is to control the learn-
ing rate depending on gradient variability, allowing for fine-
grained optimization. The suggested approach computes
the variance of gradients for each parameter throughout
the training process using a continuous window or an
exponential moving average. The variance is a measure of
the reliability or fluctuation of gradients, reflecting how the
optimization process behaves. If the variance is significant,
it indicates that the gradients are highly fluctuating, indicat-
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TABLE I. Adam Based Optimizer

Optimizer Key features Performance Drawbacks

Radam (Rectified Adam) - Variance Rectification Improved stability and con- May still struggle with
vergence, especially in early  highly non-stationary
stages environments

HyperAdam

HN Adam (Hypernetwork
Adam)

AdaDB (Adaptive Dynamic
Bound)

- Dynamically adjusts learn-
ing rate, - Task-specific
learning

Uses hypernetworks to gen-

erate optimizer parameters

- Dynamically adjusting
bounds on learning rates

- State-of-the-art
performance for MLPs,
CNNs, and LSTMs

- Improved optimization
performance

- More stable and often
faster convergence

- Increased computational
complexity, - Requires care-
ful tuning

- More complex implemen-
tation, - Requires additional
resources for hypernetworks

- Complexity in setting and
tuning dynamic bounds, -

EVGO (Evolving Gradient
Optimizer)

- Evolving gradient esti-
mates, - Adapts to training
dynamics over time

May not outperform other
optimizers in all scenarios

- Improved convergence
rates, - Robustness against
noisy gradients

- May require additional
tuning, - Can be computa-
tionally intensive

ing a complicated optimization surface. A low variance, on
the other hand, indicates that the gradients are reasonably
steady, indicating a smoother optimization surface. The
learning rate for every parameter is adaptively modified
utilising the variance values. When the variance is high,
suggesting that the optimization landscape is unstable, the
learning rate is lowered to guarantee stability and avoid
overshooting the optimal solution. When the variance is low,
which indicates a more stable optimization landscape, the
learning rate is raised to speed up convergence [24]. The
proposed approach can efficiently navigate the optimization
landscape and optimize the deep learning model due to the
dynamic modification of the learning rate exploiting gradi-
ent variances. The proposed variance adaptive optimization
approach is based on two essential principles: adaptive
learning rate regulation and utilizing gradient variance.

A. Adaptive Learning Rate Adjustment

The suggested approach modifies the learning rate dy-
namically based on gradient variation. The approach makes
certain that the optimization method stays stable and ef-
fective across varied optimization landscapes by adaptively
modifying the learning rate. This adaptive adjustment aids
the methodology to react to variations in the optimization
environment, resulting in improved convergence and gener-
alization.

B. Leveraging Gradient Variance

The variance of gradients is an effective indication of
how the optimization process will behave. It captures the
volatility or stability of gradients, offering insights into
the optimization landscape’s complexity. The suggested

approach may alter its optimization strategy based on the
unique characteristics of the issue at hand by including gra-
dient variance in the learning rate adjustment. This allows
the approach to fine-tune the learning rate and optimize the
deep learning model more effectively.

In various areas, the suggested variance adaptive opti-
mization strategy differs from existing optimization meth-
ods. While classic methods such as Stochastic Gradient
Descent (SGD) and its derivatives employ static learning
rates or adaptive approaches based on past gradients, gra-
dient variances are not explicitly included in the learning
rate modification process. Furthermore, the proposed vari-
ance adaptive optimization approach facilitates fine-grained
learning rate modification. The strategy provides an im-
proved and focused optimization approach by modifying the
learning rate for each parameter depending on its gradient
variance. This fine-grained change improves optimization
efficiency, especially in complicated deep neural network
models with many parameters. In comparison to current
adaptive optimization methods such as AdaGrad, RMSprop,
and Adam, the proposed strategy has a notable benefit in
that it incorporates gradient variance directly into learning
rate adjustment. While these adaptive approaches consider
previous gradients, they may accrue too many variations
over time, resulting in overfitting. The suggested approach,
on the other hand, concentrates on gradient instantaneous
variance, offering a more up-to-date estimate while avoiding
possible difficulties associated with accumulated variances.

Let’s consider a general optimization objective for deep
learning: Minimize: E(w) = & X, Ly, f(xi;w)) (1)
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where: E(w): is the objective function to be minimized,
w: represents the model parameters, N: is the total number
of training samples, L(yi, f(xi; w)): is the loss function that
measures the discrepancy between the predicted output f(xi;
w) and the ground truth label yi. Consider existing optimiza-
tion algorithm as Adaptive Moment Estimation (ADAM):
Adam optimizer is a combination of momentum and Root
Mean Square propagation (RMSprop) algorithm. The key
idea behind Adam is to calculate two moving averages of
parameters. The first moment i.e., means and the second
moment i.e., an uncentered variance of gradients. These
moving averages are utilized adaptive update of learning
rate during training. However, Adam applies bias correction
to moments because during initialization moving averages
are biased towards zero. The Adam update equations are
given as follows:

ADAM Optimization:
mp=p-m_+(1-61)-g 2
v =ﬁ2m' v+ (1=p) g2 (3)

i = @)
W=y )
Wy =W 1 — 1] \/:%;6 (6)

where, m, and v; represent the first and second moments
of the gradients at time step t, 8, and 3, are the decay rates
for the first and second moments, respectively, g, represents
the gradient at time step t, 7, and Vv, are the bias-corrected
estimates of the moments, 7 is the learning rate, € is a small
constant for numerical stability.

The proposed variance adaptive optimization is given
below,

Proposed Variance Adaptive ADAM (VADAM):
var, = By - var, 1 + (1= Bvar) - & (7)
var, = 5= (8)

var

Ir, = Toarre &)
m=p1-m+0=-61)-g (10
vi=PB v+ (1=Bo)- g7 (11)

i = 2 (12)
h=gy 13
wp = wpg — I VZ;&E (14)

Where, var, and vdr, represents the variance of gradients
at time step t and its bias-corrected estimate, respectively,
Byar is the decay rate for the variance, Ir, is the adapted
learning rate based on the variance, the rest of the terms
are the same as in the ADAM update equations. The flow
diagram depicting the working of the VADAM is shown in
Figure 3. The pseudo-code of the VADAM is shown in the
following figure 4.

The suggested VADAM differs from previous optimiza-
tion algorithms in the learning rate adaption procedure.
Unlike previous approaches such as ADAM, which change
the learning rate based on the first and second moments

Gradients Calculation: Compute the Weight Update: Update
gradients g, of the loss function with thegweigms w.vﬁ using
respect to the weights. Adaptive Learning Rate: the adaptive leérning rate
Calculate the adaptive —»| and the bias-corrected
E learning rate Ir, moment estimates
First Moment Update: Bias-Corrected
Update the first moment Variance: Compute the
estimate m, bias-corrected variance
estimate vir,
Y
Second Moment Update: Variance Update:
Update the second moment Update the variance
estimate v, estimate var,
Bias-Corrected First Bias-Corrected Second
Moment: Compute the bias- .| M Compute the
corrected first moment "] bias-corrected second
estimate f, moment estimate 0,

Figure 3. Workflow for VADAM

def _prepare_local(self, var_device, var_dtype, apply_state):
super(VAdam, self)._prepare_local(var_device, var_dtype, apply_state)

apply_state[(var_device, var_dtype)]["learning_rate_t"] = tf.identity(self.learning_rate)
apply_state[(var_device, var_dtype)]["betal_t"] = tf.identity(self.betal)
apply_state[(var_device, var_dtype)]["beta2_t"] = tf.identity(self.beta2)
apply_state[(var_device, var_dtype)]["epsilon_t"] = tf.identity(self.epsilon)
apply_state[(var_device, var_dtype)]["w_t"] = tf.identity(self.w)

def _create_slots(self, var_list):
for var in var_list:
self.add_slot(var, "m")
self.add_slot(var, "v")

def _resource_apply_dense(self, grad, var):
var_dtype = var.dtype.base_dtype
lr_t = self._get_hyper("learning_rate", var_dtype)
betal_t = self._get_hyper("betal", var_dtype)
beta2_t = self._get_hyper("beta2", var_dtype)
epsilon = self._get_hyper(“epsilon", var_dtype)
w = self._get_hyper("w", var_dtype)

m = self.get_slot(var, "m")
v = self.get_slot(var, "v")

=

m.assign(betal_t * m + (1. - betal_t) % grad)

_t
t = v.assign(beta2_t * v + (1. - beta2_t) % tf.square(grad))

<

r=m_t / (tf.sqrt(v_t + w * v) + epsilon)
var_update = tf.assign_sub(var, lr_t x r)

return tf.group(x[var_update, m_t, v_t])

Figure 4. Pseudo code for VADAM

of gradients, VADAM adds gradient variation directly into
the learning rate adaption. The addition of variance-based
adaptation enables VADAM to dynamically change the
learning rate depending on gradient variability. This can
contribute to better convergence and generalization perfor-
mance, especially in circumstances with complicated opti-
mization landscapes or noisy gradients. VADAM provides a
more fine-grained and adaptable optimization technique by
considering instantaneous variance. Through experimental
assessment, comparing the convergence time, generalization
performance, and other important metrics of VADAM with
standard ADAM and other current optimization methods,
the distinctive influence of variance adaptation on the opti-
mization process can be detected. The efficacy of the pro-
posed VADAM may be objectively measured and compared
with existing approaches using these studies. Overall, the
mathematical comparison demonstrates VADAM’s distin-
guishing feature of utilizing gradient variance for adaptive
learning rate modification, which distinguishes it from typ-
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ical optimization methods. Table 2 shows the comparison
of VADAM against other optimizers.

e Learning Rate Adaptation: VADAM and RMSprop
use adaptive learning rate adaptation, which dynam-
ically modifies the learning rate during training. In
contrast, ADAM and SGD have fixed or manually
controlled learning rates.

e Adaptive Moment Estimation: VADAM, ADAM, and
RMSprop use adaptive moment estimation for adap-
tive learning rate modification, which covers first and
second-moment estimates. SGD is devoid of adaptive
moment estimation.

o Handling Variance: VADAM integrates variance-
based adaptation, taking gradient variability into ac-
count. In their learning rate adaptation, ADAM, RM-
Sprop, and SGD do not directly manage variation

e Convergence Speed: Because of their adaptive learn-
ing rate modifications and use of moment estimates,
VADAM and ADAM tend to have higher convergence
speeds than RMSprop and SGD.

e Generalization Performance: When compared to
SGD, VA ADAM, ADAM, and RMSprop have better
generalization performance. However, the addition of
variance-based adaptation to VADAM may improve
its generalization capabilities.

It’s vital to remember that the efficiency of various
optimization techniques varies depending on the issue,
dataset, and model design. The table compares them in
general terms based on their major properties.

4. EXPERIMENTATION AND RESULTS

For the experimentation, we have developed deep neural
networks from scratch using TensorFlow and sklearn li-
braries. We have utilized multilayer perceptron architectures
for Breast Cancer, PIAMA Indian Diabetes and Cancer
datasets. Following diagram 5 shows a deep feed-forward
neural network. The input value is subject to the number
of features in respective datasets. We have not utilized
transfer learning approaches exploiting existing pre-trained
models like VGG16, ResNet50 or InceptionNet. For image
datasets like MNIST, CIFAR10 and Fashion-MNIST we
have created a convolutional neural network (CNN) from
the scratch. The illustration of the CNN blocks for the
CIFARI1QO dataset is shown in Figure 6. To validate the
variance adaptive optimization, we have utilized various
datasets from the UCI repository as well as from the Kaggle.
The following table shows the various datasets and their
category.

Table 3 discusses the datasets utilized for experimenta-
tion. We have considered both binary and multiclass classi-
fication datasets. Also, to study the robustness of algorithms
across deep learning frameworks, we have considered stan-

Input Layer ~ Hidden Layer € R™* Hidden Layer € R” Output Layer € R’

Figure 5. Deep Neural Network for Breast Cancer, PIAMA Indian
Diabetes and Cancer datasets

dard image datasets. The characteristics of datasets are
discussed in Table 4. The experiment is conducted in a
Google collaboratory environment with GPU support for
the training and testing of the optimizer. The baseline
configurations of the hyperparameters required are shown
in Table 5.The experimentation has been performed to
analyze the functioning of the suggested variance adaptive
methodology against Adam and the stochastic gradient
descent algorithm. For experimentation purposes, we have
kept the batch size at 32 and the epochs to 10 except
MNIST dataset. For the MNIST dataset, the epochs is
set to 5. The dataset considered for the experimentation
is small and requires less time to train the model. The
intention of considering the small quantity of epochs is
based on the dataset size. However, parameters are like
a number of epochs, and learning rates are not dataset or
experiment specific. These are tunable parameters and set to
some value based on the experiment’s requirements. Table
5 demonstrates the training time taken by each optimizer
across various datasets. Training loss on each dataset is
shown in Table 6. During experimentation, we observed
training loss for all the optimizers. The details of training
loss are shown in Table 7 and Figure 8. The convergence
rate for the VADAM is measured using Equation 15. Given
a sequence of loss values L, where L, is the loss at iteration
t, the rate of convergence at iteration t is defined as:

r = L IL’ (15) The figure 7 shows the convergence of
the VAdam and Adam on the breast cancer dataset. Various
models are developed utilizing variance adaptive Adam,
Adam and SGD optimizers. The test performance of each
optimizer on the test dataset is presented in Figure 9. Table
8 shows the performance of the optimizer on the test dataset.
From the obtained results we can observe that VAdam
converges rapidly in contrast to the existing contemporary
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TABLE II. Comparison of Optimization Algorithms

Optimization Learning Rate Adaptive Moment Handling Variance Convergence Speed Generalization
Algorithm Adaptation Estimation Performance
VADAM Variance-based Yes Yes Fast Improved

ADAM [25] Momentum-based Yes No Fast Good
RMSprop Adaptive learning No No Moderate Moderate

rate
SGD Fixed learning rate No No Slow Moderate

optimizers. The following tables present classification re-
ports for experiments to observe the performance of VAdam
in case of data imbalance. Tables 9, 10 and 11 demonstrate
the classification report for Breast Cancer, MNIST and
CIFARI1O0 datasets.

conv2d_input | input: | [(None, 32, 32, 3)]
InputLayer | output: | [(None, 32, 32, 3)]
conv2d | input: | (None, 32, 32, 3)
Conv2D | output: | (None, 32, 32, 32)

Y
max_pooling2d | input: | (None, 32, 32, 32)
MaxPooling2D | output: | (None, 16, 16, 32)
flatten | input: | (None, 16, 16, 32)
Flatten | output: (None, 8192)

dense_3 | input: | (None, 8192)
Dense | output: | (None, 64)
dense_4 | input: | (None, 64)
Dense | output: | (None, 10)

Figure 6. CNN model for CIFAR10 dataset

Convergence Rate

0.5

0.4

0.34

Loss

0.2

0.1

T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

a) VADAM convergence

Convergence Rate

0.035

0.030 -

0.025 -

Loss

0.020 -

0.015 4

0.010 A

T T T v T T v T
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5
lteration

b) ADAM Convergence

Figure 7. Convergence rate for Breast Cancer Dataset

5. EXPERIMENT LIMITATIONS
STRAINTS

During the experimentation, VAdam is trained and val-
idated on the existing toy datasets. Also, we have observed
the effectiveness of VAdam for classification problems.
Some of the experiments are performed on image datasets
using VAdam and CNNs to demonstrate the scale and
variations in applicability. However, VAdam is not validated
on huge datasets and sequential datasets for its performance.
We propose to perform high computational experiments in
the near future.

AND CON-
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TABLE III. Experimentation Datasets
Sr. No. Dataset Type
1 Breast Cancer Dataset [26] Binary classification
2 MNIST Dataset [27] Multi-class classification
3 CIFAR10 Dataset [28] Multi-class classification
4 PIAMA Indian Diabetes Dataset [29] Binary classification
5 Cancer Dataset Binary classification
6 Fashion MNIST Dataset [30] Multi-class classification
TABLE IV. Dataset Characteristics
Dataset Features Classes Instances
Breast Cancer 30 numeric features 2 classes 569 instances
MNIST 28x28 grayscale images digits 0-9 60,000 training and 10,000
testing images
CIFAR-10 32x32 color images 10 classes 50,000 training and 10,000
testing images
PIMA Indian Diabetes 8 numeric features 2 classes 768 instances
Cancer Dataset 28 numeric features 2 classes 857 instances
Fashion MNIST 28x28 grayscale images 10 classes 60,000 training and 10,000
testing images
Training Loss
1.8
1.6
1.4
1 . 2 Breast Cancer Dataset MNIST
99 100
1 98 /———ﬁm 95 97&_\
97 90
0.8 96 o 85 i
0'6 * Vadam Adam SGD % Vadam Adam SGD
04
PIAMA Indian Diabetes Fashion MNIST
0.2 I II 100 88
80 8 87
0 _MEE_mE - o E— '/\
Breast MNIST CIFARI0 PIAMA Cancer Fashion - 8
Cancer Indian MNIST 0 85
Datas et Diabetes Vadam Adam SGD Vadam Adam SGD
CIFAR10
Vadam mAdam mSGD 100 87.18 86.74
80
60 43.01
Figure 8. Training Loss 40 N
20
0
TABLE V. Hyperparameter Settings VAdam Adam S6b
Hyperparameters Value Figure 9. Optimizer performance - Test Accuracy
Learning rate 0.001
B 0.9
B> 0.999
Epsilon (e) 1078
w 0.5
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TABLE VI. Training time

Dataset Optimizer Training Time (in seconds)
VAdam 2.65
Breast Cancer Dataset Adam 3.69
SGD 4.27
VAdam 30.95
MNIST Adam 31.89
SGD 32.30
VAdam 84.30
CIFAR10 Adam 67.50
SGD 84.03
VAdam 3.76
PIAMA Indian Diabetes Adam 2.62
SGD 1.75
VAdam 1.94
Cancer Adam 3.46
SGD 1.92
VAdam 62.90
Fashion MNIST Adam 82.75
SGD 65.20

TABLE VII. Training Loss

Dataset Vadam Adam SGD
Breast Cancer Dataset 0.08 0.08 0.08
MNIST 0.09 0.09 0.43
CIFARI10 0.51 0.59 1.62
PIAMA Indian Diabetes 0.45 0.46 0.68
Cancer 0.06 0.06 0.44
Fashion MNIST 0.37 0.35 0.38
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TABLE VIII. Test Accuracy

Dataset Optimizer Test Accuracy
Vadam 96.5
Breast Cancer Dataset Adam 98.2
SGD 98.2
Vadam 87.18
MNIST Adam 86.74
SGD 88.7
Vadam 64.21
CIFAR10 Adam 61.7
SGD 43.01
Vadam 81.1
PIAMA Indian Diabetes Adam 77.9
SGD 50.6
Vadam 97.4
Cancer Adam 96.5
SGD 92.9
Vadam 87.41
Fashion MNIST Adam 87.7
SGD 86
TABLE IX. Classification Report for Breast Cancer Dataset
Precision Recall F1-Score Support
0 1.00 0.98 0.99 43
1 0.99 1.00 0.99 71
Accuracy 0.99 114
Macro Avg 0.99 0.99 0.99 114
Weighted Avg 0.99 0.99 0.99 114
TABLE X. Classification Report for MNIST Dataset
Precision Recall F1-Score Support
0 0.98 0.99 0.99 980
1 0.99 0.98 0.99 1135
2 0.95 0.99 0.97 1032
3 0.97 0.98 0.97 1010
4 0.98 0.97 0.98 982
5 0.98 0.98 0.98 892
6 0.98 0.98 0.98 958
7 0.99 0.93 0.96 1028
8 0.94 0.98 0.96 974
9 0.97 0.96 0.97 1009
Accuracy 0.97 10000
Macro Avg 0.97 0.97 0.97 10000
Weighted Avg 0.97 0.97 0.97 10000
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TABLE XI. Classification Report for CIFAR10 Dataset

Precision Recall F1-Score Support

0 0.90 0.79 0.84 1000
1 0.95 0.92 0.93 1000
2 0.90 0.66 0.76 1000
3 0.62 0.78 0.69 1000
4 0.80 0.85 0.82 1000
5 0.76 0.78 0.77 1000
6 0.81 0.91 0.86 1000
7 0.93 0.86 0.89 1000
8 0.95 0.89 0.92 1000
9 0.87 0.94 0.90 1000
Accuracy 0.84 10000
Macro Avg 0.85 0.84 0.84 10000

Weighted Avg 0.85 0.84 0.84 10000




%
s“"'“
§G b
g 2
%

Lo uay
12 %'wj Nagesh Jadhav, et al.

6. CONCLUSION AND FUTURE WORK

Throughout the paper, we intend to advance the opti-
mization process for deep neural networks by proposing
consideration of gradient variance during learning rate
adaption. We have compared our results against popular
optimization algorithms such as Adam and stochastic gra-
dient descent. The existing Adam algorithm is modified to
adapt gradient variance for improved convergence and gen-
eralization. Proposed variance adaptive Adam outperforms
stochastic gradient descent as well as Adam optimizers
in overall training accuracy and convergence time. To
conclude, experimental results indicate that the proposed
VAdam optimizer is efficient as well as effective contrasted
with the existing contemporary optimizers. The effective-
ness of VAdam can be used in deep learning applications
to tackle the common issues of convergence and general-
ization. In future work, we intend to work on time series
applications to check the effectiveness of VAdam. Also, the
effectiveness of the VAdam is to be validated against the
vanishing gradient and exploding gradient issues.
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