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Abstract: Farmers are facing many difficulties right from the selection of seed to fertilizer usage, disease control, harvesting and
selling the agricultural yield. The prime motivation behind this research stems from the idea that, the ability to detect leaf issues
and implement corrective measures can offer a solution to mitigate the decrease in crop productivity. The existing Deep Learning
methods like Convolutional Neural Network showed high efficiency regarding the modification and use of acquired knowledge. A novel
framework has been developed by incorporating Convolutional Neural Network and tuning the hyperparameters. Training has been
performed using Extreme Learning process which yielded better results. Convolutional Neural Network - Extreme Learning Algorithm
is the underlying algorithm. The empirical study makes use of the Plant Village dataset. The leaf disease categories considered in this
research early blight, black rot, bacterial spot, apple scab, cercospora leaf spot and healthy. Convolutional Neural Network - Extreme
Learning achieved 94.28% precision, 95.63% accuracy, 94.68% recall, and 96.23% F1-score using Plant Village dataset, outperforming
other classifiers. The research outcomes reflect that the proposed Deep Learning model and algorithm can be used real world computer
vision applications pertaining to agriculture.
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1. INTRODUCTION
Agriculture is the field that substantially contributes to

the food economic growth of India. With technology inno-
vations, it is time to incorporate precision agriculture in the
country to bring in its benefits, such as reducing expenditure
and increasing productivity [1]. When agricultural fields are
monitored automatically with technology-driven solutions,
it will change the way diseases are identified and counter-
measures are taken from time to time [2]. When there is
live monitoring and automatic detection of plant diseases
with Artificial Intelligence (AI) systems, it will improve
agriculture with plenty of benefits. It will make agriculture
and all its eco-systems healthy and prospering. Deep Learn-
ing (DL) techniques in Al have potential towards useful
agricultural applications. One such useful application to
farmer community is automatic detection of plant diseases
[3]. It has attracted researchers of late due to availability of
computing and storage resources besides advancements in
Machine Learning (ML).

With advancements in Al-based methods such as DL,
there is a need for a comprehensive DL framework that
exploits advanced CNN models. In agriculture, farmers

used to observe crop leaves and identify certain diseases.
However, the problem with the traditional approach is that,
it becomes too late when a farmer identifies a disease and
takes corrective measures. In other words, it does mean
that there is a time gap between the inception of disease
and clear identification of disease leading to damage to
crop. This challenge can be overcome with technology-
driven approaches that are, of late, given high importance
in academia and research circles. Leaf disease detection
with ML and DL has its own challenges. It is important
to understand that a technology-driven approach needs to
capture leaf images from remote places. The first challenge
is the acquisition of leaves or the crop of a given farmer
or location [4]. Once the cropped image is acquired, it
is important to see that it has quality. Therefore, another
challenge is to have acceptable quality of image in order
to process it further. When there are plenty of crops in the
world, there is need for large volumes of training data in
order to have meaningful means of using DL. If there is no
sufficient training data, it leads to deteriorated performance
with DL algorithms. When live plant images are captured
remotely through certain technologies or sensors, there is
a challenge involved in improving the quality of the input
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image. Leaf disease detection particularly throws challenges
in terms of identification of the region of interest. It is
also important to have training data for all pre-defined
classes; otherwise, the detection performance proves to be
average. With digital image processing there are certain
issues such as segmentation and accuracy in processing
[5]. There is a need for dynamically adaptive processes
in order to process image data. Machine interpretation
of image data is non-trivial that needs a high level of
understanding from the underlying algorithms. With DL,
the process of disease identification has its complexities
besides the advantages aforementioned.The conventional
techniques of disease diagnosis and control involve visual
assessment and chemical controls that may take a lot of
time, give inaccurate results, and are detrimental to the
environment [6]. This is where the great potential of AI
comes into play to improve the situation. Sub-branches of
AI such as machine learning and image recognition present
the possibility of diagnosing diseases in plants at an early
and precise stage. One of the major advantages of deploying
AI is that the system could detect signs of disease from
a vast array of images of plants, and in a very accurate
manner, allowing farmers to take appropriate measures in
order to prevent excessive crop damage [7]. The application
of AI in agriculture can also facilitate farmers in real-time
processes as well as data-driven decision making regarding
usage of resources and reduction of dependence on chemical
pesticides. Hence, the incorporation of AI solutions would
certainly help improve the vulnerability position of Indian
agriculture for sustainable production and production of
sufficient food to meet the demand.

The rise of DL models in AI-driven computer vision
applications opens up significant possibilities for automated
identification of leaf diseases in farming. By implementing
technology-driven solutions for automated monitoring of
agricultural fields, the approach to disease identification
and response mechanisms can undergo a transformative
shift [8]. Live monitoring and AI-driven detection of plant
diseases promise many advantages for agriculture, ulti-
mately contributing to the overall health and prosperity of
agricultural ecosystems. The adoption of automatic disease
detection through technological innovations is poised to
make a profound impact on numerous nations worldwide.
This shift will facilitate the adoption of precision agriculture
practices, resulting in increased crop yields and reduced
waste through timely and precise interventions. The moti-
vation for this research stems from the potential far-reaching
positive effects on agriculture.

Extensive and high-quality labeled datasets are required
to train the model, but these are rare especially for dif-
ferent crops and forms of diseases. Fluctuations in disease
manifestations exacerbated by some growth phases, types
and non-plant factors further challenge identification [9].
The CNNs are computationally demanding for both training
and testing, making them a concern especially for devices
and networks with limited capabilities. Another challenge

arises in making the model applicable across the different
regions and conditions, which requires even more validation
and it may mean further model tweaks [10]. Solving these
issues therefore becomes fundamental for the use of CNNs
in field agriculture.The major objective of implementing
automation within agriculture is to improve the speed and
reliability of disease diagnosing in plants, thereby mitigat-
ing crop damage and loss. The novel framework presented
in this research involves the employment of CNN alongside
Extreme Learning processes, with an emphasize on im-
proving the functionality of the networks hyperparameters.
Some of the constraints of precision agriculture that this
framework proposes to solve using trained deep learning on
the Plant Village dataset are the ability to accurately detect
different forms of plant diseases such as early blight, black
rot, bacterial spot, apple scab, cercospora leaf spot as well
as the ability to distinguish between diseased plants and
healthy plants. The presented research results suggest that
the use of the deep learning model and algorithm outlooks
for the contingent improvement of the agricultural practices
through the computer vision tools.

2. RELATED WORKS
[6] introduced CNN-based approach for efficient detec-

tion of plant diseases. It has been found that, for image-
based inputs, CNN is able to perform good in ascertaining
image features and detection. [7] extended their research
and included diversified crops and diseases. With the Plant
Village dataset, their observations showed suitability and
feasibility of using CNN for leaf disease detection. [8]
stated a DL model that is compatible for mobile devices.
Since the usage of smart phones is found in all areas of life,
their research is useful for mobile users as well. However,
the applications in such devices depend on resources in the
cloud investigated on the tomato crop, which is a widely
grown vegetable crop in many countries. [9] explored CNN-
based DL models like SqeezeNet along with AlexNet for
diagnosis of disease. The main investigation revealed that
CNN-based pre-trained models have potential to help in
improved leaf disease detection performance.

DL detection models such as Recurrent Neural Network
(RNN) and CNN were studied by [10] using different cases
in agriculture. Particularly, they were good for diagnosis
of leaf disease of different crops. Their observation was
that, there is a capability with DL models to work on
enormous amounts of training data in order to leverage
detection performance significantly. They developed models
based on CNN and found that image-related data is well
learned by CNN for better detection and classification. Their
empirical study using maize crops revealed its usefulness in
further investigations. They also found CNN more suitable
with different configurations such as dropouts and other
parameters. Their observations showed the high utility of
CNN in processing image inputs in the detection process of
leaf disease. [11] studied different models of DL, including
pre-trained ones such as VGG16. They suggested that CNN-
based models have the potential to learn comprehensively
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while training and improve performance in the detection
process. [12] found the significance of using CNN but in a
network, model known as Generative Adversarial Network
(GAN). This model with underlying CNN usage as a
generator or discriminator leads to more useful discrimi-
nation. The reason is that it has the capacity to have data
augmentation and improve quality in the training process
and game theoretical approach that allows new training
samples to be created to augment any data insufficiency.

[13] used residual approach embedded in CNN model
for working on tomato diseases. They configured the model
with different layers and dropouts for better performance.
The model was capable of finding diseases in the crop
with high accuracy and intended to extend their models
further to incorporate fault detection. [14] investigated the
model known as DenseNet-121 to detect diseases in ap-
ple crops. Their approach in detection needed multi-label
classification that will have a number of class labels that
are used in the testing phase. The disease identification
in their research is not based on binary classification but
deals with a multi-label approach to reflect true disease
dynamics in the crop. [15] proposed a enhanced LeNet
model that is based on CNN baseline in order to have better
performance in detection of diseases in agricultural crops.
They used maize crop for their research and their model
contains many layers for handling input data. From the
state of the art, it is ascertained that there is a need for
improving CNN-based models besides exploiting transfer
learning, pre-trained models.

However, the existing work lacks in its optimal config-
uration and reuse of previously trained models. It also has
shortcoming in terms of accuracy. There is need for further
research on leaf disease detection using advanced CNN
models with hyperparameter tuning and efficient learning
technique. Therefore, this research is aimed at building a
comprehensive model to address these limitations.

3. METHODOLOGY
This section explores the particular methods and ap-

proaches used in each part of the suggested categorization
model. A key factor in the diversity and caliber of the
dataset is image acquisition, which is the first phase of
data collection. After that, preprocessing techniques like
augmentation and scaling are used to make sure the dataset
is ready to be prepared for analysis using CNN. Partitioning
the dataset is an essential stage that permits the partition
of the data into subsets for testing, validation, and train-
ing, guaranteeing thorough model analysis and generaliza-
tion. The methodology’s fundamental component is CNN,
which works in tandem with Extreme Learning (CNN-
EL) to extract complex features and patterns from the pre-
processed data. Extreme Learning (EL) is a novel learning
paradigm different from the traditional back-propagation
based learning, which covers varieties of neural networks
including CNN. The key ideas that set EL apart from its
counterparts are high speed of learning as well as capacity

to work with large data sets. This can be particularly
beneficial in the case of training CNNs for the detection
of leaf diseases, in which the benefits of EL are clear-cut
and highly distinct. EL can reduce the risk of overfitting
from the first-hidden layer since they introduced random
initialization of weights of hidden nodes and employ an-
alytical method to get the output weights. This removes
the necessity of gradient based optimization for the same
which is actually a time-consuming process normally taking
several iterations. This is so helpful for datasets as large
and complicated as Plant Village. Based on the analysis
for learning performance, EL just needs less samples for
training, which can be beneficial with the shortage of
annotated data in agricultural field. This efficiency is useful
for achieving high speed in the construction of accurate
models for the identification of diseases, even when they
are variable in terms of disease symptoms and plant species.
The EL is more immune to local minima and over fitting
like in back propagation approach. This robustness has the
benefit of providing higher chances of disease identification
on leaves under sporadic non-homogeneous lightning and
noisy backgrounds that are typical of images captured in
the fields. Lastly, performance evaluation is essential for
determining the model’s effectiveness and correctness as
well as its applicability for practical uses. These parts flow
naturally together inside the block diagram, guaranteeing a
methodical and comprehensive approach to picture analysis,
classification, and assessment. This prepares the reader for
the in-depth examination of each methodology component
that follows. The block diagram for the suggested model is
shown in Figure 1.

The proposed approach applies two distinct pre-
processing techniques to pictures from the plant dataset. Us-
ing the image augmentation strategy increases the amount of
images in the collection. More photos are required for Deep
Neural Networks in order to improve training and validation
accuracy. The augmentation process involves the application
of several image processing techniques, such as flipping,
cropping and rotating. By employing these techniques,
the model’s ability to recognize various iterations of an
object is improved and the dataset becomes more varied.
Resizing images is done with the intention of reducing the
computational complexity associated with the DL process.
Processing more pixels at once is necessary for large-
sized images, which adds to the computational complexity
and duration. at combat this, the sizes of the leaf images
are standardized at 256x256, which increases computing
efficiency without sacrificing the important substance of the
photos. By reducing the data, the deep learning model can
handle it more effectively without sacrificing its capacity to
extract significant attributes. Figure 2 shows some photos
taken from the Plant Village dataset.
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Figure 1. CNN-EL Model Block Diagram for Leaf Disease Classification

Figure 2. Sample Images from the plant village dataset: (a) apple
scab, (b) spot of bacteria, (c) black rot, (d) Cercospora leaf spot, (e)
early blight (f) healthy

Plant Village dataset is a dataset constituted of plant
images whose goal is to contribute to the development of
particular methodologies such as CNN for the identification
of plant diseases. The database has 50,000 plus images
of both healthy and non-healthy leaves from more than
14 crop type and as many as 26 diseases. Each image
has a tag indicating if it consists of a particular disease,
or if the plant is healthy, making it an excellent dataset
for the training or testing of CNN models. CNNs for
plant disease detection entails utilizing the capability of
the networks to learn architecture features from low level

image data on their own. Partitioning the dataset is a crucial
stage in creating and assessing DL models. It involves
dividing a dataset into discrete subsets with a purpose.
Typically, these subsets are training and testing sets, but
more sophisticated approaches may additionally include a
validation set. The training set serves as the foundation for
teaching the model, allowing it to identify and comprehend
relationships, patterns, and features in the images [16]. In
contrast, the testing set offers an objective standard by
which to measure the model’s effectiveness. A model’s
ability to extrapolate to new, untested data is crucial for en-
suring that it can generate correct predictions in real-world
applications and is not just a memory of the training images,
which is why the data division process is so important [17].
Building strong, dependable, and efficient machine learning
models requires proper dataset partitioning since it prevents
problems like overfitting and makes it easier to conduct a
thorough evaluation of a model’s prediction power. In this
case, the suggested eighty percent of the data is utilized
for training and twenty percent of the data is used to test
the CNN-EL model. Table 1 explains the distribution of the
different image classes in the dataset.

TABLE I. Images in Plant Village Dataset

Sl. No Image Class Total Train Test
1 Apple Scab 1260 1020 240
2 Bacterial Spot 1207 966 241
3 Black Rot 1242 990 252
4 Cercospora Leaf Spot 1260 1010 250
5 Early Blight 1200 959 241
6 Healthy 1240 982 258
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A. Convolutional Neural Network
Convolutional Neural Network (CNN), is a powerful

DL framework that can automatically extract meaningful
information from data without requiring human interven-
tion. CNNs excel in pattern recognition tasks, especially in
images for identifying objects, people, and scenes. These
networks consist of tens or even hundreds of layers, each
playing a unique role in identifying various aspects of
an image [18]. Every training image, regardless of its
resolution, undergoes a series of filtering operations, and
the output from each transformed image becomes the in-
put for the subsequent layer. To capture intricate object
characteristics, these filters often start with basic attributes
like light and edges [19]. Through CNNs, it is much
easier to determine tiny variations in the surface, color
and morphology of the leaves known to separate healthy
plants from infected ones. This capability is particularly
useful because for different species of plants and in different
conditions of environment the diseases that they catch may
also vary greatly in the symptoms they display. In this study
CNN’s have been applied to Plant Village dataset and good
accuracy in identifying and categorizing plant diseases has
been realized. The Plant Village dataset, in conjunction with
the CNNs, provides a real prospects for enhancing disease
control in the agriculture, which means timely interventions
with minimum damages to the crops. The basic structure
of CNN used in leaf image classification application is
illustrated in Figure 3.

CNN comprises many key components, containing sev-
eral hidden layers, an output layer, and an input layer where
both linear and non-linear functions are applied in specific
configurations. Within these hidden layers, feature maps are
generated as a result of the outputs from hidden units. This
is achieved by applying the output via preceding layer to a
convolutional filter that has predefined weight and volume
parameters. An activation function is applied to the result
after multiplying the convolutional filter kernel. In terms of
math, Equation 1 explains how to compute the ith layer’s
output, which is denoted by xi.

xi
j = f

 j∑
i=0

x j−1
i ∗ wi j + bi

j

 (1)

The variable x in the equation above represents the
output of the final layer, often known as the feature map.
The variable w represents the weight of the convolution
kernel for the ith layer, while the variable f indicates
the activation function that is applied to the convolutional
operation’s output. Moreover, b indicates the bias specific
to the ith layer. Equation 2 offers a quantitative assessment
that ascertains the result of the pooling layers and enhances
the feature representation even further.

Q = 1 +
2P + N − F

S
(2)

The height and width of the input image are represented
in pixels by its dimension, which is denoted as N x N.
In order to modify the final feature map’s size, padding
depth, or P, is a technique that adds more pixels to the
surrounding area of the input image. The dimensions of
the convolutional filter, represented as F x F, determine the
height and width of these filters. As a result, significant
traits are extracted from the input. Finally, the number of
pixels that the filter is shifted both vertically and horizon-
tally throughout the convolution process is determined by
the stride parameter, which is represented by the letter S.
Stride has a significant impact on the spatial dimensions of
feature maps as well as the level of information obtained
during the feature extraction procedure [20].

Values that are near together are given specific weights
in an analysis process called the convolutional operation.
The weighted values of these neighbors are then added
together to determine the value of the current input, or
pixel. When applied to a 2D input, such a picture, the
process comprises recalculating the pixel values by sum-
ming the values of the surrounding pixels. This process
uses a weight matrix, sometimes referred to as a kernel
or filter, to compute these weighted sums. An activation
function is a mathematical function that is applied to the
output of a neuron or node in a neural network layer in
the context of deep learning along with neural networks.
It gives the network non-linearity, which enables it to
recognize intricate patterns and produce predictions that get
increasingly accurate.

CNNs use a method called pooling to abstract and
generalize the features that the convolutional filters have
collected, enabling the network to recognize pertinent fea-
tures regardless of where they are located within a picture
[21]. A 2-D filter is methodically moved across each the
feature map’s channel during the pooling procedure, and
the features that fall inside the filter’s region are combined
or summarized. Upon implementing max-pooling, which
preserves the highest value within the filter’s area, the
output’s dimension (J) is ascertained as follows:

J = [1 + ax − m] × [1 + ay − n] × az (3)

The output dimensions post-max-pooling for a feature
map with dimensions of ax ∗ ay ∗ az will be smaller, usually
as a result of down-sampling, while maintaining the most
important features. The size of the pooling filter, the stride
taken, and the particular pooling procedure utilized all affect
how big the output will be. A common pooling technique
in CNNs is called max pooling, and it tries to abstract and
down-sample the data found in feature maps. After dividing
the input data into those sections, it selects the maximum
value inside each non-overlapping zone. The max pooling
mathematical expression is as follows:

P[i, j] = max
(
M
[
p ∗ i : p ∗ (i + 1), q ∗ j : q ∗ ( j + 1)

])
(4)
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Figure 3. Basic Structure of CNN for Leaf Image Classification

Here, P [i, j] is the value at the ith row and jth
column of the pooled feature map, and it represents the
maximum value within the corresponding region defined
by the pooling window. For input feature map (M) of size
(h x w), a max pooling operation with a window (or filter)
of size (p x q), and the outcome of the maximum pooling
process (P) will have dimensions (m x n). Flattening is a
critical operation in neural networks, frequently employed
as a bridge between fully linked and convolutional layers.
Within convolutional layers, the data is represented as fea-
ture maps, which are two-dimensional grids. However, fully
connected layers require one-dimensional input. The flat-
tening operation transforms these two-dimensional feature
maps into a one-dimensional vector while preserving the
order of the elements. This operation essentially ”unstacks”
the feature maps, concatenating all their values into a linear
array. Finally softmax function is used to separate the
features and obtain the classes.

1) Extreme Learning
This research leverages Extreme Learning (EL) as a tool

to enhance classifier optimization. EL is attached within
a CNN framework, offering the advantages of accelerated
learning, smoother convergence, and reduced randomness.
The result of the EL process is the classification of Plant
Village dataset classes. After the initial EL phase’s training
is complete, the output from the first The buried layer is
then transferred to the second EL after EL is discarded.
Given that the hidden layer is configured with a fixed
2048 neurons, this EL instantiation represents a sparse
interpretation. The EL’s weights are fine-tuned utilizing the
Adaptive Moment Estimation (Adam) optimization algo-
rithm. Assuming that the EL-CNN’s hidden layer contains
Nh neurons, the output vector from this layer, designated as
h(xi) for a given input vector xi, possesses a 1×Nh size. The
weight vector that connects the hidden layer to the output

layer, represented by α, has dimensions of Nh × No. The
number of output classes is shown here by the letter No.
The output of EL is explicitly defined by equation 5.

f (xi) = a × h(xi), i ∈ {1 : Nh} (5)

The objective function, which serves the purpose of
minimizing network errors, is explicitly defined in Equation
6.

floss = W
Nh∑
i=1

∥ Ei ∥
2 +min ∥ α ∥2g (6)

In this context, the symbol ∥ α ∥ denotes the weight
vector’s Frobenius norm, and W the penalty constraint.
During the training phase, the error vector is represented by
the letter E. Figure 4 shows the EL-based learning model’s
step-by-step flow.

Linear system’s minimal average response is used in
the EL theory to statistically figure out the output weights,
whereas the input weights are generated randomly following
a continuous distribution function [22]. This study presents
a CNN classifier grounded in the principles of EL, aiming
to elevate the performance beyond a basic EL model and
unleash its full potential. The intricate approach outlined
in Algorithm 1 encompasses N distinct CNNs, with the
ultimate decision being derived from the amalgamation of
diverse outcomes using a parameter set denoted as F, which
is determined through an EL algorithm.

[H] Input: X=Dataset, T= Target, L= Hidden nodes,
N= Models. Output: Parameters of EL Classifier. Step 1:
Initialize the value of n=1,..... , N. Step 2: Generate input
weights through a random selection process W (n) and bias
b(n). Step 3: Compute the hidden matrix, H = [b(n)+W (n)X]G
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Figure 4. Proposed EL Scheme flow chart

Step 4: Compute the output weights, α(n) = H(n) ⊕ T Step
5: Obtain the output, Y (n)=H(n)α(n) Step 6: Find the global
hidden matrix using Equation, Hg = [Y (1)Y (2)......Y (N)] Step
7: Compute the fusion of parameters F = Hg ⊕ T Step 8:
Return to the EL classifier parameters (W (n), b(n) and α(n)).
Step 9: Iterate through steps 2 to 8 repeatedly until the EL
parameters reach convergence.

The EL-CNN model that has been suggested utilizes a
layer layout where the input layer is the first layer. Convo-
lutional, max pooling, dense, flatten, and completely linked
layers are the levels that come after, layered on top of each
other. To get improved classification outcomes, the model
utilizes the Adam optimizer, which is effective for handling
large datasets or parameter sets [23]. Hyperparameters in
this model often have straightforward interpretations and
are relatively easy to fine-tune. For the calculation of loss
(error) Binary Cross Entropy (BCE) is used for both training
and validation. With six classes, each calculated chance is
compared using BCE to the real class output [24]. The
probabilities are given a score according to how far they
differ from the expected values. Table 2 lists the precise
parameters that were used in this model to identify leaf
diseases.

Proposed EL-CNN model designed for the Plant Village
dataset is illustrated in figure 5, which begins with the
initialization of 6 distinct classes. The model undergoes a
series of processing steps, including convolutional layers,
dense layers, max pooling layers, flattening, and hidden lay-
ers, ultimately resulting in a final output with six classes and
predictions for individual classes. During the training and
validation process, this model employed a batch size of 512
and a learning rate of 0.01, running for a total of 30 epochs.
The choice of 30 epochs was made because it represents the

optimal point at which the EL-CNN model converges, and
the accuracy along with loss metrics stabilize, delivering
the best results [25].

TABLE II. Proposed EL-CNN Model Summary

Layers Type Output Shape Parameters
Input Layer Input 256 x 256 x 3 -
Convolution

Layer Conv2D 254 x 254 x 16 448

Max pooling
layer Maxpooling2D 127 x 127 x 16 0

Convolution
Layer Conv2D 125 x 125 x 32 4640

Max pooling
layer Maxpooling2D 62 x 62 x 32 0

Convolution
Layer Conv2D 60 x 60 x 64 18496

Max pooling
layer Maxpooling2D 30 x 30 x64 0

Dense Dense 30 x 30 x 64 4160
Dense Dense 30 x 30 x 32 2080
Flatten Flatten 28800 0
Dense Dense 6 172806

Total 2,02,630
Trainable 2,02,630

Non-Trainable 0
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Figure 5. Proposed EL-CNN Model

4. RESULTS AND DISCUSSIONS
The EL-CNN approach utilized in this research focuses

exclusively on the deeper layers, keeping the layers before
those layers fixed and training the classifier with the output
features. This approach uses fewer entities for training,
but it still requires a significant amount of features. For
example, the feature set generated by the third convolutional
layer (C3) has a size of 18,496 features. We used an
80:20 ratio in between testing data and training to set
up this training technique. Furthermore, when comparing
our results to previous research, we maintained consistency
in our parameters, employing both cross-validation and
fixed partitioning methodologies. Proposed EL-CNN model
was implemented in Python and evaluated on the Google
Colab platform. It’s worth noting that a lower learning
rate enhances the efficiency of EL-CNN training, while an
excessively high learning rate can lead to training stagnation
with unsatisfactory results. The suggested EL-CNN classi-
fier’s training and validation performance is shown in Figure
6.

In order to assess the validity and efficiency of the
proposed EL-CNN model, we computed 4 key metrics:
accuracy, recall, precision, and F1-score. These metrics
are defined based on the usage of False Positive (Pf),
False Negative (Nf), True Negative (Nt), and True Positive

(Pt). The mathematical expressions for these performance
parameters are as follows:

Precision =
Pt

P f + Pt
(7)

Recall =
Pt

N f + Pt
(8)

Accuracy =
Nt + Pt

N f + Nt + P f + Pt
(9)

F1 − score =
2 × Pt

N f + P f + 2Pt
(10)

From the 20th epoch onwards, the performance param-
eters consistently maintain high values. This stability is
attributed to the effective application of EL technique to
address the leaf disease categorization problem. Notably,
the EL-CNN model’s proposed loss, which is employed
for the differentiation of leaf diseases, is impressively low,
standing at 0.55. Moreover, the suggested EL-CNN model
achieves an impressive 94.28% mean accuracy. Further-
more, the precision, recall, and F1-score mean values-which
stand at 95.63%, 94.68%, and 96.23%, respectively-are also
rather encouraging. The confusion matrix obtained for the
multiclass classification model based on the suggested EL-
CNN technique is shown graphically in Figure 7.

The suggested EL-CNN model performs well in identi-
fying various leaf disease classes with better accuracy. It is
clear from the classification report that EL-CNN performs
well at differentiating between the various leaf disease
classes. The Plant Village dataset can effectively identify the
disease class with the use of the suggested EL-CNN model.
Figure 8 shows the performance of each class individually.

A thorough analysis of the created EL-CNN method’s
classification performance is necessary to determine its
efficacy. We conducted an evaluation of the classification
performance of the various models on the Plant Village
datasets. Based on the chosen performance criteria, we
compare the effectiveness of the current models in Table
3.

TABLE III. Comparison of Leaf Disease Classification Models

Model Precision
(%)

Recall
(%)

F1-score
(%)

Accuracy
(%) References

AlexNet 92.92 92.21 92.78 93.03 [17]
GoogleNet 90.73 91.09 89.56 90.31 [18]
ResNet 50 91.08 90.06 91.84 91.72 [19]

VGG16 91.27 91.42 90.37 91.33 [20]
Inception v3 90.92 89.06 89.74 90.81 [21]

CNN 91.95 90.4 91.47 90.94 [24]
EL-CNN

(Proposed) 95.63 94.68 96.23 94.28 -

While considering classification accuracy, the EL-CNN
model leads with an impressive score of 94.28%. Among
pre-trained models, we observe greater accuracy rates
with VGG16 (91.33%), ResNet50 (91.72%), and AlexNet
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Figure 6. The proposed EL-CNN classifier’s train and validation performance

Figure 7. Confusion Matrix of Proposed EL-CNN Classifier

(93.03%). Notably, the accuracy of the proposed EL-CNN
model surpasses that of AlexNet by 1.25%. Moving to pre-
cision, the EL-CNN model outperforms all other classifiers
by offering a precision rate of 95.63%. In comparison,
AlexNet achieves a precision of 92.92%, CNN attains
91.95%, and VGG16 scores 91.27%. The precision of EL-
CNN exceeds that of AlexNet by 2.71%.

With a recall value of 94.68%, the EL-CNN model
has the highest value of all the models that were taken
into consideration. In particular, VGG16 reports 91.42%

recall, ResNet50 records 91.42%, and AlexNet records
92.78%. By contrast, the recall of the EL-CNN model is
3.45% higher than that of AlexNet. Moreover, the EL-CNN
model is the best when evaluated based on the F1-score.
AlexNet’s F1-score is 93.03%, whereas the EL-CNN model
achieves a remarkable 94.28%, indicating a 1.25% discrep-
ancy between the two approaches. This emphasizes the
significance of particular parameters and the part EL plays
in lowering overfitting and raising classification accuracy.
Notably, both AlexNet and the proposed model show good
performance in detecting samples in big datasets. Figure
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Figure 8. Performance of category-wise classification

9 provides an overview of how EL-CNN compares to the
most sophisticated leaf disease classifiers.

The efficiency of EL-CNN-based models lies in their
utilization of extensive labeled datasets to tackle highly
challenging problems. Employing EL-CNN systems in con-
junction with large datasets for classification can automate
the entire process of classification. Feature selection, ROI
delineation, noise filtering, and feature extraction are no
longer necessary. The EL-CNN models produce extremely
reliable and bias-free predictions. Moreover, these models
consistently achieve a remarkable level of accuracy, setting
them apart from earlier CNN approaches. Leveraging GPU
resources within the Google Colab framework as hardware
significantly reduces the computation time. For instance,
training the EL-CNN on the Plant Village dataset took
just 4 minutes and 42 seconds. Crucially, the suggested
multiclass classifier outperforms the current models in terms
of performance metrics. A visual representation of sample
predictions and the corresponding ground truth can be
found in Figure 10. The success factor of the models
based on EL-CNN in enhancing agricultural productivity
is because they make use of large labeled databases to
solve intricate challenges. When the EL-CNN systems are
used with big data for classification, the entire process is
fully automated and requires no more feature selection and
its correspondence with the ROI, filtering out noises and
extracting prominent features. These models provide high
confidence with minimum bias in prediction, which also
significantly outperforms the CNN traditional models.

5. CONCLUSION
The findings of increased accuracy of the EL-CNN

model in the process of identification of diseased leaves,
have clear practical implications for agriculture and farmers.

Thus, high accuracy, high precision, high recall and high
F1-score on the target disease, as well as low execution time
of the EL-CNN, indicate its effectiveness and usability in
the early days of the disease, when immediate intervention
with targeted treatment is required. It can results in amazing
effects like improved quality of the produced crops and
yields and minimum losses for the producers. In addition, it
minimizes the pre-processing of images, which means that
implementation of this technology is easier to deploy in
real-life situations. This study examined EL-CNN in con-
junction with a number of pre-trained CNN techniques for
the image-based categorization of leaf diseases. Concatenat-
ing CNN structures with EL is an effective way to achieve
the highest classification rate. With the Plant Village dataset,
EL-CNN outperformed other classifiers, achieving 94.28%
accuracy, 95.63% precision, 94.68% recall, and a 96.23%
F1-score. The maximum prediction accuracy is produced
by EL-CNN, thanks to optimization. It performs better
than conventional strategies in removing the need for pre-
processing phases. Additionally, the pre-trained AlexNet
classifier produced worse performance metrics in compari-
son to the suggested EL-CNN. Despite the revelation that
EL-CNN outperforms other models in classifying diseases
affecting leaves, there are constraints which are future re-
search areas such as the Plant Village dataset used for model
training only captured images of plants under standardized
conditions and lack of variation in the dataset can hinder the
models performance in other natural environmental settings.
However, there are some limitations and issues with the EL-
CNN method: The main limitation stems from the relatively
high computation costs of performing the CNN calculations
required for EL-CNN, as the method might not be well-
suited for implementation in resource-limited environments.
Ethical issues emerge when utilizing AI for diagnosing
agriculture-related issues. Technology and data security is
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Figure 9. Comparison of Classification Performance

Figure 10. Ground truth and prediction results

another factor, whereby, concerns farmers data which would
require proper and secure collection and use. Preconception
management eliminates potential inimical effects that an AI
model may develop in favor of some crops, geographic
locations and farming processes, thus being disadvanta-
geous to other farmers. Suspicion and final validation will
always be retained in the hands of human professionals to

enhance on AI suggestions, while keeping off a number of
potential anomalies that could be unidentified by the device.
Future scope aim in improving the field application of the
models through their implementation on mobile interfaces,
streamlining of computational work so as to enable real
time solutions and development of a variety of fine tuning
mechanisms with enhancing the efficiency of models in
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different applications of agriculture. So the future research
will focus on integrating the models onto mobile platforms,
minimizing computational complexity, and looking into
different fine-tuning techniques.
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