
International Journal of Computing and Digital Systems
2025, VOL. 17, NO.1, 1-19

http://dx.doi.org/10.12785/ijcds/1571023806

Extracting Features from App Store Reviews to Improve
Requirements Analysis: Natural Language Processing and

Machine Learning Approach

Ishaya Gambo1, Christopher Agbonkhese2, Theresa Omodunbi1, Michael Peter3, Rhodes Massenon1

and Israel Odetola1

1Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
2Department of Digital and Computational Studies, Bates College, Lewiston, ME 04240, USA

3Industry Ecosystems (INDECO), Interswitch Group, Lagos, Nigeria.

Received 23 April 2024, Revised 30 January 2025, Accepted 31 January 2025

Abstract: User reviews of mobile apps on platforms such as the Google Play and Apple App Store are a rich and valuable source of
information for requirements engineering and software evolution. They reveal the users’ needs, preferences, and opinions about the apps
and their features. However, extracting and classifying the non-functional requirements (NFRs) from these reviews is a challenging
task that requires sophisticated methods and techniques. In this research, we propose a novel approach that uses data mining, natural
language processing (NLP), and machine learning (ML) to automatically identify and prioritize NFRs from user reviews of 99 top-rated
games in four categories. Sport, Racing, Puzzle, Action and Casual. We collected 271,656 reviews from both platforms and used feature
extraction techniques to select and extract the most important NFRs from the reviews. We then used four ML algorithms: Naı̈ve Bayes,
Support Vector Model (SVM), Decision Tree J48, and Logistic Regression (LR) to perform sentiment analysis and rank the NFRs
based on their importance and relevance. We focused on three types of NFRs: security, flexibility, and maintainability. Our findings
show that user reviews can help improve the outcomes of these NFRs and that our approach can help developers understand their users
and meet their needs from an NFR perspective, thus increasing user satisfaction and retention.

Keywords: User reviews, requirement engineering, software features, non-functional requirements, functional requirements, machine
learning

1. INTRODUCTION
Software requirements have evolved from a fundamental

need in software development to a specialized field of
research known as requirements engineering (RE). As a
critical activity in software engineering, RE establishes
the necessary foundations for successful system develop-
ment [1], [2], [3]. Throughout the software lifecycle, from
initial communication to final modeling stages, RE plays a
crucial role in the design of robust, fail-free systems [2].
In this context, requirements are expressed as software fea-
tures, typically categorized as either functional requirements
(FRs) or non-functional requirements (NFRs) [4]. While
FRs focus on what the system should do to meet end-user
needs, NFRs constrain the types of solutions that will satisfy
these functional demands.

NFRs encompass crucial aspects such as security, reli-
ability, accessibility, maintainability, reusability, flexibility,

performance, usability, and efficiency [5]. The comple-
mentary nature of FRs and NFRs is vital for any soft-
ware project, particularly in mobile applications. Without
adequate consideration of both types of requirements, a
software system may fall short of stakeholder expecta-
tions [6]. Identifying and classifying NFRs presents unique
challenges in the field of RE. Unlike their functional coun-
terparts, NFRs are often implicit, subjective, and difficult
to quantify [7]. This complexity is further compounded
by the diverse nature of NFRs, which can span multiple
quality attributes and sometimes conflict with one another.
Traditional methods of requirement elicitation, such as
interviews and workshops, may not adequately capture the
full spectrum of NFRs, especially in the context of widely
distributed user bases [8].

In this research, stakeholders are users, and mobile
applications are the software in focus. Users provide feed-

E-mail address: ipgambo@oauife.edu.ng, cagbonkhese@bates.edu, tessydunbi@oauife.edu.ng, michael.peter@interswitchgroup.com,
ramassenon@pg-student.oauife.edu.ng, odetolaisrael@gmail.com

http://dx.doi.org/10.12785/ijcds/1571023806

2 Ishaya Gambo, et al.

back on their interactions with mobile apps by leaving
ratings and/or comments expressing their views about the
application [9]. These reviews provide direct feedback from
users on their interactions with mobile applications, offering
insights into features that need alteration, addition, im-
provement, or fixing [10]. The advent of app marketplaces
has streamlined the process of crowdsourcing requirements,
making it easier for developers to access a wealth of user
feedback. However, the unstructured nature of user reviews
presents its own set of challenges. Reviews often contain
diverse information from users with varying backgrounds,
including text abbreviations, spelling errors, and unlabeled
data [11], [12], [13]. This complexity makes it difficult for
developers to manually process and extract relevant data for
requirement improvement [11], [14], [15].

Existing methods for app review analysis have shown
promising results in extracting valuable information from
user feedback. Groen et al. [16] investigated the presence of
NFRs in user reviews of mobile apps, focusing on usability
and reliability concerns. Ciurumelea et al. [17] proposed a
taxonomy to analyze reviews and codes of mobile apps for
better release planning, using machine learning (ML) and
information retrieval techniques. Guzman and Maalej [18]
introduced an automated approach to filter, aggregate, and
analyze app reviews using collocation finding algorithms
and topic modeling.

Although some studies have applied ML for app review
classification and sentiment analysis [19], [20], none have
specifically focused on adapting natural language process-
ing (NLP) techniques to handle large volume of reviews.
Chen et al. [21] highlighted the potential of sentiment
analysis in understanding user satisfaction, which can be
closely tied to NFRs. Luiz et al. [22], Messaoud et al. [23],
Raharjana et al. [24], and Ossai et al. [25], applied topic
modeling, collocation finding, frequency techniques and
sentiment analysis on the reviews to determine their posi-
tivity or negativity. This approach enables the identification
of key features and sentiment scores, providing valuable
insight for the evolution of software requirements in mobile
applications.

To address the challenges in NFR identification and
classification, researchers have turned to NLP and ML
techniques [26], [27], [28]. Jha and Mahmoud [27] utilized
NLP techniques to extract functional requirements from
user reviews, while Maalej et al. [29] demonstrated the
effectiveness of ML algorithms in classifying user feedback
into actionable insights. However, these approaches often
face limitations in terms of precision and recall, especially
when dealing with the multilabeled nature of user reviews,
as highlighted by Mcilroy et al. [11].

Despite these advances, several research gaps remain.
The accuracy of NFR identification and classification still
needs improvement, especially in handling the diverse and
often ambiguous language used in app reviews. Further-

more, more robust methods are needed to prioritize NFRs
based on their significance and impact on user satisfaction.
In this work, our aim is to address these gaps by combining
four classification techniques: Term Frequency - Inverse
Document Frequency (TF-IDF), Chi Squared (CHI2), and
Augmented User Reviews - Bag-of-Words (AUR-BoW)
with four ML algorithms: Naive Bayes, support vector ma-
chine (SVM), Decision Tree J48, and Logistic Regression.
Our approach aims to automatically classify user reviews
into four types of NFRs (security, flexibility, and maintain-
ability), FR, and Others. We conducted experiments on the
top 99 free apps on Google Play and iTunes, comparing the
classification results through all combinations of techniques
and algorithms.

This research seeks to know how to get the right features
included in a software system to meet its expectations from
users’ reviews of mobile applications. Secondly, the re-
search seeks to know how to handle various user preferences
in a software system based on the user’s feedback in the
extracted review. Thirdly, the research seeks to know how
to extract, classify, and prioritize these extracted features
to improve the RE process and the entire system during
software maintenance.

In general, this paper aims to fill a gap in the field of RE
by proposing a novel model that can extract and classify
software features from user reviews of mobile apps. The
model can also prioritize features based on their importance
and relevance for the RE process. The features can be
FR or NFR, which are often overlooked or neglected by
existing models. By using user reviews as a source of
information, the model can enhance software development
practices, particularly in the mobile app domain, by helping
practitioners identify and address key features that users
want and need in new applications [30].

2. BACKGROUND AND MOTIVATION
In this section, we explain the importance of NFRs in

software quality (SQ), provide an overview of the ML and
NLP techniques. We analyze the strengths and limitations
of each approach discussed. We also present the gaps in
current research, using evidence from this literature review,
and explain how our proposed approach addresses these
gaps. Understanding these methodologies is essential for
comprehending the technical approaches and advancements
discussed throughout this paper.

A. NRFs in the Context of Mobile App Ecosystems
Software RE is a critical discipline in software develop-

ment, focusing on identifying, documenting, and managing
requirements to ensure project success [31], [32]. The field
has evolved from primarily addressing functional require-
ments to encompassing NFRs, which are quality attributes
such as performance, security, and usability [33], [34].
NFRs play a crucial role in determining SQ and user
satisfaction, yet they present significant challenges in iden-
tification and management due to their often implicit na-
ture [35], [36]. The mobile app ecosystem has transformed

International Journal of Computing and Digital Systems 3

the software landscape, with app stores serving as vital
platforms for distribution and user feedback [21], [26].
User reviews play a pivotal role in the evolution of mobile
applications, offering direct feedback on product strengths
and weaknesses. By analyzing user reviews, developers
can identify common themes related to NFRs, such as
performance issues or usability concerns, guiding future
development efforts and prioritizing enhancements [37].
However, the subjective nature of reviews can complicate
interpretation and decision-making.

Despite significant advancements in RE, several limita-
tions persist. The lack of standardized methods for doc-
umenting and prioritizing NFRs hampers effective man-
agement throughout the development lifecycle [38]. Addi-
tionally, the rapid pace of mobile app development often
conflicts with traditional RE practices, necessitating more
agile approaches [39], [40].

The integration of user feedback from app stores with
formal RE processes represents a promising direction for
research. Using NLP and ML techniques, developers can
potentially automate the extraction and classification of
NFRs from user reviews, improving the responsiveness of
software development to user needs [27].

B. NLP and ML Techniques
NLP has become a crucial tool in software engineering,

particularly for analyzing user-generated content such as re-
views of mobile apps. NLP techniques enable the extraction
of valuable insights from unstructured text data, facilitating
requirements engineering and feature identification.

Several NLP approaches are commonly used in software
engineering (SE). Stemming algorithms, such as the Porter
Stemmer, simplify words by removing common suffixes,
grouping terms with similar meanings [41], [42]. This tech-
nique is particularly useful for reducing the dimensionality
of text data [17]. Sentiment analysis, exemplified by tools
like Sentiwordnet, SentiStrength. SentiStrength is applied
to assign sentiment scores, the overall sentiment polarity
and strength of a text [43], [29], [44]. This approach helps
in understanding user satisfaction and identifying areas for
improvement in software applications. Sentiwordnet assigns
sentiment scores (positivity, negativity, objectivity) to Word-
Net synsets, aiding in the computation of term counts for
positive and negative sentiments [45], [46].

N-gram extraction captures contextual information by
grouping continuous sequences of tokens [47]. This method
is valuable for understanding the nuanced structures within
textual data. The Bag-of-Words (BoW) model represents
text as an unordered collection of words, allowing for the
evaluation of term presence and frequency [48]. While
simple, BoW can be effective for basic text classification
tasks. TF-IDF measures the importance of a word in a
document relative to a collection of documents. CHI2
evaluates the independence between terms and classes,
identifying features that are most likely to be informative

for classification. TF-IDF builds upon BoW by adding
a weighting mechanism to account for term distribution
across the corpus [49]. This approach helps in identifying
important terms within documents. An advanced version
of BoW called AUR-BoW [27], [28] can enhance this by
utilizing word similarity to augment the user reviews. This
means that AUR-BoW not only looks at the individual
words but also considers how words relate to each other
in terms of meaning, which can provide a richer context
for classification.

ML complements NLP in classifying features extracted
from reviews. Traditional classification methods include
SVM, which excel in handling high-dimensional data and
sparse datasets. Naive Bayes classifiers, grounded in Bayes’
theorem, offer simplicity and robustness to noise, making
them effective for noisy datasets like Twitter data [50].

Decision Trees provide an easily explainable classifica-
tion method, making them accessible for various applica-
tions [48]. Random Forests build upon Decision Trees by
introducing randomness and building collections of trees,
demonstrating promising results in text classification while
mitigating overfitting [47].

The integration of NLP and ML in SE has revolu-
tionized the analysis of user feedback. While automated
approaches offer scalability and efficiency, they may miss
subtle nuances captured by manual analysis. This paper
focuses on hybrid approaches that combine the strengths
of both manual and automated methods to enhance feature
extraction and classification in mobile app development.

C. Related Work
The exploration of extracting and classifying NFRs from

app store reviews through NLP and ML has gained signif-
icant attention in recent years. Various studies have show-
cased diverse methodologies, each with unique strengths
and limitations.

The work of Guzman and Maalej [18] introduced a
sophisticated method for filtering and aggregating app re-
views, successfully leveraging topic modeling for feature
grouping. However, relying on the location can present chal-
lenges in capturing the diverse linguistic nuances present
in user feedback. A crucial aspect addressed in Chen et
al. [21] involves integrating sentiment analysis to grasp user
satisfaction, which is deeply correlated with NFRs.

Guzman and Maalej [18] developed an automated sys-
tem for filtering and analyzing reviews using collocation
finding and topic modeling. Their results demonstrated
successful feature aggregation; however, reliance on collo-
cation could lead to missing nuanced meanings conveyed in
reviews. Mcllroy et al. [11] investigated multi-labeled user
reviews, emphasizing the capacity of SVM to effectively
manage complex feedback. However, the requirement for
extensive feature engineering can lead to computational
inefficiencies.

4 Ishaya Gambo, et al.

Panichella et al. [51] identified linguistic features in
reviews to classify technical feedback, demonstrating that
decision trees produce effective outcomes. However, this
method’s dependency on linguistic features raises questions
about its adaptability to varied user feedback across dif-
ferent app categories. The study by Maalej and Nabil [43]
highlighted the accuracy of binary classifiers but pointed
to the limited impact of feature extraction techniques on
classification performance.

Jha and Mahmoud [52], have demonstrated the efficacy
of NLP techniques in automatically extracting FRs from
reviews, emphasizing their potential in requirements anal-
ysis. However, while their approach effectively identifies
functional aspects, it falls short in addressing the context-
specific nuances that characterize NFRs, such as usability
and performance factors. Similarly, Maalej et al. [29] show-
cased the application of ML algorithms in transforming user
feedback into actionable insights, yet the generalizability of
these models remains a substantial limitation as they often
lack adaptability across diverse application ecosystems.

Groen et al. [16] specifically examined NFRs in mobile
app reviews, identifying usability and reliability as primary
user concerns. Their proposed linguistic patterns facilitated
the precision of capturing usability-related issues; neverthe-
less, a low recall highlighted the limitations of their method
in encompassing the breadth of user feedback.

Ciurumelea et al. [17] proposed a taxonomy aimed
at better review analysis, with findings indicating a com-
mendable average precision of 80% and recall of 94%.
However, identification of code modifications related to
user comments yielded a lower precision of 51%. This
discrepancy suggests the need for further refinement in
connecting user feedback to actual software changes.

Rustam et al. [53] investigated the application of ML
techniques to classify user reviews for Shopify apps. The
study categorized reviews into positive and negative groups,
pre-processed data and used feature engineering techniques,
including BoW and TF-IDF, to extract meaningful infor-
mation. The extracted features were then used to train ML
models, specifically the AdaBoost classifier (AC), logistic
regression (LR) and random forest (RF), to classify reviews
as happy or unhappy. By incorporating linguistic context
and semantics with AUR-BoW, can improve the model
accuracy.

Di Sorbo et al. [54] investigated the impact of user
feedback on the quality and ratings of Android apps by
analyzing user reviews. They used a feature extraction
technique to identify key issues reported by users that
significantly affect app ratings. The authors utilized the
ARDOC tool [55] to automatically detect intentions in app
reviews and the SURF summarizer tool [56] to extract prob-
lem discovery (PD) and feature requests categories from text
data. By quantifying the impact of different types of user
feedback on app ratings, the researchers revealed valuable

insights for app developers to prioritize maintenance and
improvement efforts effectively.

Tao et al. [57] introduced SRR-Miner, a novel frame-
work to summarize security-related user reviews and iden-
tify security issues and user sentiments in mobile applica-
tions. The framework employs a keyword-based approach
that leverages BOW, part-of-speech tagging, and triples
to extract security-related review sentences. By analyzing
the structure and semantics of these sentences, SRR-Miner
distinguishes between verbs indicating app misbehaviors,
nouns representing aspects, and sentiment words reflecting
user opinions. This fine-grained approach provides users
with a detailed understanding of security concerns and
other users’ opinions, enhancing their comprehension of app
security issues.

Gao et al. [46] designed the SOLAR tool to auto-
matically summarize helpful user reviews for developers.
The tool utilized a trained review helpfulness prediction
model to filter non-informative reviews, group topics with
corresponding sentiments, and prioritize reviews for each
topic. Feature extraction techniques included POS tagging,
readability, lexicon, sentiment score (SentiWordNet), polar-
ity, and content dimension (unigram tf-idf).

Zhang et al. [58] introduced a semi-automatic frame-
work for detecting privacy features in App reviews. This
framework employed a dependency parsing method to ex-
tract relevant features from privacy-related reviews, which
were then matched with manually annotated features in
App descriptions using phrase similarity. The approach
has significant implications for developers, who can use it
to identify key topics to prioritize and summarize future
changes.

Ossai and Wickramasinghe [25] investigated user con-
cerns regarding diabetes mobile apps by analyzing user
comments and developing a sentiment classification model.
The study employed a combination of non-negative matrix
factorization (NMF) and BoW techniques to extract relevant
features from user comments. NMF decomposed comments
into thematic topics, revealing underlying sentiments, while
BoW represented comments as word collections, focusing
on overall sentiment. This integrated approach enabled the
model to effectively classify user sentiments and understand
concerns about diabetes mobile apps.

In more recent studies, tools such as SAFE [59] and
CLAP [47] have advanced the methodologies surrounding
feature extraction from user reviews. While SAFE focused
on linguistic patterns without extensive computational re-
quirements, its repeatability concerns drawn from evaluation
practices necessitate ongoing scrutiny. CLAP’s emphasis
on clustering user feedback demonstrated applicability in
real-world release planning contexts but also revealed the
challenges of maintaining classification accuracy amid high
variability in user expectations.

International Journal of Computing and Digital Systems 5

Lu et al. [27] consolidated various feature extraction
methods, notably TF-IDF, CHI2, and AUR-BoW, for clas-
sifying user reviews into NFRs. Their findings underscored
the collaborative power of multiple methods, yet they did
not explore the role of contextual variance sufficiently,
which may limit the robustness of the system in different
domains. Furthermore, Johann et al. [59] and Triantafyllou
et al. [60] expanded on these methodologies by proposing
sophisticated frameworks for feature extraction and catego-
rization, but the intricacies involved in training various ML
models can lead to overhead costs in rapid development
cycles.

Emerging frameworks such as the MAPP-Reviews
method [61] utilized contextual word embeddings to im-
prove feature extraction from reviews, showcasing advance-
ments in processing nuances in language favorably. Efforts
to analyze the dynamics of user feedback have underscored
the importance of contextual learning, yet their computa-
tional complexity raises questions about resource allocation
for development teams.

The studies by Tao et al. [57] and Nadeem et al. [62]
emphasize the unique challenges associated with extract-
ing NFRs, focusing particularly on security and change
requests. These challenges reveal that while sentiment
analysis enhances understanding of user needs, it may
inadvertently overshadow or obscure key NFRs critical for
the development process.

Recent work has sought to integrate advanced ML tech-
niques, such as deep learning (BERT, LISTM, RoBERTa,
S-BERT) and transformer models [13], [63], [64], demon-
strating a nuanced understanding of user feedback and fea-
ture extraction that could substantially streamline require-
ments evolution. While these methods significantly enhance
performance, they often require substantial computational
resources and a robust understanding of model behaviors to
interpret results effectively.

To synthesize these findings, Table I outlines the
strengths and limitations of the various methodologies and
approaches discussed. These foundational works underscore
the potential of NLP for transforming unstructured data into
actionable insights, although they do not directly address
NFRs. This gap in the literature indicates the need for more
focused explorations that target NFRs in user reviews.

D. Research Gaps
Current research in extracting NFRs from app store

reviews faces several limitations. Existing methods often
struggle with the diversity and unstructured nature of user
feedback, leading to inaccuracies in NFR identification and
classification [1] [2]. Moreover, the dynamic nature of
mobile app ecosystems presents challenges in prioritizing
NFRs based on their significance and impact on user
satisfaction [3].

To address these gaps, we propose a new approach that

combines ML and NLP techniques to extract and classify
NFRs from user reviews. Our approach uses AUR-BoW
to enhance the traditional BoW approach by incorporating
semantically similar terms. We also propose using four
ML algorithms (Naive Bayes, SVM, Decision Tree J48,
and Logistic Regression) to perform sentiment analysis and
rank NFRs based on their importance and relevance. In this
paper, we address the following research questions (RQs)
that guide our investigation and analysis:

• RQ1: How to identify and prioritize Non-Functional
Requirements in user reviews for effective consider-
ation?

• RQ2: How can we effectively prioritize Non-
Functional Requirements based on their significance
and impact?

• RQ3: What tools, techniques, and methodologies are
appropriate for addressing RQ1 and RQ2 effectively?

• RQ4: How can the effectiveness and validity of the
methods and tools applied in addressing RQ3 be
reliably validated?

These questions are designed to systematically address
identified research gaps and contribute to the advancement
of RE practices in the development of mobile applications.

Our proposed approach leverages state-of-the-art NLP
techniques for feature extraction and sentiment analysis,
combined with advanced ML algorithms for classification
and prioritization. This integration offers potential advan-
tages over existing methods, including improved accuracy
in NFR identification and more nuanced prioritization based
on user sentiment and app context.

The timeliness and importance of this research are
underscored by the rapid growth of the mobile app market
and the increasing emphasis on user-centric development
practices. By improving the extraction and prioritization
of NFRs from user reviews, our work has the potential
to significantly impact the quality of the application, user
satisfaction, and the efficiency of the software development
process.

In the following sections, we will detail our methodol-
ogy, demonstrating how it addresses each research question
and contributes to the field of RE in mobile app develop-
ment.

3. METHODOLOGY
In our paper, we used qualitative and quantitative meth-

ods, following the case study research approach [66], [67].
In this section, we explain how we designed and imple-
mented a novel model that integrates two methods that
have shown promising results in previous studies. We also
describe the data analysis techniques and algorithms we
used to ensure the validity and reliability of our findings.

6 Ishaya Gambo, et al.

TABLE I. Comparative Overview of Key Studies in NFR Extraction

Study Methodology Strengths Limitations
Jha & Mah-
moud [52]

NLP for functional require-
ments

Established foundational
techniques

Limited focus on NFRs

Groen et
al. [16]

Linguistic patterns for NFRs High precision in usability
feedback capture

Low recall rates

Ciurumelea et
al. [17]

Taxonomy of user reviews High precision and recall in
classifying reviews

Performance varies with app
types

Guzman &
Maalej [18]

Topic modeling + colloca-
tion finding

Effective grouping of fea-
tures

Generalizability limited by
dataset size

McIlroy et
al. [11]

Multi-label classification Captured nuanced user feed-
back

Complex implementation
challenges

Panichella et
al. [51]

Linguistic features with
classifiers

Competitively efficient clas-
sifiers

Classification variance based
on linguistic complexity

Maalej &
Nabil [43]

Probabilistic classification Superior binary classifica-
tion performance

Need for tailored classifier se-
lection

Wang et
al. [65]

BERT + Attr-CRF High contextual understand-
ing

High computational resource
requirement

McIlroy et
al. [11]

Multi-label classification
techniques

Captures multiple issues in
reviews

Complexity in classifying
overlapping issues

Johann et
al. [59]

Linguistic patterns Reduces need for large train-
ing dataset

Possible lack of depth in anal-
ysis

Lu et al. [27] TF-IDF, BoW, AUR-BoW Comprehensive feature ex-
traction

Potential complexity in im-
plementation

Tao et al. [57] Keyword-based extraction Simple and effective for se-
curity review extraction

Contextual nuances may be
overlooked

Gambo et
al. [63]

LLMs for feature extraction Advanced precision and
contextual relevance

Complexity of model inter-
pretation

Motger et
al. [64]

Large language models Enhanced performance met-
rics

Dependence on extensive
training datasets

Fig. 1 illustrates our novel method for analyzing user
reviews of mobile apps. We collected user reviews from
Google Play and iTunes, the leading platforms for Android
and Apple apps. We then cleaned and transformed the
reviews into a suitable format for feature extraction. We
used three techniques to extract the features and preferences
of the users: Augmented User Reviews – Bag of Words
(AUR-BoW) proposed by Lu et al. [27], TF-IDF, and chi-
square (Chi2). We split the dataset into two subsets: 70%
for training and 30% for testing. We applied the feature
extraction techniques to both subsets to select and extract
the most important features from the user reviews. Fig. 2
reflects the flow chart of the conceptual method. It illustrates
a comprehensive workflow for analyzing game app reviews
to extract and prioritize and rank the identified NFRs.

Additionally, we used a classification model to assign
the extracted features and their associated sentiment scores
to five types of NFR: Flexibility, Security, and Maintain-
ability. We used four ML algorithms to perform the classi-
fication: SVM, Naive Bayes, J48, and LR. We used Python
and the scikit-learn package to implement the text mining
and ML methods. The following sub-sections detailed the
different stages:

A. Data Collection and Analysis
In this study, we collected and analyzed the reviews

of the top 99 free apps on Google Play and iTunes, the
leading platforms for Android and Apple apps. We used
NLP and ML techniques to extract and classify the features
and preferences of users. Fig. 3 shows the overview of our
analysis method.

For data collection, we built a web crawler that used
selenium and Appcomments, two web automation and test-
ing tools, to gather user reviews from Google Play and
iTunes. The web crawler visited every page that had an
iOS or Android review for one of the 99 top-rated game
apps. It extracted metadata from each app, such as its
name, title, description, category, device, and star rating.
The web crawler also opened a new browser window for
each app and clicked on its review pages. Table II reflects
the categories and number of Game Apps selected.

In addition, we obtained 200,733 user reviews from both
platforms. Each review had a timestamp, a rating, and a
comment. The comments revealed the users’ issues and
opinions about the apps and their feelings towards them.
Table III lists the variables in our dataset. We focused
on two variables: text reviews and ratings. We filtered the

International Journal of Computing and Digital Systems 7

IJCDS_Latex_29_3_22/figures/Figure 1.png

Figure 1. Conceptual view of the Novel Method

IJCDS_Latex_29_3_22/figures/Figure 2.png

Figure 2. Flow chart of the Proposed Model

IJCDS_Latex_29_3_22/figures/Figure 3.png

Figure 3. Overview of the data collection process

TABLE II. Categories and number of game apps selected

Categories Number of
Apps users
from Google
Play store

Number of
Apps users
from the
Apple store

Sport games 12150 reviews 6292 reviews
Racing games 7821 reviews 6041 reviews
Puzzle games 12854 reviews 26978 reviews
Action games 20300 reviews 1580 reviews
Casual games 9632 reviews 17852 reviews

dataset to include only the most recent reviews from 2020
to 2021 and the highest ratings from 3 to 5. This reduced
the dataset to 121,500 user reviews. Table IV shows the
sample of reviews we analyzed.

B. Data Preprocessing
We collected user reviews from Google Play and iTunes,

the leading platforms for Android and Apple apps. However,
these reviews were not ready for ML analysis. They had
missing, inconsistent, or irrelevant information that could
affect the accuracy and reliability of our results. There-
fore, we used NLP techniques to clean and transform the
reviews into a suitable format for ML. These techniques
included: - Splitting the reviews into sentences - Converting
all words to lowercase - Removing punctuation and non-
standard words - Removing stop words and short sentences
- Lemmatizing the words - Measuring the similarity of
sentences. Fig. 4 reflects the order of our preprocessing
activities and are all executed in Python, as there are NILTK
modules that can perform these tasks. By removing the
noise and restoring the meaning of the user reviews, we
created a solid foundation for the next step: extracting and

8 Ishaya Gambo, et al.

TABLE III. Description of dataset variables

Variables Description
app url App URL
AppName App name
url URL of the web page

where the review was taken
from

author Name of the author
review Text review
rating The number of stars that

the author assigned to the
app

helpful count Number of times the
review was considered as
helpful

time Date when the review was
written

TABLE IV. Sample reviews collected

App Category Platform Reviews Rating
Join clash
3D

Action Google
Play

152 4.0

Garena
Free Fire

Action Google
Play

260 4.2

Subway
Surfers

Action Apple
store

3589 4.4

High
Heels

Action Apple
store

781 4.0

Among
Us!

Action Apple
store

924 3.6

Water sort
Puzzle

Puzzle Apple
store

528 3.9

Candy
Crush saga

Puzzle Google
Play

3979 4.6

Call for
Duty

Action Apple
store

630 4.4

Temple
Run 2

Action Apple
store

1021 4.2

Fruit Ninja Action Google
Play

612 4.3

Hill Climb
Racing

Racing Apple
store

796 4.2

Sonic
Dash

Action Google
Play

252 4.6

Fun Race
3D

Racing Apple
store

160 4.2

My
Talking
Tom

Casual Google
Play

98 4.0

Basketball
stars

Sport Google
Play

369 4.5

classifying the features and preferences of the users.

Punctuations, non-standard characters, abbreviations,

IJCDS_Latex_29_3_22/figures/Figure 4.png

Figure 4. Preprocessing Phase of user reviews collected.

acronyms, characterize user reviews and do not contribute
to the study. They can distort the outcomes of the model
and make the dataset larger than it should. Noise removal
and word restoration are the two broad categories of all data
preprocessing operations on user reviews before modelling.
Sentence tokenization reduces sentences to tokens (words),
lowercasing ensures that the model does not interpret capital
letters as small letters of the same letter as different, dupli-
cate words removal eliminates redundancy in the dataset.

C. NFR Feature Extraction
The inability of ML algorithms to process user reviews

directly requires that user reviews be extracted and trans-
formed into features that can be handled by ML classi-
fiers. This process involves the conversion of textual into
numerical representations that ML algorithms can interpret.
Three techniques, TF-IDF, CHI2, and AUR-BoW are used
in feature extraction. The TF-IDF captures the importance
of words within documents while considering their rarity
across the entire corpus. This method is particularly useful
for identifying distinctive terms in app reviews. The Chi-
Squared assesses the independence between a term and
a class, which is particularly useful for identifying terms
that are strongly associated with specific NFR categories.
The AUR-BoW enhances the traditional Bag-of-Words ap-
proach by incorporating semantically similar terms, which
is particularly beneficial for capturing the diverse ways users
might express similar concepts in app reviews. These three
feature extraction techniques offer complementary strengths
in processing app review data.

To provide more technical depth, this paper provides
the algorithms 1, 2 and 3 for the three feature extrac-
tion techniques: TF-IDF, Chi-Squared, and AUR-BoW. By

International Journal of Computing and Digital Systems 9

employing these algorithms in conjunction, we can create
a robust feature set that captures various aspects of user
feedback, ultimately leading to more accurate identification
and prioritization of non-functional requirements in mobile
app development.

Algorithm 1 TF-IDF Feature Extraction

Require: Corpus of reviews D, vocabulary V
Ensure: TF-IDF matrix M

1: Initialize TF-IDF matrix M of size |D| × |V |
2: for each review d in D do
3: for each term t in V do
4: T F ← f requencyo f tind

totalwordsind
5: IDF ← log

(
|D|

numbero f reviewscontainingt

)
6: M[d, t]← T F × IDF
7: end for
8: end for
9: return M

Algorithm 2 Chi-Squared Feature Extraction

Require: Corpus of reviews D, vocabulary V , class labels
C

Ensure: Chi-squared scores for each term χ2

1: Initialize Chi-squared scores χ2 of size |V |
2: for each term t in V do
3: Create contingency table: A: docs with t in class, B:

docs without t in class, C: docs with t not in class,
D: docs without t not in class

4: N ← A + B +C + D
5: χ2[t]← N(AD−BC)2

(A+C)(B+D)(A+B)(C+D)
6: end for
7: return χ2

Algorithm 3 AUR-BoW Feature Extraction

Require: Corpus of reviews D, vocabulary V , augmenta-
tion threshold θ

Ensure: Augmented BoW representation B
1: Initialize BoW matrix B of size |D| × |V |
2: for each review d in D do
3: for each term t in d do
4: B[d, t]← f requencyo f tind
5: end for
6: end for
7: for each term t in V do
8: if frequency of t across D ¿ θ then
9: Find semantically similar terms S to t

10: for each review d in D do
11: B[d, t]← B[d, t]+

∑
(f requencyo f sind) for s in

S
12: end for
13: end if
14: end for
15: return B

D. Sentiment Analysis
Extracted words can be related to both FRs and NFRs

having positive, neutral, and negative feeling, sentiment
analysis is applied to combine data mining and NLP to as-
sign polarity. Subjectivity is not of concern here as emotions
are obvious when playing games [68]. The SentiWordNet
lexicon contains labeled English words that can be used to
determine the opinion polarity in reviews. First, the system
identifies each word in a review and looks up its correspond-
ing sentiment scores in SentiWordNet. These scores are
categorized into three dimensions: positivity (pos score),
negativity (neg score), and neutrality (neu score). For
instance, consider the example #1 from Table V, words
like ”bad” and ”error” would contribute to the negative
score, while ”update” might be neutral or slightly positive
depending on context. Next, we aggregate these individual
word scores to calculate an overall sentiment score for the
entire review. This is done using the following Eq. (1), (2)
and (3):

s+ =
∑

i

tpos scorei
1 (1)

s− =
∑

i

tneg scorei
2 (2)

polarity score = s+ + s− +
∑

i

tword neutral3 (3)

Where s+ represents the sum of all positive scores, s-
the sum of negative scores, and the final term accounts for
neutral words.

Subsequently, this polarity score is normalized to fall
within a standardized range, typically -1 to 1, where -1
indicates extremely negative sentiment, 0 is neutral, and 1
is extremely positive.

The integration of these sentiment scores into the classi-
fication process is where our approach becomes particularly
innovative. Rather than treating sentiment as a separate
analysis, we incorporate it directly into our feature vectors
for ML classification.

Specifically, for each identified feature or keyword re-
lated to our NFRs (security, flexibility, maintainability), we
augment the feature vector with its associated sentiment
score. This creates a richer representation that captures
not just the presence or absence of a feature, but also
the user’s emotional response to it. This enriched feature
representation is then fed into our ML classifiers.

E. NFR Classification
Four supervised classifiers are used in this study: SVM,

Logistic Regression (LR), Decision Tree (DT-J48), and
Naı̈ve Bayes (NB).

10 Ishaya Gambo, et al.

The NB algorithm is anchored on the Bayes conditional
probability rule with assumptions of independence between
characteristics. To form an R reviews group, the classifier
computes the probability that a review belongs to a category
Ci. This relationship is defined as below, making use of the
conditional probability distribution as shown in Eq. (4) and
(5):

P(ci | R) =
P(ci)P(R | ci)

P(R)
4 (4)

Ω P(R | ci) =
n∏

j=1

P(d j | ci) (5)

P(ci) =
Ni

N
and P(d j | ci) =

1 + N ji

M +
∑M

k=1 Nki
5 (6)

where R is the review instance, n is the review length,
and P(dj—ci) is the probability/chance of a term dj in a
review instance. Naı̈ve Bayes will use the frequency of
occurrence of words to define their category.

LR is an algorithm that assigns observations in a sample
to discrete classes. In this research, the LR algorithm used
for the multiple classification tasks is called multinomial
LR. Pandas, Numpy, scikit learn that Python libraries are
used to build multinomial LR. The formation of the multi-
nomial logistic regression model requires the corresponding
characteristics and targets obtained using the softmax func-
tion Thus, the linear regression equation and the softmax
function can be given in Eq. (6) and (7):

y = β0 + β1X1 + β2X2 + · · · + βnXn6 (7)

F(Xn) =
exp(Xn)∑k
j=0 exp(X j)

7 (8)

F. NFR Prioritization
To classify and prioritize reviews, regression-based rank-

ing is applied. This way, software features having significant
relationships with app ratings and user feedback are identi-
fied. Keywords are ranked to aid selection of most important
keywords. The entries here are the sentences describing the
characteristic NFRs and their corresponding comments from
the user.

G. Evaluation
While Python programming language and its relevant

libraries are used in developing the model, the evaluation
techniques to review the system’s performance of the system
are accuracy, precision, recall and f measure. These metrics
are standard measures used in evaluating ML models. The

classification matrix is also used to evaluate performance
of algorithms via a visualization. The next section describes
the results of the model, an assessment of the outcomes and
the limitations of the model.

4. RESULTS AND DISCUSSION
The study was limited to five categories of gaming

applications (sports games, racing games, puzzle games,
action games, casual games) and only the 99 top-rated
gaming applications from Google Play and Apple Store
were selected. Each crawled exam contains a title, a long
description of the exam content, the number of exams, the
creation time, the reviewer ID, and the associated rating.
Finally, 271,656 user reviews for all 99 gaming applications
were accumulated, with an average of 2,744 reviews per
application.

Fig. 5 shows that 88% of the feedback came from
Google Play store and 12% from iOS apps reviews users.
Fig. 6 shows that action games and casual games were the
most popular categories on both platforms, with 62,302 and
27,677 feedback respectively. We also examined the ratings
of the feedback, ranging from 2 to 4.9 stars. Table V shows
the distribution of ratings for each category.

IJCDS_Latex_29_3_22/figures/Figure 5.png

Figure 5. Number of Apps users.

TABLE V. Rating score and total number of user reviews

Rating score Total number of
user reviews

[2, 2.9] 20
[3.0, 3.9] 45,697
[4.0, 4.9] 225,939

The four research questions (RQs) contribute to the
results presented. This way, we can assess the model for its
ability to answer the RQs presented. As seen in Fig. 5, there
is an overwhelming majority of Google play store apps over
the Apple App store. This is unsurprising as there are more
mobile apps in Play Store than the App store. While this
should mean a higher number of apps from Play store across
all app categories, Fig. 6 points to casual games from App
Store significantly exceeding those from the Play Store.

International Journal of Computing and Digital Systems 11

IJCDS_Latex_29_3_22/figures/Figure 6.png

Figure 6. Reviews per category.

A. RQ.1: How to identify and prioritize Non-Functional Re-
quirements in user reviews for effective consideration?
Three feature extraction techniques; TF-IDF, CHI2, and

AUR-BoW were used to extract high-level features from
the cleaned user reviews. The extraction provided unigram
words that refer to NFR vocabularies and their frequency.
The user reviews underwent clustering to categorize them
by sentiments by using SentiWordnet to assign a polarity
score to the reviews before eight classification techniques,
which were a combination of extraction and ML techniques,
were done to give relevant classified features in the three
NFRs considered: security, flexibility, and maintainability.

B. RQ.2: How can we effectively prioritize Non-Functional
Requirements based on their significance and impact?
Frequency, rating, positive and negative reviews were

the prioritized input attributes used to rank the selected
features based on NFR. Prioritization was done in order
of ranking score, where a high score from negative reviews
should be met with a low number of positive reviews.

C. RQ.3: What tools, techniques, and methodologies are
appropriate for addressing RQ1 and RQ2 effectively?
RQ1 was achieved by using TF-IDF, CHI2, and AUR-

BoW for feature extraction and four ML algorithms; NB,
Naive Bayes, DT-J48, and LR performed the classification
before evaluation metrics were applied.

RQ2 was achieved by using regression-based ranking to
get prioritized list. The performance of the rank prediction
was measured using the ROC curve and the mean square
error (MSE) measured regressor performance.

D. RQ4: How can the effectiveness and validity of the
methods and tools applied in addressing RQ3 be reliably
validated?
The use of the confusion matrix to assess the classifica-

tion results ensured it could be compared to the approach
taken by other researchers.

E. Feature Extraction Sentiment Analysis Results
Table VI showed sample user reviews that AUR-BoW

and TF-IDF techniques are applied to. In the sample in
Table VI, there are 10 unigrams extracted from the sample
review sentences which refer to the features which are
“Update,” “Good,” “Favourite,” “Download,” “Uninstall,”
“New,” “Account” “Bad,” “Fix,” and “Error.”. The values of
features in Table VII point to the frequencies of unigrams
of each feature for the sample data used between the sample
reviews #1 and #2. It noticed that TF-IDF of common
words (“Update”) was zero, which shows they are not
significant. On the other hand, the TF-IDF of “bad”, “new”,
“error”, are non-zero. These words have more significance.
Table VIII displays the weight of each feature in the sample
data. Also, AUR-BoW refers to two-word pair have been
considered. Bigrams such as “enjoy game,” “new update,”
and “is good” are positive. On the other hand, bigrams like
“very bad,” “no play,”,” “fix bug,” and “wont download”
have negative orientation. Based on the features extracted
from the reviews, a vocabulary bag of words were built by
checking them on the Word2Vec.

These words were used to understand specific com-
plaints about features found in the user’s reviews. NFR
types included security, availability, operational, portabil-
ity, maintainability, performance, reliability, scalability, and
usability.

In this research, we considered only three types such as
Security, Flexibility, and Maintainability aspects. Table IX
depicts top 15 topic terms mined from each type of NFR
while Table X listed for the vocabulary list. Based on
the topics as presented as example in Table IX extracted
from the reviews, the senti score was calculated with the
feature types, the associated words and the frequency where
these features appeared. Table X shows three examples of
sentences scored by SentiWordnet.

These words were used to understand specific praising,
complaints about features found in the apps. Table XI
showed samples of topics and the sentiments associated
with them. The feature extraction output and sentiment are
given as input to the classifiers used in this research SVM,
NB, DT, and LR algorithms to mine app reviews. The
classification and prioritization results will be presented in
the next step.

F. Classification and Ranking Results
In this section, the results from the features extraction

done using TF-IDF, Chi2, and AUR-BoW after the appli-
cation of ML algorithms SVM, NB, DT, LR, are presented.
Accuracy, Precision, Recall and F-measure were selected

12 Ishaya Gambo, et al.

TABLE VI. Sample of Reviews

Name App Target Class Sample of reviews before preprocessing Sample of reviews after
preprocessing

Pubg Mobile
(Android
app)

Critical #1: Very bad, I tried updating the game, It
updated and kept saying error failed.

very bad try update game
keep say error fail

Critical #2: The new update is the worst update I’ve
seen yet. I just want my game to work
smoothly, and the server lag to be fixed.

new update is worst want
game work smoothly server
lag fix

Positive #3: This is my favourite mode to play. The
graphics are pretty good, the controls are good
and gameplay is good.

favourite mode to play
graphics pretty controls
gameplay good

Subway
Surfers

Critical #4: Please fix this if it is a bug, I really want to
play this again but all my boards are gone

fix bug want to play

Critical #5: Worst game I have ever played. There is no
legal cause to make you fall suddenly on the
train.

worst game ever play no
legal cause fall suddenly

Critical #6: Why this game still not automatically
connected to google account. I lost my data

game no connect google
account

Critical #7: There’s no online save option, neither I can
login to my previous records nor I can save my
current progress. There should be option for
google or facebook.

no online save login
previous records save
current progress google
facebook

Critical #8: Lost progress. Logged into my accounts and
still no items.

lost progress log account
no item

8 Ball Pool
(iOs app)

Critical #9: STOP ASKING FOR ACCESS TO MY
FACEBOOK FRIENDS!!! The many pop-up
ads are irritating enough.

stop ask for access
Facebook friends popup
ads irritate

Critical #10: DO NOT DOWNLOAD! This is set up to
cheat you out of your in-game funds to force
you to pay.

do not download cheat
force to pay

Positive #11: It is nice game, easy to log in, very
addictive and challenging. Little of considerable
advert

nice game easy login
addictive challenge advert

TABLE VII. Results of TF-IDF technique on pre-processed data for the two first preprocessed sample reviews

TF TF*IDF
Sentences Sample reviews #1 Sample reviews #2 IDF Sample reviews #1 Sample reviews #2
(very bad try update game keep say error fail)
(new update is worst want game work smoothly server lag fix)
Update 1

9
1

11 log
(

2
2

)
= 0 0 0

New 0 1
11 log

(
2
1

)
= 0.3 0 0.27

Bad 1
9 0 log

(
2
1

)
= 0.3 0.33 0

Fix 0 1
11 log

(
2
1

)
= 0.3 0 0.27

Error 1
9 0 log

(
2
1

)
= 0.3 0.33 0

as evaluation metrics for performance of features retrieval,
weighted average, and classification results of user reviews.
A confusion matrix is to describe the performance of each
classifier composed of True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) NFRs
features.

For each feature extraction, features that are correctly

classified are labelled as TP, positive reviews for a feature
are labelled FP, and bad reviews labelled as referring to
another feature as FN. Confusion matrix is obtained from
training data; and comparison with the ML is presented.
Fig. 7(a) presents the confusion matrix of the classification
results from combining TF-IDF with all ML algorithms
to classify NFRs features while Fig. 7(b) presented the

International Journal of Computing and Digital Systems 13

TABLE VIII. Results of AUR-BoW Technique on Pre-Processed Data

No Update Good Favourite Download Uninstall New Account Bad Fix Error
#1 1 1 0 0 0 0 0 0 0 0 1
#2 1 1 0 0 0 0 0 0 1 0 1
#3 1 1 1 0 0 0 0 0 0 0 0
#4 0 0 0 0 0 0 0 0 0 0 0
#5 0 0 0 0 0 0 0 0 0 0 0
#6 0 0 0 0 0 0 0 0 0 0 0
#7 0 0 0 0 0 0 0 0 0 0 0
#8 0 0 0 0 0 0 0 0 0 0 0
#9 0 0 0 0 0 0 0 0 0 0 0
#10 0 0 0 0 0 0 0 0 0 0 0
#11 1 1 0 0 1 1 0 1 0 0 0
#12 2 0 0 0 1 1 1 0 0 0 0

TABLE IX. Sample indicator terms ‘mined’ from the training set

No Security Flexibility Maintainability
1 online adjust update
2 access next release
3 authorize multiplayer new
4 login match additional
5 data level season
6 account graphics change
7 incorrect time integrate
8 authenticate soundtrack upgrade
9 system characters fix
10 verify unlock restart
11 lost offline load
12 sign in credits reset
13 attack rewards uninstall
14 sync interface download
15 secure appear crash

TABLE X. Examples of SentiWordNet Scores in the User Reviews

Topic Pos Score Neg Score Neu Score Synset Sentence
update 0.625 0 0.375 #1: Very bad, I tried updating

the game, It updated and kept
saying error failed.

update 0.575 0 0 #2: The new update is the worst
update I’ve seen yet. I just want
my game to work smoothly, and
the server lag to be fixed.

update 0.115 0 0.785 #3: This is my favourite mode
to play. The graphics are pretty
good, the controls are good and
gameplay is good.

confusion matrix of the classification results from the
combination between AUR-BoW with all ML algorithms to
classify NFRs features. A comparison of the results from
the ML algorithms was performed for each classification
techniques.

Furthermore, three attributes (frequency, rating, positive

and negative reviews) were identified as they provide base
constructs for priority ranking. Regression-based ranking
was used to get prioritized lists. Table XII showed the
top 15 significant features from regression analysis. The
coefficients with higher value have higher impact on the
dependent variable. From the Table XII, update ranks as
the highest feature. Exploring the reviews containing this

14 Ishaya Gambo, et al.

TABLE XI. Most Common Topics Extracted from the User Reviews with Their Sentiment Scores

Topic Senti score Topic Senti score
online (+0.25) adjust (-0.181818)
update (+0.874333) access (+0.25)
next (-0.1875) release (+0.5225)
authorize (-0.222222) multiplayer (+0.4)
new (+0.25) login (+0.1)
match (+0.1174) additional (0)
data (-0.086) level (+0.6522)
season (-0.44) account (-0.363636)
graphics (+0.46363) change (+0.1159)
incorrect (-0.14) time (+0.3754)
integrate (-0.1875) authenticate (-0.30)
soundtrack (-0.111111) upgrade (+0.8181)
system (+0.44) characters (+0.2778)
fix (+0.56522) verify (+0.4166)
unlock (+0.5714333) restart (+0.76923)
lost (-0.214268) offline (-0.34444)
load (+0.6363) sign in (-0.27777)
credits (-0.115) reset (+0.7277)
attack (+0.214285) rewards (-+0.41666)
uninstall (+0.37) sync (0)
interface (-0.088888) download (+0.75)
secure (+0.333333) appear (-0.0597777)
crash (+0.67)

IJCDS_Latex_29_3_22/figures/Figure 7a.png

Figure 7. Confusion matrices of (a) SVM, DT, LR, and NB using
the TF-IDF technique; (b) SVM, DT, LR, and NB are shown using
the AUR-BoW technique.

feature reveals that the app had become unstable. The
explanation revealed that most reviews that contained the
world update were complaining that the app had indeed
become unusable.

TABLE XII. Number of User’s Reviews Corresponding to Each
Rating Score

Rank Feature Coefficient
1 update 9.17*
2 release 8.89*
4 new 6.12*
5 additional 6.07*
6 change 5.95*
7 integrate 5.70*
8 upgrade 5.23*
9 fix 4.89*
10 restart 4.55*
11 load 3.48*
12 reset 3.91*
13 uninstall 3.58*
14 download 3.02*
15 crash 2.87*

The confusion matrix in Fig. 7(a) illustrates that LR,
when combined with TF-IDF, achieved the most accurate
results, demonstrating the highest true positive (TP) and
true negative (TN) rates. LR successfully predicted 2,781
NFRs, comprising 1,490 positive features and 1,291 nega-
tive features, with an error rate of 717 incorrect predictions

International Journal of Computing and Digital Systems 15

(366 positive features and 351 negative features). As shown
in Fig. 7(b), LR provided 2,730 correct NFR predictions
(1,520 positive features and 1,210 negative features) and
made 750 incorrect predictions (320 positive features and
430 negative features). In comparison, AUR-BoW predicted
3,498 NFRs (2,252 positive features and 1,569 negative
features), outperforming other classifier models, including
SVM, NB, and DT.

Fig. 8 and Fig. 9 illustrated performance measure indices
and results for the classification model with TF-IDF, AUR-
BoW, respectively. For TF-IDF, the results for classified
models in Table XIII showed that across the evaluation
metrics, LR had the highest values respectively. Evidently,
LR is better suited in classifying NFRs in user reviews than
the other classification algorithms.

TABLE XIII. Classification Results Combining ML with TF-IDF

Classifiers
Models

Accuracy Precision Recall F-
measure

SVM 0.70 0.78 0.70 0.74
NB 0.74 0.78 0.74 0.76
LR 0.79 0.80 0.81 0.80
DT 0.74 0.79 0.74 0.76

Table XIV and Fig. 10 present a comparative analysis of
F-measure, accuracy, precision, and recall across different
classifiers using various feature engineering techniques. The
results indicate that LR outperformed SVM, DT, and NB
when utilizing AUR-BoW, achieving an 80% performance
across all metrics. By integrating AUR-BoW with Chi-
squared (Chi2) feature selection, the LR model further
refined its predictive capabilities by focusing on more
valuable features. Notably, the LR model achieved an
80% classification accuracy for security and maintainability
features, although it showed a lower accuracy of 66% for
flexibility-related features based on user reviews. Table XV
illustrates the classification results of NFRs types—Security,
Flexibility, and Maintainability—obtained using the LR
classifier. Among these, the Security type achieved the
highest F-measure of 82% when employing AUR-BoW,
Chi2, and ranking, as depicted in Fig. 11. This demonstrates
the effectiveness of the LR model in accurately classifying
NFRs, particularly when enhanced with advanced feature
engineering techniques.

TABLE XIV. Classification Results Combining Machine Learning
with AUR-BoW

Classifiers
Models

Accuracy Precision Recall F-
measure

SVM 0.78 0.82 0.78 0.80
NB 0.80 0.86 0.78 0.82
LR 0.80 0.82 0.80 0.82
DT 0.66 0.72 0.63 0.66

IJCDS_Latex_29_3_22/figures/Figure 8.png

Figure 8. Classification results combining machine learning (SVM,
NB, LR, DT) with TF-IDF technique.

IJCDS_Latex_29_3_22/figures/Figure 9.png

Figure 9. Classification results combining machine learning (SVM,
NB, LR, DT) with AUR-BoW technique.

G. Implications of Our Research Based on the Classifica-
tion Results
The implications of our research is four-fold: First, the

consistent outperformance of LR over other classifiers like
SVM, DT, and NB indicates that LR is a more reliable
model for classifying NFRs, especially when combined
with effective feature engineering techniques. This suggests

16 Ishaya Gambo, et al.

TABLE XV. Classification Results of Three NFR Types Predicted by Rank Prediction with LR Classifier

Type Proportion of Reviews Accuracy Precision Recall

Security 1437 0.80 0.82 0.80
Flexibility 1350 0.66 0.72 0.63
Maintainability 1234 0.80 0.86 0.79

Note: The proportions of reviews reflect the total number of reviews classified into each type.

IJCDS_Latex_29_3_22/figures/Figure 10.png

Figure 10. Comparison between Classification results combining
machine learning (SVM, NB, LR, DT) with TF-IDF and AUR-BoW
technique.

that for similar tasks, LR should be the model of choice,
particularly when accuracy, precision, and recall are critical.

Secondly, the combination of AUR-BoW with Chi-
squared feature selection substantially improved the clas-
sification performance of the LR model. This underscores
the importance of feature engineering in enhancing model
performance. It implies that carefully selecting and engi-
neering features can lead to more accurate and meaningful
classifications, particularly in complex tasks like NFR clas-
sification.

Thridly, the varying accuracy rates across different NFR
types (e.g., 80% for security and maintainability vs. 66% for
flexibility) highlight that certain NFRs may be inherently
easier to classify than others. This suggests that more
refined or additional feature engineering may be required
to improve classification in domains like flexibility, where
accuracy was lower.

Lastly, the high F-measure and overall accuracy
achieved by the LR model, particularly in security and

IJCDS_Latex_29_3_22/figures/Figure 11.png

Figure 11. Comparison between the F-measure and proportion of
each type..

maintainability, suggest that this approach can be effectively
applied in real-world scenarios. For software development
teams, this means that integrating such models could lead
to more accurate and automated classification of NFRs,
improving the efficiency of requirements analysis and ul-
timately contributing to the development of higher-quality
software.

H. Research Limitations
Owing to the restriction placed by Google Play store’s

API when accessing reviews, only the latest 2021 could
be reviewed. As android apps formed the bulk of the
dataset, the possibility of bias in the reviews and an unfair
representation of user sentiment is likely. As this research
considered ratings below 4, any reviews containing features
that could be considered as NFRs in reviews with rating 4
or 5 would not have been accounted for.

5. CONCLUSION AND FUTURE WORK
This research validates existing research on the need

for feedback in the design of efficient systems. By ex-
tracting and classifying a pool of user reviews, developers
can identify NFRs in apps that are already in use and

International Journal of Computing and Digital Systems 17

make improvements to meet user’s expectations. Classifying
NFRs into maintainability, security and flexibility provides
clarity on which NFRs would require the most attention by
developers.

App stores unlock a new repository of data for research
and as observed in this work, NFRs can be extracted from
this data. There are other insights that could be derived from
user reviews by utilizing ML and NLP.

Other researchers can consider expanding the number
of apps used in analysis and enlarge the scope to cover
user response to NFRs in mobile apps. As the Apple
store includes both mobile and non-mobile apps, comparing
results from separate analysis of each would be an area
worth exploring in the future.

Also, the research findings provide a strong case for
further exploration of LR models in NFRs classification
and the potential for combining them with other advanced
feature selection methods. Future research could investigate
ways to enhance the flexibility classification or explore the
application of these techniques in different domains.

There are many domain-specific apps in the market-
places. Conducting future evaluation on domains such as
health and social media is intended, as domain-specific
insights can be gleaned to know features that are to be
prioritized to improve user experience and app functionality.

Further, it will be necessary to consider conflict man-
agement, especially the identification and resolution of
conflicts when classifying the FRs and NFRs. The first step
to achieve this can be to leverage on the framework for
resolving conflicts, as postulated in [69], [70], [71], [72].

ACKNOWLEDGMENT
The authors acknowledge the support of TETFund and

Centre of Excellence Obafemi Awolowo University, Ile-Ife
in carrying out the research.

References
[1] H. U. Khan, M. Niazi, M. El-Attar, N. Ikram, S. U. Khan, and A. Q.

Gill, “Empirical investigation of critical requirements engineering
practices for global software development,” IEEE Access, vol. 9,
pp. 93 593–93 613, 2021.

[2] I. Gambo, R. Ikono, P. Achimugu, and A. Soriyan, “An integrated
framework for prioritizing software specifications in requirements
engineering,” Requir. Eng, vol. 12, no. 1, pp. 33–46, 2018.

[3] I. Gambo, H. Odukoy, A. Oke, and E. Adagunodo, “Analysis
and classification of requirements specification for web application
development: A case study approach,” Journal of Computer Science
and Its Application, vol. 27, no. 1, 2020.

[4] S. Keertipati, B. T. R. Savarimuthu, and S. A. Licorish, “Approaches
for prioritizing feature improvements extracted from app reviews,”
in Proceedings of the 20th international conference on evaluation
and assessment in software engineering, 2016, pp. 1–6.

[5] A. Aurum and C. Wohlin, “Requirements engineering: setting the
context,” Engineering and managing software requirements, pp. 1–
15, 2005.

[6] R. S. Wahono, “Analyzing requirements engineering problems,” in
IECI Japan Workshop, vol. 2003, 2003.

[7] J. Dabrowski, E. Letier, A. Perini, and A. Susi, “Mining user
feedback for software engineering: Use cases and reference archi-
tecture,” in 2022 IEEE 30th International Requirements Engineering
Conference (RE). IEEE, 2022, pp. 114–126.

[8] J. ”Dabrowski, E. Letier, A. Perini, and A. Susi, “Analysing app
reviews for software engineering: a systematic literature review,”
Empirical Software Engineering, vol. 27, no. 2, p. 43, 2022.

[9] B. Lin, N. Cassee, A. Serebrenik, G. Bavota, N. Novielli, and
M. Lanza, “Opinion mining for software development: a systematic
literature review,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 31, no. 3, pp. 1–41, 2022.

[10] T. Iqbal, M. Khan, K. Taveter, and N. Seyff, “Mining reddit as a new
source for software requirements,” in 2021 IEEE 29th international
requirements engineering conference (RE). IEEE, 2021, pp. 128–
138.

[11] S. McIlroy, N. Ali, H. Khalid, and A. E. Hassan, “Analyzing and
automatically labelling the types of user issues that are raised in
mobile app reviews,” Empirical Software Engineering, vol. 21, pp.
1067–1106, 2016.

[12] N. Ali, J.-E. Hong, and L. Chung, “Social network sites and
requirements engineering: A systematic literature review,” Journal
of Software: Evolution and Process, vol. 33, no. 4, p. e2332, 2021.

[13] I. Gambo, R. Massenon, C.-C. Lin, R. O. Ogundokun, S. Agarwal,
and W. Pak, “Enhancing user trust and interpretability in ai-driven
feature request detection for mobile app reviews: an explainable
approach,” IEEE Access, 2024.

[14] N. Al Kilani, R. Tailakh, and A. Hanani, “Automatic classification of
apps reviews for requirement engineering: Exploring the customers
need from healthcare applications,” in 2019 sixth international
conference on social networks analysis, management and security
(SNAMS). IEEE, 2019, pp. 541–548.

[15] T. Ullah, J. A. Khan, N. D. Khan, A. Yasin, and H. Arshad,
“Exploring and mining rationale information for low-rating software
applications,” Soft Computing, pp. 1–26, 2023.

[16] E. C. Groen, S. Kopczyńska, M. P. Hauer, T. D. Krafft, and J. Doerr,
“Users—the hidden software product quality experts?: A study on
how app users report quality aspects in online reviews,” in 2017
IEEE 25th international requirements engineering conference (RE).
IEEE, 2017, pp. 80–89.

[17] A. Ciurumelea, A. Schaufelbühl, S. Panichella, and H. C. Gall,
“Analyzing reviews and code of mobile apps for better release
planning,” in 2017 IEEE 24th international conference on software
analysis, evolution and reengineering (SANER). IEEE, 2017, pp.
91–102.

[18] E. Guzman and W. Maalej, “How do users like this feature? a fine
grained sentiment analysis of app reviews,” in 2014 IEEE 22nd
international requirements engineering conference (RE). Ieee,
2014, pp. 153–162.

18 Ishaya Gambo, et al.

[19] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey
of app store analysis for software engineering,” IEEE transactions
on software engineering, vol. 43, no. 9, pp. 817–847, 2016.

[20] P. M. Vu, H. V. Pham, T. T. Nguyen, and T. T. Nguyen, “Phrase-
based extraction of user opinions in mobile app reviews,” in
Proceedings of the 31st IEEE/ACM international conference on
automated software engineering, 2016, pp. 726–731.

[21] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner:
mining informative reviews for developers from mobile app mar-
ketplace,” in Proceedings of the 36th international conference on
software engineering, 2014, pp. 767–778.

[22] W. Luiz, F. Viegas, R. Alencar, F. Mourão, T. Salles, D. Carvalho,
M. A. Gonçalves, and L. Rocha, “A feature-oriented sentiment rating
for mobile app reviews,” in Proceedings of the 2018 world wide web
conference, 2018, pp. 1909–1918.

[23] M. B. Messaoud, I. Jenhani, N. B. Jemaa, and M. W. Mkaouer, “A
multi-label active learning approach for mobile app user review clas-
sification,” in Knowledge Science, Engineering and Management:
12th International Conference, KSEM 2019, Athens, Greece, August
28–30, 2019, Proceedings, Part I 12. Springer, 2019, pp. 805–816.

[24] I. K. Raharjana, V. Aprillya, B. Zaman, A. Justitia, and S. S. M.
Fauzi, “Enhancing software feature extraction results using senti-
ment analysis to aid requirements reuse,” Computers, vol. 10, no. 3,
p. 36, 2021.

[25] C. I. Ossai and N. Wickramasinghe, “Automatic user sentiments
extraction from diabetes mobile apps–an evaluation of reviews with
machine learning,” Informatics for Health and Social Care, vol. 48,
no. 3, pp. 211–230, 2023.

[26] N. Jha and A. Mahmoud, “Mining non-functional requirements from
app store reviews,” Empirical Software Engineering, vol. 24, pp.
3659–3695, 2019.

[27] M. Lu and P. Liang, “Automatic classification of non-functional
requirements from augmented app user reviews,” in Proceedings of
the 21st international conference on evaluation and assessment in
software engineering, 2017, pp. 344–353.

[28] R. Santos, E. C. Groen, and K. Villela, “An overview of user
feedback classification approaches.” in REFSQ workshops, vol. 3,
2019, pp. 357–369.

[29] W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik, “On the
automatic classification of app reviews,” Requirements Engineering,
vol. 21, pp. 311–331, 2016.

[30] R. Massenon, I. Gambo, R. O. Ogundokun, E. A. Ogundepo,
S. Srivastava, S. Agarwal, and W. Pak, “Mobile app review analysis
for crowdsourcing of software requirements: a mapping study of
automated and semi-automated tools,” PeerJ Computer Science,
vol. 10, p. e2401, 2024.

[31] I. Sommerville, “Software engineering (ed.),” America: Pearson
Education Inc, 2011.

[32] K. E. Wiegers and J. Beatty, Software requirements. Pearson
Education, 2013.

[33] A. M. Davis, Software requirements: objects, functions, and states.
Prentice-Hall, Inc., 1993.

[34] D. Leffingwell and D. Widrig, Managing software requirements: a
unified approach. Addison-Wesley Professional, 2000.

[35] M. Glinz, “On non-functional requirements,” in 15th IEEE inter-
national requirements engineering conference (RE 2007). IEEE,
2007, pp. 21–26.

[36] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional
requirements in software engineering. Springer Science & Business
Media, 2012, vol. 5.

[37] D. Dave and V. Anu, “Identifying functional and non-functional
software requirements from user app reviews,” in 2022 IEEE Inter-
national IOT, Electronics and Mechatronics Conference (IEMTRON-
ICS). IEEE, 2022, pp. 1–6.

[38] D. Kumar, A. Kumar, and L. Singh, “Non-functional requirements
elicitation in agile base models,” Webology, vol. 19, no. 1, pp. 1992–
2018, 2022.

[39] R. Jindal, R. Malhotra, A. Jain, and A. Bansal, “Mining non-
functional requirements using machine learning techniques,” e-
Informatica Software Engineering Journal, vol. 15, no. 1, 2021.

[40] A. E. Yahya, A. Gharbi, W. M. Yafooz, and A. Al-Dhaqm, “A
novel hybrid deep learning model for detecting and classifying non-
functional requirements of mobile apps issues,” Electronics, vol. 12,
no. 5, p. 1258, 2023.

[41] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 40,
no. 3, pp. 211–218, 2006.

[42] M. F. ”Porter, “Snowball: A language for stemming algorithms,”
2001.

[43] W. Maalej and H. Nabil, “Bug report, feature request, or sim-
ply praise? on automatically classifying app reviews,” in 2015
IEEE 23rd international requirements engineering conference (RE).
IEEE, 2015, pp. 116–125.

[44] P. R. Henao, J. Fischbach, D. Spies, J. Frattini, and A. Vogelsang,
“Transfer learning for mining feature requests and bug reports from
tweets and app store reviews,” in 2021 IEEE 29th International
Requirements Engineering Conference Workshops (REW). IEEE,
2021, pp. 80–86.

[45] N. M. Rizk, A. Ebada, and E. S. Nasr, “Investigating mobile
applications’ requirements evolution through sentiment analysis of
users’ reviews,” in 2015 11th International Computer Engineering
Conference (ICENCO). IEEE, 2015, pp. 123–130.

[46] C. Gao, Y. Li, S. Qi, Y. Liu, X. Wang, Z. Zheng, and Q. Liao,
“Listening to users’ voice: Automatic summarization of helpful app
reviews,” IEEE Transactions on Reliability, vol. 72, no. 4, pp. 1619–
1631, 2022.

[47] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta,
“Release planning of mobile apps based on user reviews,” in
Proceedings of the 38th International Conference on Software
Engineering, 2016, pp. 14–24.

[48] M. V. Phong, T. T. Nguyen, H. V. Pham, and T. T. Nguyen,
“Mining user opinions in mobile app reviews: A keyword-based
approach (t),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2015, pp. 749–759.

[49] E. Guzman, O. Aly, and B. Bruegge, “Retrieving diverse opinions

International Journal of Computing and Digital Systems 19

from app reviews,” in 2015 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). IEEE,
2015, pp. 1–10.

[50] G. Williams and A. Mahmoud, “Mining twitter feeds for software
user requirements,” in 2017 IEEE 25th International Requirements
Engineering Conference (RE). IEEE, 2017, pp. 1–10.

[51] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? classifying user
reviews for software maintenance and evolution,” in 2015 IEEE
international conference on software maintenance and evolution
(ICSME). IEEE, 2015, pp. 281–290.

[52] N. Jha and A. Mahmoud, “Mining user requirements from ap-
plication store reviews using frame semantics,” in Requirements
Engineering: Foundation for Software Quality: 23rd International
Working Conference, REFSQ 2017, Essen, Germany, February 27–
March 2, 2017, Proceedings 23. Springer, 2017, pp. 273–287.

[53] F. Rustam, A. Mehmood, M. Ahmad, S. Ullah, D. M. Khan, and
G. S. Choi, “Classification of shopify app user reviews using novel
multi text features,” IEEE Access, vol. 8, pp. 30 234–30 244, 2020.

[54] A. Di Sorbo, G. Grano, C. Aaron Visaggio, and S. Panichella,
“Investigating the criticality of user-reported issues through their
relations with app rating. j softw evol process 33 (3): e2316,” 2020.

[55] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “Ardoc: App reviews development oriented classi-
fier,” in Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering, 2016, pp. 1023–
1027.

[56] A. Di Sorbo, S. Panichella, C. V. Alexandru, C. A. Visaggio, and
G. Canfora, “Surf: Summarizer of user reviews feedback,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 2017, pp. 55–58.

[57] C. Tao, H. Guo, and Z. Huang, “Identifying security issues for mo-
bile applications based on user review summarization,” Information
and Software Technology, vol. 122, p. 106290, 2020.

[58] J. Zhang, J. Hua, Y. Chen, N. Niu, and C. Liu, “Mining user privacy
concern topics from app reviews,” arXiv preprint arXiv:2212.09289,
2022.

[59] T. Johann, C. Stanik, W. Maalej et al., “Safe: A simple approach for
feature extraction from app descriptions and app reviews,” in 2017
IEEE 25th international requirements engineering conference (RE).
IEEE, 2017, pp. 21–30.

[60] I. Triantafyllou, I. C. Drivas, and G. Giannakopoulos, “How to
utilize my app reviews? a novel topics extraction machine learning
schema for strategic business purposes,” Entropy, vol. 22, no. 11,
p. 1310, 2020.

[61] V. M. A. de Lima, J. R. Barbosa, and R. M. Marcacini, “Learning

risk factors from app reviews: A large language model approach for
risk matrix construction,” 2023.

[62] M. Nadeem, K. Shahzad, and N. Majeed, “Extracting software
change requests from mobile app reviews,” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering Work-
shops (ASEW). IEEE, 2021, pp. 198–203.

[63] I. Gambo, R. Massenon, R. O. Ogundokun, S. Agarwal, and W. Pak,
“Identifying and resolving conflict in mobile application features
through contradictory feedback analysis,” Heliyon, vol. 10, no. 17,
2024.

[64] Q. Motger, A. Miaschi, F. Dell’Orletta, X. Franch, and J. Marco,
“T-frex: A transformer-based feature extraction method from mobile
app reviews,” in 2024 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2024, pp.
227–238.

[65] Y. Wang, J. Wang, H. Zhang, X. Ming, L. Shi, and Q. Wang,
“Where is your app frustrating users?” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 2427–
2439.

[66] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case study research
in software engineering: Guidelines and examples. John Wiley &
Sons, 2012.

[67] R. K. Yin, Case study research and applications. SAGE Publica-
tions US., 2017.

[68] Z. Gao, Y. Li, Y. Yang, X. Wang, N. Dong, and H.-D. Chiang, “A
gpso-optimized convolutional neural networks for eeg-based emo-
tion recognition,” Neurocomputing, vol. 380, pp. 225–235, 2020.

[69] I. P. Gambo and K. Taveter, “Identifying and resolving conflicts in
requirements by stakeholders: A clustering approach.” in Proceed-
ings of the 16th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), April 26 – 27, 2021,
pp. 158–169.

[70] I. Gambo and K. Taveter, “A pragmatic view on resolving con-
flicts in goal-oriented requirements engineering for socio-technical
systems.” in Proceedings of the 16th International Conference on
Software Technologies (ICSOFT), 2021, pp. 333–341.

[71] I. P. Gambo and K. Taveter, “Stakeholder-centric clustering methods
for conflict resolution in the requirements engineering process,” in
Evaluation of Novel Approaches to Software Engineering, R. Ali,
H. Kaindl, and L. A. Maciaszek, Eds. Cham: Springer International
Publishing, 2022, pp. 183–210.

[72] S. Shafiq, I. Gambo, M. A. Asghar, J. Ibrahim, and F. Safdar,
“A suggestive framework for handling conflicts in stakeholder’s
emotional goals using machine learning approach,” in 2024 In-
ternational Conference on Engineering Computing Technologies
(ICECT), 2024, pp. 1–7.

	INTRODUCTION
	BACKGROUND AND MOTIVATION
	NRFs in the Context of Mobile App Ecosystems
	NLP and ML Techniques
	Related Work
	Research Gaps

	METHODOLOGY
	Data Collection and Analysis
	Data Preprocessing
	NFR Feature Extraction
	Sentiment Analysis
	NFR Classification
	NFR Prioritization
	Evaluation

	RESULTS AND DISCUSSION
	RQ.1: How to identify and prioritize Non-Functional Requirements in user reviews for effective consideration?
	RQ.2: How can we effectively prioritize Non-Functional Requirements based on their significance and impact?
	RQ.3: What tools, techniques, and methodologies are appropriate for addressing RQ1 and RQ2 effectively?
	RQ4: How can the effectiveness and validity of the methods and tools applied in addressing RQ3 be reliably validated?
	Feature Extraction Sentiment Analysis Results
	Classification and Ranking Results
	Implications of Our Research Based on the Classification Results
	Research Limitations

	CONCLUSION AND FUTURE WORK
	References

