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Abstract: The vision depends greatly on the retina. Unfortunately, it may be exposed to many diseases that lead to poor vision or
blindness. This research aims to diagnose retinal diseases through OCT images, focusing on Drusen, diabetic macular edema (DME),
and choroidal neovascularization (CNV). A new ensemble approach is proposed that combines a specialization approach, hard voting
method and highest probability method. It is based on three sub-models (Custom-model, Xception, and MobileNet). Because we noticed
that some sub-models are better than others at classifying a particular category, each sub-model was specialized to the category it
classifies best. If the specialized sub-model does not exist, the final classification will be based on the category with the highest votes,
and if it does not exist, the category with the highest probability will be chosen. We also used a way to correct final misclassification
through a list of negative predictions created to contain categories to which the sub-model is somewhat certain that an image does not
belong. The proposed ensemble model achieved state-of-the-art accuracies of (100%, 96.03%, and 95.85%, respectively, on the splits
(original split, 80:20, 70:30) of the UCSD-v2 dataset. The Duke and OCTID datasets were also employed to verify the performance
efficiency of the model, with the ensemble model achieving accuracies of 100% and 95.73%, respectively. The ensemble model
outperformed all sub-models and the results of previous studies. The results of this research emphasize the effectiveness of ensemble
learning techniques in analyzing medical images, especially in diagnosing retinal diseases. Therefore, this research can help in the
correct diagnosis and rapid referral of patients.
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1. INTRODUCTION
The retina is an important component of the human eye

due to its location near the optic nerve and its sensitivity
to light. Its role is to transform light into neural signals,
a fundamental process for sight [1]. The macula is an
extremely important part of the retina, as it is responsible
for central vision and detects the color and intensity of light
[2]. The retina processes light and sends it to the brain via
the optic nerve, enabling vision [3]. Several retinal diseases
can weaken the macula, posing major health concerns that
often develop over time, including CNV, DME, and Drusen
[2] (as shown in Figure 1).

The objectives of this research are building a custom
CNN model and using well-known DL models as sub-
models, developing a new ensemble model characterized
by classification accuracy and maximum utilization of sub-
models, and introducing a new mechanism to correct mis-
classifications of sub-models.

The key contributions of this study are enumerated as
follows:

• It can be observed models are better than each other in
classifying certain categories. Hence, this study adopts
a specialized strategy: when every model achieves
higher accuracy for a specific category, being solely
responsible for its classification.

• proposing a novel mechanism to correct misclassifica-
tion. This ensures that when a model is dedicated to a
specific category, the contributions of other models are
not ignored. Rather, they help supplement the negative
prediction list (NP list) of categories, as these models
somewhat confidently a given image does not belong
to the categories in this list.

• Achieving optimal accuracy: This study presents a new
level of accuracy, reaching 100% for the first time in
the UCSD-v2 dataset.

• This study introduces a novel approach within the
ensemble learning framework, underscoring the signif-
icance of this approach and the need to highlight it
further to maximize the utilization of multiple models.
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Figure 1. OCT Retina Diseases Images

Optical coherence tomography (OCT), since its intro-
duction in 1991, has revolutionized ophthalmology because
it is a non-invasive way to perform a detailed examination
of the retina and choroid [4]. High-resolution OCT imaging
is pivotal in diagnosing various retinal diseases [2]. It
is essential for detecting and assessing macular lesions
within the retina’s layered structure, offering sensitive and
quantitative analysis [5]. OCT effectively identifies early-
stage cystic and sub-retinal swelling, often undetectable in
standard retinal fundus photographs [4].

The introduction of Deep Learning (DL) techniques,
especially Convolutional Neural Networks (CNNs), has
initiated a new era in healthcare, revolutionizing medical
diagnostics with precise and rapid decision-making [1]. In
ophthalmology, these technologies have been particularly
impactful, transforming automated diagnosis systems with
their robust algorithms for fast and accurate disease clas-
sification [6]. The use of CNNs for retinal OCT image
processing has been extensively explored, enabling these
models to learn hierarchical abstract features from large
datasets [2]. Research has focused on applications such as
the segmentation of retinal layers [7] and the classification
of OCT images [8], with some studies utilizing ensemble
models for enhanced performance [9]. CNN models are
preferred in many scenarios for their accuracy and efficiency
in processing complex image data.

The motivation for this research is driven by the alarm-
ing statistics on retinal diseases impacting millions world-
wide annually [6]: over 2.2 billion people worldwide suffer
from eye illnesses, leading to significant visual impairment
and, in extreme cases, complete blindness [10], with ap-
proximately 2 million CNV cases [11], 7.5 million DME
cases in those over 40 [12], and more than 7 million Drusen
cases annually in the USA [10].

This paper is structured as follows: Section 2 related
works. Section 3 elaborates on the detailed methodologies
used to build our ensemble framework, the proposed Cus-
tom sub-model, and the preprocessing steps used. Experi-
mental results, showing the unprecedented accuracy levels
achieved by our approach, are discussed in Section 4.
Finally, the conclusions in Section 5.

2. RELATED WORKS
In 2020, D. Paul et al. [3] Obtained refined and high-

quality images in the pre-processing, and they developed a
novel framework called OCTx, that utilized an ensemble
of four models: VGG16, InceptionV3, DenseNet, and
a custom model. This ensemble approach effectively
addressed overfitting and achieved 98.53% accuracy on

the UCSD-V2 dataset. However, the study used a large
number of epochs (250).

Also, in 2020, M. Berrimi and A. Moussaoui [13]
proposed a new DL classification framework with transfer
learning (TL), comparing a custom CNN architecture
against pre-trained models like Inception-V3 and VGG-16.
Using the UCSD-V2 dataset over 15 epochs, their custom
CNN achieved 98.5% accuracy, while Inception-V3
reached 99.27%. Enhancements to the VGG-16 model,
including additional convolution layers and regularization,
increased its accuracy from 53% to 93.5%. This study did
not balance the dataset, and image enhancement and noise
removal techniques were absent.

In 2021, H. A. Nugroho and R. Nurfauzi [14] utilized
several models (MnasNet0.5, Inception-V3, SuffleNet-v2,
ResNet18, ResNet50, GoogleNet, MobileNet-v2, and
DenseNet121) to diagnose retinal diseases in OCT images.
MobileNet-V2 emerged as the most effective, with an
accuracy of 99.64% on the UCSD-V2 dataset. However,
the study did not address the dataset’s imbalance.

Also, in 2021, P. Barua et al. [15] proposed a new
framework for classifying retinal diseases using OCT
images. The framework is based on generating deep multi-
level features using 18 convolutional neural networks.
The final features are selected from the best five neural
networks, and classification is done using the Support
Vector Machine (SVM) classifier. The framework was
tested on the Duke dataset, with a split of 90% training
and 10% testing, to achieve 100% accuracy. However, the
dataset is incomplete; only 3194 images were used.

Moreover, in 2021, A. Singh et al. [16] used the DL
model to diagnose diseases in OCT images from the
OCTID dataset. It achieved an accuracy of 88.5%, and by
removing samples with a high degree of uncertainty and
referring them to human experts, the accuracy was 93.7%.
The results support the idea that incorporating uncertainty
and interpretations improves model confidence and reduces
diagnostic error rates.

In 2022, S. Asif et al. [17] Employed TL in the pre-
trained ResNet50 CNN to improve the model’s precision,
incorporated a new block “fully connected” and over 20
epochs achieved an accuracy of 99.48% on the UCSD-V2
dataset. The study overlooked the imbalance in the dataset.

In 2023, V. Latha et al. [18] Presented a method for
detecting macular diseases in OCT images by merging the
feature vectors of VGG16 and InceptionV3 models, using
TL for enhanced local and global feature recognition. Their
model, applied to the UCSD dataset (versions 2 and 3),
with 50 epochs, achieved accuracies of 99.7% and 98.1%,
respectively, with image augmentation as a pre-processing
step.

Also, in 2023, P. Elena-Anca [19] evaluated five
DL models, including a 12-layer convolutional model,
InceptionResNet, DenseNet201, DenseNet121, and
DenseNet169. The study highlighted the pre-trained
DenseNet169 model’s superior performance, achieving a
97% accuracy rate on the UCSD-V2 dataset for retinal
disease diagnosis in 25 epochs. Notably, this study did not



International Journal of Computing and Digital Systems 3

incorporate any pre-processing procedures.
Furthermore, in 2023, İ. Kayadibi and G. Güraksın

[20] suggested using FD-CNN with dual pre-processing
for retinal disease identification. D-KNN and D-SVM
were used to reclassify. D-SVM outperformed both in
the UCSD-v2 dataset, recording an accuracy of 99.60%,
whereas accuracy was 97.50% in the Duke dataset. Number
of epochs was 5. However, the imbalanced dataset issue
was overlooked.

Moreover, in 2023, O. Akinniyi et al. [21] Proposed
a multi-stage classification network built on a pyramidal
feature ensemble framework, using the pre-trained
DenseNet model as the foundational network. The system
demonstrated an accuracy of 94.26% for the comprehensive
four-class classification by using the UCSD-V3 dataset
and 99.69% on the Duke dataset over 50 epochs. There
isn’t noise removal in images, which could result in
misclassification accuracy.

Continuing in 2023, P. Jayanthi et al. [22] Applied a
transfer learning approach with VGG19, ResNet50, and a
custom-built sequential model. They reported classification
accuracies of 97.2%, 95.8%, and 99.6% on the UCSD-V2
dataset over 25 epochs. The custom model demonstrated
superior accuracy compared to the pre-trained models.
Despite the high accuracy, the dataset required balancing.

In 2024, J. Yang et al. [23] addressed the problem of
diagnosing retinal diseases in OCT images from the Duke
dataset with a split of 80% for training and 20% for testing.
The ensemble approach was used based on three sub-
models, namely AlexNet, EfficientNetv2, and ResNet34,
whose results were combined using the soft voting method
with the application of TL to improve performance. The
proposed model achieved an accuracy of 97.89% over 100
epochs and showed a good ability to distinguish between
different cases with a clear interpretation of the results.

In this paper, we propose an innovative approach for
ensemble learning, emphasizing a novel approach to model
specialization and misclassification correction. It was
noted that all previous studies did not use a mechanism to
correct classification errors, and we considered this point
to be one of the most important points that we focused
on in our study and suggested. To add further challenge
to our approach, we have trained all models from scratch,
deliberately avoiding using transfer learning techniques.
Moreover, we not only used the UCSD-v2 dataset [24]
but also applied our model to the Duke dataset [25] and
the OCTID dataset. We also have implemented multi-step
pre-processing to eliminate noise and accurately delineate
the area of interest in the data.

3. PROPOSED METHODOLOGY
The proposed study will be detailed from pre-processing

to classification below.

A. Image Pre-processing
The OCT images used suffer from many problems,

such as differences in size and quality, shapes (square or
rectangular), and zoom ratios. They also contain noise,

such as salt and pepper noise and white background pixels,
affecting the image analysis process used to train CNN
networks.

The following steps, as shown in Figure 2, are performed
to solve the most important problems mentioned above.
First, the white background pixels of the image are colored
black. In the second step, the pixel values in the image are
normalized to enhance contrast and detail. In the third step,
Gaussian filtering and adaptive thresholding are applied to
the image to identify and extract the contour coordinates in
a rectangular shape of the largest object, which represents
the retina, and then used to crop the region of interest (ROI)
from the OCT image. In the fourth step, the image contrast
is intensified, binary thresholding is applied, and median
blurring is used to isolate and extract the largest contour,
replacing points outside the object with black points. In
the final step, the image is resized to (200*80) pixels
while maintaining its height ratio, centring it within the
new dimensions. Because the retina is rectangular, and the
weights of models are not used, rectangular images are
accepted.

Figure 2. Pre-processing of OCT Image

B. Chosen Algorithms
The proposed ensemble model is composed of three

distinct algorithms:

1) Custom model. The proposed CNN sub-model was
created by using the Keras toolbox. There are
(703,821) parameters that can be learned, while those
that can’t be learned are (1,152). The model comprises
60 layers, starting with a separable convolution, batch
normalization, and a “Relu” activation layer. It ends at
the “Softmax” activation function layer, which gives
the probability of each class. The whole architecture
is depicted in Table I.

2) Pre-trained models. The models used are Xception and
MobileNet, with some layers that include several dense
layers with L2 regularization set at 0.001 with some
dropout layers to reduce overfitting, batch normal-
ization layers to enhance performance, and activation
layers that facilitate the learning of complex patterns
by introducing non-linearity, also in the end the “Soft-
max” activation function layer is used. These additions
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bolster the overall effectiveness of the models, which
are trained from scratch without using transfer learn-
ing.

These algorithms were carefully selected for their effi-
ciency in extracting features from retinal OCT images and
their diversity in the number of trainable parameters (Cus-
tom model: 704,973, MobileNet: 16,509,444, Xception:
65,599,340) that are particularly effective for our ensemble
model. Their combination ensures robustness and enhances
the ensemble model’s overall performance. As a result of
an extensive evaluation process that included many deep
neural network algorithms, this was the choice, as it showed
superior performance compared to others in this study and
others, as in [26].

C. Proposed Ensemble Learning Model
Ensemble learning in machine learning integrates out-

comes from multiple algorithms, thereby enhancing per-
formance beyond what individual algorithms can achieve
[27]. The three main ensemble learning techniques are note-
worthy: stacking, boosting, and bagging. Bagging, which
stands for Bootstrap Aggregating, combines the predictions
of several models trained on different subsets of data.
A series of models known as “boosting” are trained to
gradually improve performance by fixing the mistakes of
the previous model. In addition, the hard voting method
aggregates predictions by majority votes to derive the final
decision, and the soft voting method selects the vote with
the highest probability among the average probabilities from
the sub-models. Voting methods can be used independently
or as a component of main methods.

In this research, we introduce a novel ensemble model
(as shown in Figures 3, 4, 5, and 6, in addition to Algorithm
1) that can be called “Negative Prediction-Based Specializa-
tion Ensemble Model”. This model integrates the strengths
of multiple sub-models to enhance classification accuracy. It
is noted that most research utilizing ensemble learning for
diagnosing retinal diseases neglects sub-models with less
fortunate accuracy.

Issue is addressed by the proposed model that incorpo-
rates two key elements:

• Firstly, determining the best sub-model in classifying
each category in the training set. The model that
achieves the highest accuracy for a particular class
becomes specialized in that class and is given priority
in the final data classification. In the absence of a
specialized model, the hard voting method is used, or
the highest probability method is used.

• Secondly, creating a negative prediction list, supple-
mented with categories by each sub-model, to identify
categories to which it is somewhat confident that a
given image does not belong. This means that not
only high-accuracy sub-models have strengths, but less
successful models also have strengths that can be
exploited.

D. Specializing Each Sub-model
We noticed that sub-models may be better than each

other in classifying a particular category, and this feature
was not exploited in previous studies in diagnosing retina
diseases, so we added the character of specialization to the
models, so after the training process, weights are used to
predict each class of training set separately. This approach
ensures that each sub-model specializes in the category or
categories that it classifies better than other sub-models,
thus enhancing the overall accuracy of the ensemble model,
as shown in Figures 3. Note that when a particular model
specializes in a specific category, its predictions are not
limited to that category alone, but it assumes priority.

Figure 3. Specializing Each Sub-model

E. Negative Predictions List (NP-list)
The proposed ensemble model amalgamates the advan-

tages of all sub-models, where each one specializes in the
category it classifies most effectively. The rest of the models
are not neglected but contribute by identifying categories
that they are somewhat certain the specific image does not
belong to (as shown in Figure 4). This strategy enhances
the accuracy by enabling models to correct each other’s
misclassification.

Figure 4. Negative Predictions List. (created by each sub-model)
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TABLE I. Architecture of Custom-Model

Layers (type) Param# Layers (type) Param#

Input Layer (1, 200*80) 0 Dropout (32, 8*3) 0
SeparableConv2D (32, 200*80) 73 MaxPooling2D (32, 3*1) 0

BatchNormalization (32, 200*80) 128 Conv2D (64, 3*1) 2112
Activation (32, 200*80) 0 Conv2D (64, 3*1) 2112

SeparableConv2D (32, 200*80) 1344 Conv2D (64, 3*1) 2112
BatchNormalization (32, 200*80) 128 Conv2D (64, 3*1) 36928

Activation (32, 200*80) 0 Conv2D (64, 3*1) 102464
MaxPooling2D (32, 67*27) 0 Concatenate (192, 3*1) 0

SeparableConv2D (64, 67*27) 2400 Conv2D (64, 3*1) 12352
BatchNormalization (64, 67*27) 256 BatchNormalization (64, 3*1) 256

Activation (64, 67*27) 0 Activation (64, 3*1) 0
SeparableConv2D (64, 67*27) 4736 Dropout (64, 3*1) 0

BatchNormalization (64, 67*27) 256 MaxPooling2D (64, 1*1) 0
Activation (64, 67*27) 0 Conv2D (96, 1*1) 6240

MaxPooling2D (64, 23*9) 0 Conv2D (96, 1*1) 6240
SeparableConv2D (96, 23*9) 6816 Conv2D (96, 1*1) 6240

BatchNormalization (96, 23*9) 384 Conv2D (96, 1*1) 83040
Activation (96, 23*9) 0 Conv2D (96, 1*1) 230496

SeparableConv2D (96, 23*9) 10176 Concatenate (288, 1*1) 0
BatchNormalization (96, 23*9) 384 Conv2D (96, 1*1) 27744

Activation (96, 23*9) 0 BatchNormalization (96, 1*1) 384
MaxPooling2D (96, 8*3) 0 Activation (96, 1*1) 0

Conv2D (32, 8*3) 3104 Dropout (96, 1*1) 0
Conv2D (32, 8*3) 3104 MaxPooling2D (96, 1*1) 0
Conv2D (32, 8*3) 3104 Conv2D (128, 1*1) 110720
Conv2D (32, 8*3) 9248 Attention (128, 1*1) 0
Conv2D (32, 8*3) 25632 Concatenate (256, 1*1) 0

Concatenate (96, 8*3) 0 Conv2D (4, 1*1) 1028
Conv2D (32, 8*3) 3104 GlobalAveragePooling2D (4) 0

BatchNormalization (32, 8*3) 128 Activation (4) 0
Activation (32, 8*3) 0

In all models, the “Softmax” activation function layer
was used to perform the final classification, and since it
gives the probabilities of all classes, we took advantage of
this feature. The class whose probability is less than one
in a thousand from the highest probability in that model,
where satisfies the condition in the following equation, is
added to the NP list.

prob. (class I) < 0.001 × highest-prob. (1)

This list helps by correcting any misclassification of the
specialized model, if any, or the misclassification of the
majority voting method and the highest probability method,
which are used in the absence of a specialized model among
the highest predictions of the three models.

F. Final Classification of The Proposed Model
If the top prediction of each sub-model is for a class

that is not specialized in it, we use the majority voting
method. However, if the votes are equal or the majority
voting category belongs to an NP list, the prediction with
the highest probability is adopted. If the highest probability
class also belongs to the NP list, we choose the next highest

probability prediction, and so on (as shown in Figure 5 and
Figure 6).

Figure 5. The classes resulting from the three methods (specializa-
tion, highest vote, highest probability)
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Figure 6. Final classification

Suppose the final prediction, whether from a specialized
or non-specialized model, is less than two-thirds of the
highest probability prediction. The prediction with the most
votes or the highest probability is chosen in this case. The
process of calculating the final prediction in this ensemble
model is summarized in the following pseudo-code:

Algorithm 1 : Algorithm to Calculate Final Prediction

1: Initializing the required variables.
2: for each sub-model in the models:
3: Train the model on the training set.
4: Use weights of the current model to compute its

accuracy on each class in the training set separately.
5: end
6: Specialize each sub-model to a specific class (or

classes) in which it outperforms other models in ac-
curacy.

7: for each image in the testing set: ▷ //Forming the
Negative Prediction list (NP-list)

8: Compute the predicted probability (prob.) for each
class by each model for that image and identify the max
predicted probability (max-prob.).

9: Append the prob. and its class to the predictions
list.

10: Identify classes that have very low probabilities for
each model if the condition is met:

11: prob. < 0.001 ∗max-prob. ▷ // less than one in a
thousand from the max-prob. in that model.

12: Append these low-probability classes to the NP-
list.

13: end
14: for all max-prob. from all models of each image in the

testing set: ▷ //Final Classification.
15: Determine which class has the majority of votes

and which class has the highest-probability among all
models for the current image.

16: Calculate the number of models that show special-

ization in their max-prob., when the classes < NP-list.
17: if there is one specialized model:
18: Final prediction = predicted class of special-

ized model.
19: else if there is more than one specialized model
20: Final prediction = majority voting class if it
< NP-list.

21: else if there is no specialized model
▷ //Each max-prob. class, its predicted model did

not specialize in.
22: if the majority voting class exists and < NP-

list:
23: Final prediction = majority voting class.
24: else if the highest-probability class < NP-list
25: Final prediction = highest-probability

class.
26:
27: else
28: Choose the next highest-probability class

that is < NP-list, and so on.
29: end
30: end
31: if the prob. of the final prediction < (2/3 * highest-

probability):
32: ▷ //When the final prediction probability is less than

two-thirds of the highest probability.
33: if (majority voting class < NP-list) & (its

prob. > 2/3 * highest-probability):
34: Final prediction = majority voting class.
35:
36: else if highest-probability class < NP-list
37: Final prediction = highest-probability

class.
38:
39: else
40: Final prediction = next highest-

probability class if it was < NP-list, and so on.
41: end
42: end
43: if Final prediction == None:
44:
45: Final prediction = majority voting class.
46: end
47: end

To further clarify the proposed ensemble model, it can
be summarized in full in the following steps:

• Step 1: Loading the dataset, applying pre-processing
on images, and then balancing the dataset, as shown
in Figure 3.

• Step 2: Training the three sub-models from scratch,
and then all images for each class in the training subset
are isolated, and each class is predicted separately to
specialize each class to the sub-model that classifies
it better than the rest of the sub-models, as shown in
Figure 3.
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• Step 3: The trained sub-models are used to predict the
test subset, as shown in Figure 4.

• Step 4: Identifying class (es) to which the sub-models
are somewhat certain a specific image does not belong,
and each sub-model adds that particular class (es) to
the NP-list, as shown in Figure 4.

• Step 5: The final classification is carried out using the
proposed ensemble model based on the predictions and
specializations made in the previous steps in addition
to the NP-list, as shown in Figure 5 and Figure 6.

4. RESULTS AND DISCUSSION
The experimental results obtained are detailed in this

section.

A. Datasets Used
images of this dataset were acquired using a ”Spectralis

OCT” device from ”Heidelberg Engineering”, Germany,
and cohorts of adult patients associated with several pres-
tigious institutions were imaged between July 1, 2013,
and March 1, 2017.It consists of four categories: Normal,
CNV, DME, and DRUSEN, with a total number of (84,484)
OCT images (83,484 train, 968 test, 32 validation), which
exhibited an imbalance, and the verification data has very
few of images, which impacting the training of CNNs. To
address this issue, we employed an oversampling technique
to equalize the distribution. Then the training set was split
into 80% training and 20% validation, resulting in (29,771)
in training and (7,442) in validation for each category,
as illustrated in Table II. In addition to the original split
that occurred, the dataset was re-partitioned into two splits
(80:20 and 70:30), and the model was applied to both
because the original split had little testing set.

To ensure the success of our ensemble model, we
applied it to other datasets, Duke and OCTID.

The Duke dataset includes scans collected from 45 pa-
tients, 15 for each class. All scans were collected according
to Institutional Review Board-approved protocols using the
Spectralis SD-OCT (Heidelberg et al.) imaging device at
prestigious institutions such as Duke University and others
in 2014. It includes 3,231 OCT images distributed across
three distinct categories: 1,407 for normal, 723 (or 686)
AMD, and 1,101 for DME.

The OCTID dataset includes 572 spectral-domain OCT
scans, classified into different categories: 206-Normal, 102-
Macular Hole (MH), 55-Age-related Macular Degeneration
(AMD), 102-Central serous retinopathy (CSR), and 107-
Diabetic retinopathy (DR). These images were captured
with a Cirrus HD-OCT device at Sankara Nethralaya (SN)
in India at the end of 2018.

According to the division detailed in Table III for Duke
and Table IV for OCTID, where 80% for training, 20% for
testing, and from the training set split to 10% for validation
and 90% for training.

B. Implementation
We used Python to implement the software using Keras

to develop the CNN models, with a batch size of 32, opting
for Adam as the optimizer with a learning rate of 0.001.
The software was implemented by using PyCharm on an
ASUS TUF Dash F15 equipped with a 12th Gen Intel(R)
Core (TM) i7-12650H, a ten-core CPU operating at 2.30
GHz, 40 GB RAM, and 8GB NVIDIA GeForce RTX 3070
Laptop GPU. NVIDIA’s CUDA Toolkit 11.8 and cuDNN
8.6.0 are used for their ability to improve training speed.

C. Model Evaluation
The performance of the three models across (8, 15, and

17 epochs), respectively, in the splits (Original split, 80:20,
and 70:30) on the UCSD-v2 dataset is detailed in Table
VI where our ensemble model reached 100% accuracy in
the original split, 96.03% in 80:20 split, and 95.85% in
70:30 split. The 100% accuracy was also attained on the
Duke dataset, as indicated in the previously mentioned
table, albeit after (17) epochs. And 95.73% accuracy was
achieved in the OCTID dataset after (50) epochs. To the
authors’ knowledge, the results achieved demonstrate state-
of-the-art accuracy and outperform any other model trained
and tested on the UCSD-v2 dataset. The accuracy of each
sub-model is detailed in Table VI.

D. Proposed Ensemble Learning
The accuracy of each sub-model is depicted in Table

VI. On the testing set of the UCSD-v2 dataset, the Custom
model, Xception, and MobileNet achieved 99.79%, 99.59%,
and 99.59%, respectively, in the original split. And achieved
94.11%, 95.09%, and 95.63%, respectively, in the 80:20
split. In the 70:30 split achieved 94.01%, 94.67%, and
95.31%, respectively. The specialization of these models,
detailed in Table VIII, reveals that in the original split,
the Custom model has superior performance in identifying
Class 2 (Drusen) and Class 3 (Normal), Xception in Classes
1 (DME), and MobileNet in Class 0 (CNV), that illustrating
the unique strengths of each model within their respec-
tive domains. On the testing set of the Duke dataset, the
sub-models registered accuracies of 99.69%, 95.37%, and
95.22%, respectively. Here, the Custom model specializes
in class 0 (AMD), the Xception in class 1 (DME), and
the MobileNet in class 2 (Normal). For the testing set of
the OCTID dataset, the sub-models achieved accuracies of
89.74%, 70.94%, and 91.45%, respectively. Here, the Cus-
tom model specializes in class 3 (MH) and class 4 (Normal),
the Xception in class 1 (CSR) and class 2 (DR), and the
MobileNet in class 0 (AMD). Although the MobileNet sub-
model failed in its speciality, misclassification results from
such mistakes can be avoided through the NP-list. All sub-
models play a crucial role in correcting misclassifications by
identifying classes that a given image is somewhat certain
not to belong to, and these classes form the NP-list. The
custom model works exceptionally well in most cases. The
confusion matrixes are illustrated in Figure 7-a, Figure. 7-b,
Figure. 7-c, Figure 7-d, and Figure. 7-e.
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TABLE II. UCSD-V2 Dataset Before and After Balancing

State Data CNV DME Drusen Normal Total

Before
Train 37,205 11,348 8,616 26,315 83,484
Test 242 242 242 242 968
Val 8 8 8 8 32

After
Train 29,771 29,771 29,771 29,771 119,084
Test 242 242 242 242 968
Val 7,442 7,442 7,442 7,442 29,768

TABLE III. DUKE Dataset Before and After Balancing

State Data AMD DME Normal Total

Before All data 723 1,101 1,407 3,231

After
Train 1,013 1,013 1,013 3,039
Test 145 221 282 648
Val 112 112 112 336

TABLE IV. OCTID Dataset Before and After Balancing

State Data MH AMD CSR No DR Total

Before All data 102 55 102 206 107 572

After
Train 148 148 148 148 148 740
Test 21 11 21 42 22 117
Val 16 16 16 16 16 80

TABLE V. Performance Metrics of the UCSD-V2 Dataset

Splitting Accuracy Sensitivity Specificity Precision

Original split 100% 100% 100% 100%
80:20 96.03% 94.22% 98.59% 94.75%
70:30 95.85% 94.04% 98.53% 94.47%

Some images have one specialized model, others have
more than one, or there is no specialist. All these cases
are mentioned in Algorithm 1 and illustrated in Table VII,
which gives an example for each of these cases based on
the Duke dataset. Note that in the first example, there is no
specialist, but the correct class is the one with the highest
probability. In the second example, there is one specialist
who is the one with the correct class. In the third example,
there are two specialists, and class 2 has the majority of
votes but belongs to the NP-list, which helps correct the
misclassification and select the correct class.

E. Comparison
Compared to models developed by other researchers us-

ing the UCSD-v2, Duke, and OCTID datasets, our ensemble
model achieves an impressive accuracy of 100% on the first
dataset, while the highest accuracy in previous studies was
99.7%. For the second dataset, our model also achieved
100% accuracy, equal to one of the research papers, but we
used all the images in the dataset and that paper used a sub-
set of them, so our model was considered the outperformer,

while on the entire dataset, the highest accuracy in previous
studies is 99.69%. On the third dataset, the proposed model
outperformed by a clear margin, achieving an accuracy of
95.73%, while the highest accuracy achieved in previous
studies on the entire dataset is 88.5% and on a subset of
the dataset, they reached 93.7%.

Table IX presents the comparative analysis for the
UCSD-v2 dataset, highlighting the performance of the
proposed model concerning its counterparts. Moreover, the
ensemble learning approach introduced at the table’s con-
clusion exhibits enhanced performance, 100% (accuracy,
sensitivity, specificity, and precision). Likewise, Table X
delineates the comparative outcomes for the Duke dataset,
the ensemble learning method achieved a complete accu-
racy, sensitivity, specificity, and precision of 100%. More-
over, Table XI illustrates the comparative outcomes for the
OCTID dataset, the proposed model achieved an accuracy,
sensitivity, specificity, and precision of 95.73%, 90.91%,
98.90%, and 96.17%, respectively.

The comparison in the indicated tables includes the
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TABLE VI. Accuracy of Proposed Model and Sub-Models

Datasets Custom-model accuracy Xception accuracy MobileNet accuracy Ensemble model accuracy

UCSD-v2 (Original) 99.79% 99.59% 99.59% 100%
UCSD-v2 (80:20) 94.11% 95.09% 95.63% 96.03%
UCSD-v2 (70:30) 94.01% 94.67% 95.31% 95.85%

Duke (80:20) 99.69% 95.37% 95.22% 100%
OCTID (80:20) 89.74% 70.94% 91.45% 95.73%

TABLE VII. Examples of Applying the Proposed Model

Specialist Predictions NP list Final prediction True label
Custom Xception MobileNet

None Class 1 2 0 [1] 2 2Prob. 0.469 0.977 0.699

One Class 1 1 0 [0, 2] 1 1Prob. 0.999 0.988 0.782

Two Class 0 2 2 [1, 2] 0 0Prob. 0.999 0.989 0.996

TABLE VIII. Specialization of Sub-models

UCSD-v2 dataset (original split)
Classes Class 0 (CNV) Class 1 (DME) Class 2 (Drusen) Class 3 (Normal)

Specialized sub-model MobileNet Xception Custom model Custom model
Acc. on testing set 0.996 0.996 1.0 0.996

Duke dataset
Classes Class 0 (AMD) Class 1 (DME) Class 2 (Normal)

Specialized sub-model Custom model Xception MobileNet
Acc. on testing set 0.993 0.991 0.997

OCTID dataset
Classes Class 0 (AMD) Class 1 (CSR) Class 2 (DR) Class 3 (MH) Class 4 (No)

Specialized sub-model MobileNet Xception Xception Custom model Custom model
Acc. on testing set 0.091 0.857 1.0 0.857 1.0

number of epochs and the number of sub-models, if any, in
addition to the various metrics.

5. Conclusions and FutureWork
This research demonstrates the efficacy of the proposed

novel ensemble model in the classification of retinal dis-
eases, specifically CNV, DME, and Drusen, in addition to
the categories from other datasets. This study attempts to
benefit as much as possible from the capabilities of all
the models used (Custom, Xception, and MobileNet) to
improve classification accuracy. This is achieved through
a strategic exclusion list (NP-list) that mitigates misclassifi-
cations by identifying non-relevant classes for each image.

In this approach, each sub-model specializes in the
category in which it achieves higher accuracy than others.
One of the most prominent benefits of this method is
that if a certain sub-model achieves low accuracy and the
rest of the models are higher than it, then it will not be

specialized in a specific category, which reduces the risk of
misclassification.

Pre-processing had an important role in improving the
image, reducing noise, and identifying the region of interest.

The proposed ensemble model achieved state-of-the-art
accuracies of (100%, 96.03%, and 95.85%, respectively)
on three splits of the UCSD-v2 dataset and similarly high
performance on the Duke dataset (100%) and OCTID
dataset (95.73%).

In comparison to the separate models and to that in
previous studies, the suggested one was better, firstly, as
it was a simulation of the human way of decision-making
when the outputs of three sub-models are combined, and
secondly, utilized from the advantages of each sub-model
and avoided its disadvantages, raised the accuracy and
reliability of the results.

The proposed model is characterized as less susceptible
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TABLE IX. Comparison with Previous Studies (UCSD-V2)

Method Year Accuracy Sensitivity Specificity Precision Epochs No. of models
[3] 2020 98.53% 97.5% - 97.02% 250 4

[13] 2020 99.27% - - - 15 5
[14] 2021 99.64% 99.28% - 99.29% - 8
[17] 2022 99.48% 99% - 99% 20 1
[18] 2023 99.7% 99.7% 99.9% 99.7% 50 2
[19] 2023 97% - - - 25 5
[20] 2023 99.6% 99.6% 99.87% 99.6% 5 1
[22] 2023 99.6% - - - 5 3

Proposed custom model 2024 99.79% 99.69% 100% 99.79% 8 1

Proposed ensemble model 2024 100% 100% 100% 100% 8 3

TABLE X. Comparison with Previous Studies (DUKE)

Method Year Accuracy Sensitivity Specificity Precision Epochs No. of models
[15] 2021 100% 100% 100% 100% - 18
[20] 2023 97.5% 97.64% 98.91% 96.61% 5 1
[21] 2023 99.69% 99.71% 99.87% - 50 1
[23] 2024 97.89% 97.89% - 97.9 100 3

Proposed custom model 2024 99.69% 99.69% 100% 99.69% 17 1

Proposed ensemble model 2024 100% 100% 100% 100% 17 3

TABLE XI. Comparison with Previous Studies (OCTID)

Method Year Accuracy Sensitivity Specificity Precision Epochs No. of models

[16] 2021 88.5% 84.6% - 86.2% 45 1
93.7% 91.2% - 91.4% 45 1

Proposed Custom model 2024 89.74% 87.18% 97.43% 92.73% 50 1

Proposed ensemble model 2024 95.73% 90.91% 98.90% 96.17% 50 3

to the known problems of ensemble models such as over-
fitting, variance, and bias, because it uses a specialization
strategy and an NP list. One of the drawbacks of the
proposed model is that it requires a variety of sub-models
and that it may not succeed in specializing sub-models
correctly if the dataset is small.

These results emphasize the importance of ensemble
learning techniques in medical image analysis, especially in
retina OCT images. This study underscores the necessity for
cooperation between different specialities and technological
progress, especially in health care, to shorten the time and
reduce diagnostic errors.

In future work, researchers could aim to advance this
study, especially in expanding it to include more diverse
and different datasets and many imaging modalities. Some
examples are computed tomography (CT), magnetic reso-
nance imaging (MRI), and vascular ultrasound.

Applying and analyzing the performance of other DL
models might yield a further increase in the accuracy and
effectiveness of the model.
Exploring the opportunities of using common ML algo-
rithms such as SVM and Random Forest as sub-models
in the proposed ensemble model to assess their effectivity
compared to DL models.
Developing the NP-list and investigating its influence on
correcting misclassification when used in the other models
and approaches such as bagging, boosting, and stacking.
Refining the details of the proposed model, addressing its
weaknesses, and assessing the use of more than three sub-
models to enhance accuracy can be considered for future
work.
Implementing more sophisticated methods to improve im-
age quality and highlight ROI can improve the model result.
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(a) (b)

(c) (d)

(e)

Figure 7. Confusion Matrixes. ((a) for the UCSD-v2 dataset (original split); (b) for the UCSD-v2 dataset (80:20); (c) for the UCSD-v2 dataset
(70:30); (d) for the Duke dataset (80:20); (e) for the OCTID dataset (80:20))

By pursuing these ideas, the proposed system can be
further optimized, and its applications broadened to include
other medical fields, providing more accurate and effective
diagnostic tool for doctors and specialists in retinal dis-
eases.
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