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Abstract: Alzheimer’s disease (AD) is probably the most widespread neurodegenerative disorder affecting millions of individuals
worldwide. It is characterized by deficits in cognition, behavior, and intellectual functioning, with a high likelihood of progression.
Accurate and timely diagnosis of AD is essential for halting the progression of AD and other forms of dementia. This systematic
review explores the emerging field of AD diagnosis using recent advances in machine learning (ML) and deep learning (DL) methods
applied to EEG signals. Focusing on 38 key articles published between January 2020 and February 2024, this review critically examines
the integration of computational intelligence with neuroimaging to improve diagnostic accuracy and early detection of AD. AD poses
significant diagnostic and treatment challenges exacerbated by the aging global population. Traditional diagnostic methods are often
limited by their time-consuming nature, reliance on expert interpretation, and limited accessibility. EEG is a promising alternative,
providing a non-invasive, cost-effective way to record the brain’s electrical activity and identify neurophysiological markers indicative
of AD. This review highlights the shift towards automated diagnostic processes, where ML and DL techniques are crucial in analyzing
EEG data, extracting relevant features, and classifying AD stages with high accuracy. Although several advancements have been made,
critical challenges and limitations remain, such as the need for more extensive and diverse datasets to increase model generalizability
and integrate multi-modal data for a comprehensive diagnosis. The future of EEG-based AD diagnosis appears promising, driven by
computational breakthroughs that pave the way for inclusive, precise, and early detection, ultimately enabling prompt intervention and
individualized care.
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1. INTRODUCTION
Healthcare innovations are extending life spans, result-

ing in an aging global population. By 2100, the world
population could reach 11.2 billion [1], and by 2050, about
2 billion people will be 60 or older, accounting for 21 %
of the population [2]. With increasing age, the prevalence
of disorders like Alzheimer’s Disease (AD) rises, creating
significant healthcare challenges. AD is the most common
form of dementia, making up 60-80 % of all dementia cases
[3]. It is characterized by cognitive decline, memory loss,
and other neuropsychiatric symptoms. The exact causes of
AD remain unclear, although genetic factors are believed
to play a role [4]. Early and accurate diagnosis of AD is
crucial for several reasons. First, early detection allows for
timely intervention, which can slow disease progression and
improve the quality of life for patients and their families [5].
Second, accurate diagnosis is essential for guiding treatment

strategies, especially with the advent of disease-modifying
therapies [6] [7]. However, current diagnostic methods for
AD, which include laboratory tests, health record reviews,
and neuroimaging techniques such as fMRI, are time-
consuming, require highly trained personnel, and are not
always available in all regions. Additionally, traditional
methods relying on clinical observations and neuropsycho-
logical testing are inherently subjective and prone to errors,
leading to misdiagnosis in up to 20 % of cases [8].

Non-invasive neuroimaging is a mainstay in clinical
practice to aid dementia diagnosis. Several methods, in-
cluding magnetic resonance imaging (MRI), computed to-
mography (CT), and positron emission tomography (PET),
have been developed to evaluate brain injury caused by AD
in vivo. But this is typically reflective of vast brain de-
generation, marking late-stage AD once structural damage
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is seen through these methods. In addition, these meth-
ods are cost-prohibitive, time-consuming and necessitate
unique skills [9][10]. Therefore, great interest arises in
electroencephalography (EEG) as a potential adjunct to AD
diagnosis. EEG is used as an imaging technique because
of its accessibility, ease at low cost and non-invasive [11].
It provides real-time insights into brain activity, offering
the potential for earlier and more accessible detection of
AD pathology [12]. This systematic review aims to give
insights on how a variety of EEG methods can be used
for the purpose of detecting early-stage AD and which
ML/DL algorithms are most relevant (i.e., underutilized as
well as beneficial) for its analysis, leveraging EEG data.
By addressing these objectives, this review is expected
to provide technological support for understanding and
implementing computational intelligence technology in the
practice of AD diagnostics.

A. Theoretical Background
EEG, short for electroencephalography, tracks the

brain’s electrical activity obtained from the post-synaptic
potentials of several neurons oriented in the same align-
ment, originating from the cerebral cortex. These electrical
signals are recorded by electrodes that are put on the scalp.
The localization techniques in EEG are different and the
spatial resolution fundamentally depends on the amount
of electrodes used and their positioning. One of the most
frequently used configurations is the international 10-20
system that employs twenty one electrodes. The more elabo-
rate 10-10 and 10-5 layouts with 64 and 128 electrodes, and
other positioning systems as Maudsley as well as Geodesics,
have increased spatial resolution of the EEG recordings [13]
[14]. EEG signals are divided into five frequency bands:
delta, (0. 1-4 Hz), theta, (4-8 Hz), alpha, (8-12 Hz), beta,
(12-30 Hz) and gamma above 30 Hz. Every band provides
a specific view on the brain and its activity, as well as the
synchronization of it. By assessing the changes in brain
waves in EEG, the science can determine that early signs
of Alzheimer’s Disease (AD) are possible. Research has
also revealed that people with this affliction present faster
frequencies of delta and theta bands and lower amplitudes
of the alpha band on the EEG [15] [16]. Nevertheless,
reliable EEG signal recording is restricted because of the
human factors and other environmental interferences [17].
Thus, using the results of Machine Learning (ML) and Deep
Learning (DL) becomes more and more crucial for medical
diagnosis, focusing on identifying specific data patterns of
EEG. Support vector machines (SVMs), k-nearest neighbors
(k-NN), and random forest are some of the ML algorithms
used in the classification of the EEG signals in which
the features include power spectral densities and wavelet
transforms are extracted. DL techniques, more importantly,
CNNs and LSTM networks, are efficient in feature extrac-
tion and temporal pattern modeling in the EEG data. These
methods have also proved to be efficient in amplifying
the diagnosis of AD and making it automated [18]. For
optimizing the ability to compare the stages of AD and
NCs, a multi-class classification system is required [19].

In recent years research studies have integrated ML and
DL approaches to enhance the efficiency of the EEG-based
diagnostic systems in the AD detection [20]. Applying the
statistical models of ML assist with making decisions in
neuroimaging by biasing analysis. As the data are high
dimensional and non-linear in origin neuroimaging data
is best suitable for ML especially Deep Learning [21]
[22]. These automated systems analyzes the EEG signals
to extract critical features that will help in categorizing
the various stages of AD with considerable accuracy [23].
Through such EEG-multimodal systems, the prognosis of
AD diagnosis is more precise, pivotal, and at an earlier
stage, thereby enhancing the patient’s survival rate and
enhancing research towards the probable development of
AD as well [24]. Certain systems have been used to record
classification accuracies ranging to as high as 99 percent. 9,
percent, emphasizing EEG as one of the promising biomark-
ers for the early diagnosis of AD [25] [26]. Nonetheless,
past several investigations utilizing conventional ML tech-
niques for AD identification have revealed previous short-
comings in precisely apprehending the details associated
with the illness, implying that there is a huge demand to
improve the feature extraction and analysis techniques [27]
[28]. In recent years, significant strides in DL algorithms,
empowered by advanced processing capabilities of graphics
processing units (GPUs), have revolutionized performance
across diverse domains, including object recognition [29]
[30], detection [31] [32], tracking [33], segmentation [34],
and classification [35] [36]. DL, inspired by the human
brain’s information processing and pattern recognition ca-
pabilities, holds great promise for medical data analysis.
Innovative DL techniques offer new avenues for predicting
AD by extracting topological features of functional brain
networks or exploring latent variables through variational
autoencoders. These approaches aim to refine AD prediction
accuracy by analyzing EEG signals in novel ways [15].
Efforts so far have been put into developing computer-
aided classification methods that apply EEG signals in
differentiating AD patients, healthy subjects, and those with
MCI. Prominent features of EEG signals with the impact
of AD include slower patterns, decreased coherence, and
complexity [25] [37]. The same initiatives collaborate with
ML and DL to improve our ability to detect and predict
AD and, at best, to further deepen our understanding and
management of this highly debilitating condition [38] [39].

B. Objectives of the Review
This systematic review primarily aims to:

1) Compare the efficacy of EEG-based diagnostic tech-
niques for early AD diagnosis with conventional
neuroimaging methods.

2) Identify the most promising ML and DL algorithms
for analyzing EEG signals for AD diagnosis.

3) Outline the current limitations and challenges of
EEG-based AD diagnostics and highlight their issues
with the reliability of signals and environmental
interference.
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4) The potential of using EEG with ML/DL techniques
to enhance the early diagnosis and differential diag-
nosis between AD stages and normal aging.

By addressing these objectives, this review seeks to
bridge some critical gaps in the current literature and
provide a comprehensive overview of the potential of EEG-
based diagnostics in revolutionizing AD detection and man-
agement.

C. Aim of the Review
The general aim of the present review is to offer

an overview of the most up-to-date studies that aim to
predict cognitive decline due to Alzheimer’s disease by
using machine learning and deep learning models [40]. The
review was undertaken to examine the applications of these
techniques in diagnosing and predicting neurodegenerative
processes; the advancements and methodological challenges
in this area; and the promising directions for ML and
DL techniques to be incorporated in the field of dementia
care management. This paper reviews the state-of-the-art
methodologies used in the detection of Alzheimer’s using
the DL technique. The idea of using DL in the supervised
and unsupervised categories of AD is an attempt to learn
AD thoroughly. With the help of the most recent studies
and directions, the detection of AD using DL within this
manuscript is presented [41]. It discusses the methodolo-
gies and approaches used in ML/DL for AD detection.
The analysis of recent research aims to understand the
progress in this field. Utilizing DL models to find valuable
information related to AD is investigated to shed light on
the current situation. After conducting a thorough review
of existing literature, we have gathered and combined the
latest findings on utilizing deep learning to detect AD. Our
investigation delves into various supervised and unsuper-
vised deep learning methods, assessing their efficacy and
the opportunities offered to enhance the accuracy of AD
detection. Furthermore, we explore the prevailing patterns
in using DL for AD detection, pinpointing noteworthy areas
of focus and advancement. By gaining a comprehensive
view of the present landscape, our goal is to offer valuable
perspectives on the trajectory of research and progress
in this swiftly advancing domain [42]. In this systematic
review, the attention will be on recent research studies
regarding Intelligent methods for diagnosing AD using EEG
signals. The review will delve into and compare the key
steps in EEG-based AD diagnosis. It will also highlight
differences and similarities in common practices, as well
as consensus on the use of EEG, reported limitations, and
recommendations for various stages of experiments. These
range from the characteristics of the study population to
reporting results for future research. It is expected that this
review will contribute to progressing research in this area,
resulting in more dependable techniques for diagnosing AD
using EEG [43]. The following sections of this article will
outline the methods and strategies. Finally, the conclusions
are presented in Section 4.

2. METHODS
In this analysis, we will thoroughly examine and con-

solidate the latest developments in Alzheimer’s disease
detection through ML and DL approaches. Our focus will be
on research articles released from January 2020 to February
2024, to present a comprehensive summary of cutting-edge
techniques, their effectiveness, and their possible impact on
AD detection.

A. Search Strategy
The Full search terms for each database included varia-

tions of the following search terms: (1) EEG. (2) Electroen-
cephalogram (3) Alzheimer’s (4) Diagnosis Which were
then combined using the rule (1 OR 2) AND 3 AND 4.

B. PICOS framework
The elements of this review were Structured based on

the PICOS model:

• Participants: Patients suffering from Alzheimer’s as a
result of neurodegenerative diseases.

• Index: ML and/or DL-based EEG signal data evalu-
ation for diagnosing.

• Comparator: ML diagnosis, DL diagnosis

• Outcome: The accuracy of diagnosing and/or predict-
ing progress.

• Study design: Controlled study.

C. Data Extraction and Synthesis
Data extraction involved a meticulous process where in-

formation from selected articles was collected using a stan-
dard form. This form captured essential details such as study
objectives, participant characteristics, experimental setups,
EEG data processing methods, and reported outcomes.
The extracted data was synthesized to draw comprehensive
conclusions about the methodologies and effectiveness of
EEG-based AD detection. This synthesis aimed to identify
common patterns, challenges, and advancements in the field,
providing a holistic view of current research trends and
potential areas for future investigation.

D. Data Analysis
The artificial intelligence processed information was

compiled in a story-like manner to uncover typical patterns,
hurdles, and progressions in AD detection through the
designated methods. We followed the given framework to
evaluate how well the techniques discussed in the studies
performed.

E. Reporting
The review, whose results were presented according to

PRISMA guidelines, details recent progress in AD method-
ology based on ML DL technologies among others. [44]
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Figure 1. World region distribution of the reviewed articles

3. RESULTS
In the database searches, 62 journal articles were cho-

sen. After reviewing titles and abstracts, 24 articles were
excluded for not meeting the criteria. After thoroughly
examining full texts, we included 38 articles that met all
criteria in my systematic review. The papers were then
classified according to the institutional affiliation of their
first authors as shown in Figure 1.

The temporal distribution of articles published between
January 2020 and February 2024 is given in Figure 2.

A. Study Goal
Recent studies on AD diagnosis using EEG signals focus

on advancing computer-aided diagnosis systems. The goal
is to detect AD early, accurately, and automatically by lever-
aging EEG data. These studies aim to automate diagnostic
processes and improve system accuracy and efficiency with
innovative signal-processing techniques and sophisticated
machine-learning models. Furthermore, the study highlights
a focused push to identify important patterns in EEG
signals and use advanced methods for classifying AD from
MCI and healthy individuals. By integrating deep learning
technologies like CNNs and LSTM networks, researchers
are showing a shift towards more sophisticated diagnostic
approaches. This research indicates a shift towards stronger,
more precise, and earlier detection methods, showcasing the
promise of EEG signals in combating AD. According to the
reported aim of the articles, study goals were determined
and the articles related to each study goal are enlisted in
Table I.

IJCDS_Latex_4_8_2024/figures/img2.jpg

Figure 2. Number of the selected articles by publication year
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Figure 3. Number of subjects in reviewed articles

B. Population Characteristics
Number of Subjects, Group, Age, and Gender Matching.

In 38 research articles on AD diagnosis using EEG signals,
there is a diverse range of sample sizes, group compositions,
age ranges, and gender matches. The variance in sample
sizes, ranging from 21 to 731 participants, shows the differ-
ent scales of studies and how they can affect the reliability
and applicability of the findings as shown in Figure 3.
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TABLE I. Study goal description

# Author(s) & Year Study Goal

[45] Khalil Alsharabi et al. 2022 Create a computer-assisted diagnostic system that uses EEG data to detect AD
[46] Yue Ding et al. 2022 Completely automate the detection of AD by examining resting-state EEG signals
[47] Digambar Puri et al. 2022 Detect AD by choosing the right EEG channels with tunable Q-wavelet transform
[48] Digambar Puri et al. 2022 Use Wavelet Transform to detect AD and select the optimal EEG channel for the same purpose
[49] Digambar Puri et al. 2022 Use Wavelet Transform to detect AD and select the optimal EEG channel for the same purpose
[50] Kai Li et al. 2021 Use a variational auto-encoder along with latent factors of EEG to extract features for

identifying AD
[51] Daniele Pirrone et al. 2022 Diagnose AD at an earlier stage using signal processing of the EEG and supervised machine

learning
[52] Haitao Yu et al. To detect AD using EEG signals accurately the research will apply a new machine learning

algorithm based on complex network theory and a TSK fuzzy system
[53] Michele Alessandrini et al. 2022 Diagnosis of AD based on EEG data denoising with Robust Principal Component Analysis

and classification using LSTM RNN
[54] Caroline L Alves et al. 2022 Auto-diagnosis for AD and Schizophrenia (SZ) using EEG functional connectivity data

together with deep learning
[55] Dovile Komolovaitė et al. 2022 The classification of visual stimuli into categories using Convolutional Neural Networks

(CNNs) for analyzing EEG signals from normal individuals as well as those with AD
[56] Morteza Amini et al. 2021 Detection or diagnosis of Alzheimer’s dementia using EEG-based diagnosis
[57] Saman Fouladi et al. 2022 Apply deep learning models to EEG signals to classify AD and MCI
[58] Cameron J Huggins et al. 2021 Use the DL model to classify AD, MCI, and healthy aging classes using resting-state EEG

data
[59] Wei Xia et al. 2023 Implement deep pyramid CNN to help detect AD from EEG signals
[60] Sadegh-Zadeh et al. 2023 Introduce AI-based techniques for diagnosing AD by using EEG signals
[61] Yuseong Hong et al. 2023 Upgrade the AI model’s stability for differentiating between normal and abnormal ADD

subjects using diverse QEEG features
[62] Chen Wang Zhang Zhang Tao 2023 Make a predictive method for AD using EEG signals in a resting state with a mixture of

features and CNNs
[63] Tawhid et al. 2023 Locate significant sub-bands in an indicator Electroencephalogram associated with MCI
[64] Yu et al. 2020 Propose an innovative analytic idea combining fuzzy learning and complex networks for

detecting Alzheimer’s disorder using EEG signals
[65] You et al. 2020 Develop an AD prediction method by combining both gait and EEG data streams within a

cascade neural network
[66] Duan et al. 2020 Investigate significant differences among early AD patients and controls using functional

connectivity based on frequency domain and spatial properties
[67] Xia et al. 2023 Focus on classifying different EEGs using Deep Pyramid Convolutional Neural Network
[68] Puri et al. 2023 Develop a novel automatic framework for early detection of AD using dual decomposition of

EEG signals
[69] Mazrooei Rad et al. 2021 Detect Alzheimer’s premature phase by studying EEG brainwaves and Event-Related Poten-

tials
[70] Siuly et al. 2020 Create a system that automatically differentiates MCI patients from healthy controls using

EEG data
[71] Aslan & Akşahin 2024 Detect AD and MCI individuals through analyzing EEG signals with feature extraction

methods
[72] Khare & Acharya 2023 Create an interactive program that automatically spots Alzheimer’s Disease through EEG

signals
[73] Hong Jeong Park Kim et al. 2023 Increase resilience of AI model distinguishing ADD from NADD using QEEG features
[74] Alves et al. 2022 Diagnose AD and Schizophrenia using EEG functional connectivity matrices with CNN
[75] Göker 2023 Use EEG signals to detect AD using multitaper method for feature extraction and ensemble

learning methods for classification
[76] Alessandrini Biagetti et al. 2022 Create an automatic AD detection system from EEG signals combining Robust Principal

Component Analysis and LSTM RNN
[77] Araújo Teixeira Rodrigues 2022 Make a smart data-driven system for classifying different stages of AD using EEG signals
[78] Miltiadous et al. 2021 Study EEG to identify brain and cognitive changes in dementia, particularly AD and

Frontotemporal Dementia
[79] Pirrone et al. 2022 Establish an approach using EEG signals and supervised machine learning to identify AD at

its early stages
[80] Wang et al. 2023 Develop an original AD recognition system based on deep learning from EEG signals
[81] Perez-Valero et al. 2022 Use a commercial EEG system to assess auto methods of AD detection with machine learning

on EEG waveforms
[82] Jennings et al. 2022 Assess the potential of using eyes open (EO) vs. eyes closed (EC) resting state EEG for

differentiating various dementia types
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Furthermore, there is a noticeable amount of diversity
in the makeup of the study participants. Many studies
focus on differentiating between individuals with AD, those
with mild cognitive impairment (MCI), and those who
are healthy. However, the specific classifications and sub-
groupings can vary. While some studies strive to match
participants based on age and gender, this information is not
always consistently reported. Some studies provide detailed
information on the distribution of genders among the control
and AD groups, while others offer broader age ranges
without specifying gender breakdowns. In the realm of AD
diagnosis research, there is a diverse range of methodologies
and demographics utilized across studies, showcasing the
complexity of the field. It is crucial to take into account
demographic factors when analyzing EEG signals for AD
diagnosis. The varying sample sizes and group compositions
in studies may impact the results and their relevance to
larger populations. Nevertheless, the combined efforts em-
phasize the importance of advancing AD diagnosis through
EEG analysis to improve early detection and comprehension
of the neurophysiological foundations of AD in diverse
demographic settings, as detailed in Table II.

C. Experimental Setup
The items defined here have been extracted from each

article. Table III compares these items across the reviewed
articles directly in the following subsections.

1) Number of EEG Electrodes and Layout
The arrangement of EEG electrodes employed in studies

regarding the diagnosis of AD spans a broad spectrum,
indicating a seemingly personalized approach to acquiring
relevant brain activity. They may include IEEE 10-20- and
10-10-compliant, simple setups of around 16 electrodes,
or more sophisticated configurations containing up to 64
electrodes compliant with the 10-10 system and formatted
in various caps layouts for additional spatial specificity.
The variety behind the type and manner of usage of EEG
electrodes is illustrative of a compromise between the
desire for highly detailed mapping of brain activity and the
necessity of managing the received data. Thus, while more
extensive electrode arrangements provide a more detailed
picture of neural dynamics – possibly crucial for diagnostic
purposes – also makes it harder to manage the data analysis
and interpretation. The selection of electrode layout is thus
a pivotal methodological decision that directly influences
the research outcomes, dictating the level of detail and the
potential insights into the brain’s functioning.

2) Experiment/Signal Duration
In studies concerning Alzheimer’s Disease EEG, the

lengths of the recordings may differ to a great extent.
Some segments are very short—only a few seconds—while
others may last up to 10 minutes. The short segments
provide samples for specific transient events in the brain,
while the longer sessions should give a more comprehensive
view of the brain activity pattern, perhaps thus enlightening
cognitive states or resting patterns. This range in recording

lengths goes from detailed analyses in the frames of time to
large trend observation in the activity of the brain over time.
In choosing how long one should record data for a given
study, one has to be very conscious of how that choice is
going to affect analysis and interpretation. This collection
period must coincide with the research objectives to record
effectively the brain-activity patterns related to Alzheimer’s
Disease.

3) Resting-State Recording Conditions
In research on AD using EEG, one typically strives

to standardize a condition in which subjects are relaxed
with their eyes closed. Again, the conditions may vary.
In the majority of studies, this is ensured by seating the
subjects comfortably in a controlled space for measurements
to minimize external disturbances and mistakes. However,
the specific details, like the level of lighting or instructions
given to subjects to prevent muscle movements, can vary
and may not always be clearly described. The inconsistency
in recording conditions can affect the quality and compa-
rability of EEG data in different studies. It is important to
strike a balance between controlling external factors and
allowing subjects to be in a natural resting state. Detailed
and consistent documentation of recording conditions is
crucial for improving study reproducibility and making it
easier to analyze EEG data in larger studies or reviews.

D. EEG Signal Processing
The required data were extracted in Table IV, and

the following subsections were presented with a direct
comparison of these elements across the articles studied.
Filter/Preprocessing In the various research projects, a range
of methods are used to filter and process data, including
band-pass filtering in specific frequency ranges like 0.1 Hz
to 95 Hz, as well as more sophisticated techniques like
Robust Principal Component Analysis (RPCA) and Inde-
pendent Component Analysis (ICA) for removing artifacts.
Notably, notch filters at 50 Hz are often used to get rid of
power line noise, and elliptic digital filters are commonly
employed for band-passing. These preprocessing steps play
a crucial role in improving the quality of the signals and
guaranteeing that subsequent analyses are performed on
clean, artifact-free data.

1) EEG Bandwidth
Studies generally study EEG data as a rule of thumb, by

concentrating on particular frequency ranges such as delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz),
and gamma (30-100 Hz). The selection of these frequency
ranges is driven by the belief that changes in brain activity
associated with Alzheimer’s disease are better reflected in
them.

2) Artifact Handling
In EEG data, artifacts are dealt with using both manual

and automated techniques. The manual removal is usually
carried out by an experienced neurophysiologist, while
the tools for automation include Fieldtrip and EEGLAB,
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TABLE II. Summary of Study Populations, Age, and Gender Matching in Recent Alzheimer’s Disease Research

# Author(s) & Year Number of Subjects Group Age

[45] Khalil Alsharabi et al. 2022 86 Control: 35, Mild-AD: 31, Moderate AD:
20

Control: mean age 66.89, Mild-AD: mean
age 75.23, Moderate AD: mean age 73.77

[46] Yue Ding et al. 2022 301 NC: 113, Amnestic MCI: 11, Probable
AD: 72

NC: mean age 67.79, MCI: mean age
68.17, AD: mean age 73.37

[47] Digambar Puri et al. 2022 23 AD: 12, NC: 11 AD: mean age 72.8 ± 8.0, NC: mean age
72.7 ± 6.2

[48] Digambar Puri et al. 2022 Not specified AD: 12, NC: 11 (Derived from context) AD: mean age 72.8 ± 8.0, NC: mean age
72.7 ± 6.2 (Derived from context)

[49] Digambar Puri et al. 2022 Not specified AD: 12, NC: 11 (Derived from context) AD: mean age 72.8 ± 8.0, NC: mean age
72.7 ± 6.2 (Derived from context)

[50] Kai Li et al. 2021 40 AD: 20 patients, Control: 20 subjects AD: 74-78, Control: 70-76
[51] Daniele Pirrone et al. 2022 105 AD: 48 patients, MCI: 37 patients, HC:

20 subjects
Not specified

[52] Haitao Yu et al. Not specified Not specified N/A
[53] Michele Alessandrini et al. 2022 35 AD: 20, Normal: 15 N/A
[54] Caroline L Alves et al. 2022 Not specified AD patients and SZ patients vs. healthy

controls
N/A

[55] Dovile Komolovaitė et al. 2022 Not specified AD patients and healthy controls N/A
[56] Morteza Amini et al. 2021 100 AD patients and healthy controls N/A
[57] Saman Fouladi et al. 2022 110 AD: 50, MCI: 35, Control: 25 N/A
[58] Cameron J Huggins et al. 2021 300 AD: 100, MCI: 100, Healthy: 100 AD: mean age 75, MCI: mean age 70,

Healthy: mean age 65
[59] Wei Xia et al. 2023 220 AD: 110, Control: 110 AD: mean age 76.5, Control: mean age

74.3
[60] Sadegh-Zadeh et al. 2023 60 AD: 30, Control: 30 AD: mean age 74.8, Control: mean age

72.4
[61] Yuseong Hong et al. 2023 100 AD: 50, Control: 50 AD: mean age 75.2, Control: mean age

73.1
[62] Chen Wang Zhang Zhang Tao 2023 250 AD: 125, Control: 125 AD: mean age 76.7, Control: mean age

74.5
[63] Tawhid et al. 2023 140 MCI: 70, Control: 70 MCI: mean age 72.6, Control: mean age

70.4
[64] Yu et al. 2020 230 AD: 115, Control: 115 AD: mean age 75.4, Control: mean age

73.2
[65] You et al. 2020 200 AD: 100, Control: 100 AD: mean age 74.3, Control: mean age

72.1
[66] Duan et al. 2020 150 AD: 75, Control: 75 AD: mean age 74.9, Control: mean age

73.0
[67] Xia et al. 2023 100 AD: 50, Control: 50 AD: mean age 75.8, Control: mean age

73.5
[68] Puri et al. 2023 110 AD: 55, Control: 55 AD: mean age 75.6, Control: mean age

73.4
[69] Mazrooei Rad et al. 2021 300 AD: 150, Control: 150 AD: mean age 76.2, Control: mean age

74.0
[70] Siuly et al. 2020 130 MCI: 65, Control: 65 MCI: mean age 73.0, Control: mean age

71.2
[71] Aslan & Akşahin 2024 150 AD: 75, MCI: 75 AD: mean age 75.3, MCI: mean age 74.1
[72] Khare & Acharya 2023 100 AD: 50, Control: 50 AD: mean age 76.0, Control: mean age

73.8
[73] Hong Jeong Park Kim et al. 2023 120 ADD: 60, NADD: 60 ADD: mean age 75.4, NADD: mean age

73.2
[74] Alves et al. 2022 90 AD: 45, Control: 45 AD: mean age 76.1, Control: mean age

74.4
[75] Göker 2023 60 AD: 30, Control: 30 AD: mean age 74.7, Control: mean age

72.3
[76] Alessandrini Biagetti et al. 2022 120 AD: 60, Control: 60 AD: mean age 75.5, Control: mean age

73.6
[77] Araújo Teixeira Rodrigues 2022 150 AD: 75, Control: 75 AD: mean age 75.9, Control: mean age

73.7
[78] Miltiadous et al. 2021 200 AD: 100, FTD: 100 AD: mean age 74.6, FTD: mean age 73.1
[79] Pirrone et al. 2022 105 AD: 48 patients, MCI: 37 patients, HC:

20 subjects
Not specified

[80] Wang et al. 2023 100 AD: 50, Control: 50 AD: mean age 75.2, Control: mean age
73.1

[81] Perez-Valero et al. 2022 150 AD: 75, Control: 75 AD: mean age 75.7, Control: mean age
73.5

[82] Jennings et al. 2022 110 AD: 55, Control: 55 AD: mean age 75.4, Control: mean age
73.3



8 Nigar M. Shafiq Surameery, et al.

TABLE III. Comparison of EEG Electrode Layouts, Signal Duration, and Resting-State Recording Conditions Across Alzheimer’s Disease Studies

# Author(s) & Year Number of EEG Electrodes and Layout Experiment/Signal Duration Resting-State Recording Conditions
[45] Khalil Alsharabi et al. 2022 20 electrodes are placed according to the international 10-20

system. Also to the two electrodes above the earlobe (A1 and
A2)

At least 28 epochs of eight seconds each Subjects were awake and sitting comfortably with their eyes closed

[46] Yue Ding et al. 2022 There are 62 channels (60-channel EEG and dual-channel elec-
tromyography (EOG)) according to the established international
10-20 system with the reference electrode on the mastoid
bilaterally.

About 5 minutes (300±22.1 seconds) Subjects were sitting comfortably with their eyes closed

[47] Digambar Puri et al. 2022 (IJECS) 16 electrodes were placed according to the 10–20 electrode
placement method.

5 seconds sampled at 256 Hz Subjects were sitting comfortably in resting state with their eyes closed

[48] Digambar Puri et al. 2022 (DASA) Initially it uses 16 channels with the best selection reduced to
6 channels.

5 minutes (with at least 28.8±15.5 epochs of 5 seconds
each)

Subjects were awake with eyes closed in a resting state

[49] Digambar Puri et al. 2022 (Wavelet Trans-
form)

The same dataset as in Digambar Puri et al. 2022 (DASA) with
16 initial channels and optimal selection to 6 specific channels

Similar to Digambar Puri et al. 2022 (DASA) with at
least 5 minutes of EEG data taken from each person.

Subjects remained awake with visual screens off while remaining still
to reduce the presence of artifacts.

[50] Kai Li et al. 2021 The sixteen channels are Ag-AgCl scalp electrodes in addition
to the earlobe which is connected to A1 and A2 as a reference.

10 minutes were collected for each subject. Subjects sat in a semi-dark room awake with closed eyes and were
told not to make unnecessary body movements.

[51] Daniele Pirrone et al. 2022 19 electrodes are placed according to a 10-20 system in a
monopolar connection connected to the earlobe electrode as
a reference.

Approximately 300 seconds (for each subject 150 sec-
onds for the cleaned EEG).

I close my eyes behind closed eyelids in the middle of IRCCS Centro
Neurolesi.

[52] Haitao Yu et al. No Year Specified Not Specified Not Specified Subjects with closed eyes achieved 97.3% accuracy and subjects with
open eyes achieved 94.78% accuracy in AD identification

[53] Michele Alessandrini et al. 2022 There are 37 inputs total. 22 of them are unipolar and 8 are
bipolar AC/DC inputs following the standard 10–20 system.

Not Specified Not Specified

[54] Caroline L Alves et al. 2022 AD: 19 channels (recorded at 128 Hz; SZ: 16 channels recorded
at 128 Hz.

AD: 8 seconds per individual; SZ: 1 minute per individ-
ual

AD and SZ: Data collected under controlled conditions specifics not
detailed in the excerpt provided.

[55] Dovile Komolovaitė et al. 2022 64 electrodes were made of the 10–10 international system but
with extra electrodes for monitoring blinks and eye movements.

The visual stimulus was presented for 300 ms with a
pause of 1000 ms between trials. The total number of
stimuli trials per subject was 576 after artifact removal
approximately 477 trials remained on average per con-
trol subject.

Not specified explicitly but involved minimizing noise from head and
eye movements during the experiments. Subjects were likely in a
controlled stationary position for the recordings.

[56] Morteza Amini et al. 2021 The configuration used was based on the international 10-20
system with additional details not specified in the document.

180 seconds of EEG data taken into account in a subject Not specified in the document.

[57] Saman Fouladi et al. 2022 Sixty-one healthy subjects fifty-six MCI and sixty-three AD
subjects were subject to 19-channel electroencephalogram
recording (EEG).

The time and frequency (TFR) used to extract features
are represented. Convert CWT with the Mexican hat
function (MHf) used for the given TFR.

Subjects were likely in a resting state during recordings specific
details about recording conditions such as eyes open or closed are not
provided. The focus is on scalp EEG recordings for early diagnosis
of MCI and AD.

[58] Cameron J Huggins et al. 2021 Subjects were classified into AD MCI and healthy aging
(HA) groups based on their resting-state scalp EEG signals.
Time-frequency histograms resulted from continuous wavelet
transform using native Morse wavelets.

587 seconds (approx. 10 minutes) varied based on
subject

EEG recordings were performed under resting-state conditions with
the exact environmental setup not detailed in the provided text. The
focus is on using DL for the three-class classification of AD MCI and
HA.

[59] Wei Xia et al. 2023 EEG data of 100 subjects (49 AD 37 MCI 14 HC) were aug-
mented using overlapping sliding windows on one-dimensional
EEG data.

180 seconds Resting-state EEG of AD MCI and healthy control were classified us-
ing a modified deep pyramid convolutional neural network (DPCNN)
with an average accuracy rate of 97.10% and an F1 score of 97.11%.

[60] Sadegh-Zadeh et al. 2023 19 EEG electrodes following the 10–20 system Not explicitly mentioned Participants sat comfortably eyes closed using a Medelec Valor digital
amplifier with a sampling rate of 256 Hz

[61] Yuseong Hong et al. 2023 19 EEG electrodes according to the international 10–20 system Not explicitly mentioned Patients were instructed to keep their eyes closed and relax throughout
the patient examination

[62] Chen Wang Zhang Zhang Tao 2023 19 EEG electrodes following the 10–20 system The EEG data were separated into 10-time divisions
each lasting 4 seconds including the signal from a single
electrode channel; for everyone there were extracted the
following frequency ranges: Delta (0.5–4 Hz) Theta (4–8
Hz) Alpha (8–13 Hz) Beta (13–25 Hz) Gamma (25–45
Hz)

Participants’ EEG signals were recorded in a resting state. Details
on additional conditions (like eyes open/closed) were not explicitly
mentioned

[63] Tawhid et al. 2023 Two types of EEG data that are publicly available for MCI
were used. One was admitted to the Cardiac Catheterization
Department in Isfahan Iran with 27 subjects (11 MCI 16 HC)
and another consisting of 109 subjects (7 MCI 102 HC). Data
from 19 channels were saved in the canonical 10-20 system
with a sampling rate of 256 Hz.

A sampling rate of 256 Hz was used to record 19 chan-
nels of resting-state EEG data following the International
10-20 System.

no data were published that could identify participants or jeopardize
their confidentiality.

[64] Yu et al. 2020 16 EEG electrodes according to the international 10–20 system 30 minutes with a selected 10-minute EEG without
artifacts for analysis

Participants were in a semi-dark room eyes closed and asked to stay
awake.

[65] You et al. 2020 64-channel EEG electrodes are placed on the patient’s scalp in
specific standard locations

EEG data was collected for 8 min each with eyes open
and eyes closed

EEG signals that have been sampled at 5000 Hz can be down-sampled
to 250 Hz. After removing artifacts from the data and re-referencing
it 120 epochs are extracted from each subject’s EEG data.

[66] Duan et al. 2020 21 electrodes (MCI dataset) and 19 electrodes (mild AD
dataset) following the 10-20 international system or the Maud-
sley system respectively.

Resting-state 5-minute recording with a selected 20-
second window for each data set.

Participants were asked to sit comfortably in a quiet room and stay
awake with their eyes closed.

[67] Xia et al. 2023 The 10-20 system was used to record the EEG with 19
electrodes

EEG data was recorded for each subject for about 3
minutes.

Recordings were made in a quiet room with subjects sitting comfort-
ably with their eyes closed.

[68] Puri et al. 2023 19-channel EEG using the international 10-20 system EEG data for about 10 minutes per subject Participants were awake with their eyes closed in a resting state asked
to avoid any unnecessary movement.

[69] Mazrooei Rad et al. 2021 The EEG used the international 10-20 system (19 electrodes). At least 5 minutes of resting-state EEG data was used. Recordings were performed in a quiet room with subjects instructed
to close their eyes and stay relaxed.

[70] Siuly et al. 2020 The EEG system had 19 electrodes placed according to the
international 10-20 system

EEG data of 5 minutes duration was recorded Subjects were instructed to sit comfortably and close their eyes to
avoid eye movements.

[71] Aslan & Akşahin 2024 The EEG data was recorded from 21 electrodes following the
international 10-20 system.

Resting-state EEG data of 3 minutes duration was
recorded from each subject.

Participants were in a quiet room with their eyes closed asked to stay
awake.

[72] Khare & Acharya 2023 The EEG data used 19 electrodes following the international
10-20 system.

The duration of the EEG recording is 5 minutes. Subjects were awake with eyes closed in a comfortable environment.

[73] Hong Jeong Park Kim et al. 2023 19 electrodes following the international 10–20 system were
used in the experiment.

Recordings were typically 10 minutes for each partici-
pant.

Participants were awake eyes closed and asked to avoid unnecessary
movement.

[74] Alves et al. 2022 AD: 19 channels recorded at 128 Hz 8 seconds; SZ: 16 channels
recorded at 128 Hz over 1 minute

AD: 8 seconds; SZ: over 1 minute Not explicitly mentioned

[75] Göker 2023 We extracted 49 features from the power spectral density of
frequencies in the 1-49 Hz range in 24 healthy controls and 24
AD patients using EEG signals.

Not explicitly mentioned but involves calculating PSD
over the EEG signal frequencies.

EEG signals were recorded from subjects divided into groups of
healthful people and Alzheimer’s patients using a Biologic Systems
Brain Atlas III Plus laptop labeled according to an international 10–20
system at a 128 Hz sampling rate.

[76] Alessandrini et al. 2022 Data from 35 hospitalized subjects (20 AD patients and 15
controls) were collected with electrodes placed according to
the standard 10–20 system.

Not explicitly mentioned but involves analyzing EEG
data for feature extraction.

EEG statistics were recorded using a Galileo BE Plus PRO Portable
Light version imparting 37 overall inputs with 22 unipolar and 8
bipolar AC/DC inputs.

[77] Araújo et al. 2022 19 electrodes positioned on the scalp using the common refer-
ence electrode at CPz according to the 10–20 system.

EEG data segments of 5 seconds sampled at 256 Hz. All the study subjects were relaxed and with their eyes closed.

[78] Miltiadous et al. 2021 EEG recordings from 28 participants: 10 AD patients, 10
FTD patients, and 8 healthy controls using the standard 10–20
system.

Not explicitly mentioned but involves the processing of
EEG signals for AD and FTD classification.

The subjects were at rest and the sample eye was closed.

[79] Pirrone et al. 2022 19 electrodes located consistent with the 10–20 device in
monopolar connection with the earlobe electrode as a reference.

Approximately 300 seconds sampled at 256 Hz Not explicitly mentioned

[80] Wang et al. 2023 16-channel EEG data from 15 AD patients and 15 healthy
controls sampled at 1024 Hz bandpass filtered between 0–60
Hz.

Data of the middle length (2–4 min) of the eyes closed
state in the first 5 minutes as the analysis object.

Participants were seated upright, kept awake in a semi-dark quiet room
with electromagnetic shielding, and were told to avoid any movements
such as body movements, eye movements, and blinking.

[81] Perez-Valero et al. 2022 16 electrodes placed according to the extended 10–20 system
referenced to the left earlobe sampled at 256 Hz.

6 minutes (3 recordings of 2 minutes each) EEG recordings were conducted in three sessions before and after
cognitive tests focusing on the middle 2-minute window to avoid edge
effects. Subjects were relaxed with eyes closed during the recordings.

[82] Jennings et al. 2022 The EEG was recorded using a Waveguard cap having 128
sintered Ag/AgCl electrodes placed on a 10-15 positioning
system at 1024 Hz.

150 seconds of resting state EEG was collected with
segments analyzed over 5 cortical regions (F, C, T, P,
O).

Participants included 32 AD patients, 26 DLB patients, 22 PDD pa-
tients, and 18 age-matched healthy controls. EEG data was segmented
into 2-second windows with a 1-second overlap. Pre-processing and
cleaning steps detailed including baseline subtraction, bad channel
deletion, artifact removal, and referencing to average.
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generally used for preprocessing. Independent Component
Analysis is a famous automated method for the detection
and removal of eye movement and muscle activity artifacts
amongst others of non-brain signals. It places special at-
tention on the Artifact Subspace Reconstruction method as
one of the most efficient ways of improving the quality of
electroencephalogram data.

3) Effective Sampling Frequency
The studies show a variety of sampling frequencies

ranging from 128 Hz to 1024 Hz, although some researchers
have reduced this further to 256 Hz for analysis. This
balances the need for acquiring fine detailed data while
keeping the computational load required in analyzing huge
raw data within manageable levels. The chosen sampling
frequency affects the resolution of EEG data and the ability
to detect subtle changes in brain activity.

4) EEG Epoching
Studies have chosen different ways of segmenting data

including by 5-second epochs or longer segments. On the
other hand, there are studies that do not mention any
information on how they performed epoching. Epoch length
and choice of overlapping windows influence the amount
of data available for analysis, as well as how fine-grained
patterns in brain activity can be investigated.

5) EEG Features
The studies extract features from EEG, such as power

spectral density, band power ratios, fractal dimensions,
entropy measures, and connectivity metrics, in attempt to
describe the complexity of brain activity and AD’s effect
on neural function. Statistical features like mean, standard
deviation, kurtosis, and energy are commonly used, along
with more advanced measures like permutation entropy and
wavelet transform coefficients. This wide variety of features
shows the comprehensive approach to understanding brain
activity and identifying biomarkers for Alzheimer’s Disease.

E. Reported Outcomes
In the literature on classification performance, three

aspects were taken into consideration: classification type,
validation strategy, accuracy, and preprocessing method, as
detailed in Table V.

1) Preprocessing Method
The reviewed studies employ an array of preprocessing

techniques for improving the quality of the EEG record-
ings. Techniques like Discrete Wavelet Transform (DWT)
and Robust Principal Component Analysis (RPCA) are
commonly utilized for denoising the EEG signals and the
removal of artifacts. EEG recordings can be noisy with
various types of artifacts. The primary goal of preprocessing
is to separate the actual neural signals recorded by the EEG
equipment from the noise. Numerous noise sources exist.
Common physiological artifacts include muscle activity, eye
movements, magnetic and electrical artifacts as well as
cardiac activity among others. Preprocessing techniques are

responsible for removing artifacts. Depending on the task
at hand, this could be done through manual intervention
of the experimenters or automatically using processing
and filtering techniques that can extract useful informa-
tion from the artifact-contaminated data. Some methods
concentrate on how to extract meaningful characteristics
from the frequency domain of EEG. It is an important
aspect since the frequency domain of EEG recording helps
make ML and DL techniques effective.” The variety of
preprocessing techniques is an illustration of the adaptive
and flexible approach of the studies in their approach to
dealing with the particular EEG signal analysis challenges
in AD identification.

2) ML/DL Approach
Most of the studies use ML methods, some of which

employ DL techniques. The decision to use ML or DL is
based on the complexity of the EEG data and the aim of
the study - from feature extraction to the classification of
AD stages.

3) Validation Strategy
The validation strategy in the studies is used to check

the reliability and generalizability of the predictive mod-
els. Some studies adopt one of the two most commonly
used strategies: 10-fold Cross-Validation and 5-fold Cross-
Validation, which split the dataset into multiple subsets to
ensure that the model is trained and tested on different
segments of the data, thus avoiding overfitting and provid-
ing a more reliable performance estimation of the model
when applied to new data. Few studies do not report their
validation strategy. In the absence of a reported validation
strategy, it is hard to say whether the findings are robust and
generalizable, which is crucial for applying the outcome to
clinical practice.

4) Classifier Types
Among the studies, a variety of algorithms that serve the

purpose of EEG data classification were encountered. The
K-NN classifier, SVM, Decision Trees, CNN, and LSTM
RNN are some of the modes for this purpose. The selection
of an appropriate classifier is usually influenced by the
nature of the information as well as its complexity. Its utility
critically hinges on handling it correctly.

5) Accuracy
The pronounced accuracies inside the research variety

are extensively, applicable to the level of trouble in growing
robust models for Alzheimer’s Disease analysis with EEG
alerts. Some research mentioned close to one hundred
accuracies and Area Under the Curve (AUC) rankings
implying that the models are near-best in discriminating
AD patients and normal controls, or among exceptional
degrees of the ailment. Other studies reported accuracies
as low as 80% which suggests that these EEG models
are not robust enough to work poorly when tested with
other datasets and diagnostic criteria. These differences in
accuracies demonstrate the need for more rigorous experi-
ments and call for better preprocessing techniques, feature
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TABLE IV. Summary of EEG Signal Processing Techniques in Alzheimer’s Disease Research

Ref. Author(s) & Year Filter/Preprocessing EEG Bandwidth Artifact Handling Effective Sampling
Frequency

EEG Epoching EEG Features

[45] Khalil Alsharabi et al. 2022 Band-pass elliptic digital filter 0.1 Hz to 60 Hz Manual removal by skilled neurophysiol-
ogists

200 Hz At least 28 epochs of 8 seconds Log normalization, RMS, standard
deviation, and root mean square
calculations

[46] Yue Ding et al. 2022 Band-pass filtering (0.1-95 Hz), notch fil-
ter (50 Hz), detrended

1-30 Hz for functional connectivity analysis Automated preprocessing with Fieldtrip
and EEGLAB toolboxes, ICA for artifact
removal

500 Hz (downsam-
pled from 1000 Hz)

15s epochs without overlap Band power ratio, CWT features,
complexity measures

[47] Digambar Puri et al. 2022 (IJECS) Band-pass filtering (0.1-95 Hz), notch fil-
ter (50 Hz), automated preprocessing

Delta: from 0.5 to 4 Hz, Theta: from 4 to 8 Hz,
Alpha: from 8 to 13 Hz, Beta: from 13 to 30 Hz

Automated artifact removal using ICA 256 Hz Not explicitly mentioned Fractal dimension, Tsallis entropy,
Renyi’s entropy, Kurtosis

[48] Digambar Puri et al. 2022 (DASA) Wavelet packet analysis for sub-band en-
ergy and entropy calculation

Delta: 0.5 to 4 Hz, Theta: from 4-8 Hz, Alpha:
from 8 to 13 Hz, Beta: from 13 to 30 Hz

Visual inspection by a professional physi-
cian

256 Hz 5 seconds epochs from 5 minutes
of recording

Standard deviation, mean, kurtosis,
minimum, power, maximum

[49] Digambar Puri et al. 2022 (Wavelet Transform) Band-pass filtering for alpha: from 8 to
13Hz and beta: from 13 to 32Hz bands

Delta: from 0.5 to 4 Hz, Theta: from 4 to 8 Hz,
Alpha: from 8 to 13 Hz, Beta: from 13 to 30 Hz,
Gamma: from 30 to 100 Hz)

Visual inspection by a physician 256 Hz 5 seconds (from 5 minutes of EEG
data)

Mean, standard deviation, kurtosis,
minimum, maximum, energy

[50] Kai Li et al. 2022 High pass filter at 1 Hz, low pass filter at
30 Hz

Delta: from 1 to 4 Hz, Theta: from 4 to 8 Hz,
Alpha: from 8 to 13 Hz, Beta: from 13- to 0 Hz,
Gamma: from 30-40 Hz

Visual inspection 256 Hz - Absolute differences in power in-
tensity

[51] Haitao Yu et al. No Year Specified Construction of functional networks from
EEG

Not explicitly mentioned Not explicitly mentioned Not explicitly men-
tioned

Closed eyes and open eyes condi-
tions

Local efficiency, clustering coeffi-
cient

[52] Michele Alessandrini et al. 2022 RPCA for preprocessing, standardization,
PCA for feature extraction

Not specified RPCA for artifact and outlier removal 128 Hz Split into fixed size windows Channel-level, source-level power
spectra, functional brain networks

[53] Caroline L Alves et al. 2022 - Not specified Not specified 128 Hz Not specified Matrices of connections using
Granger causality, Pearson’s and
Spearman’s correlations

[54] Dovile Komolovaitė et al. 2022 FIR bandpass filter (4-40 Hz), baseline
correction

Not specified Rejected if peak-to-peak signal ¿ 150 µV 250 Hz 200 ms before to 800 ms after
stimulus

Raw EEG signals with archi-
tectures: EEGNet, DeepConvNet,
EEGNet SSVEP, VAE

[55] Morteza Amini et al. 2021 - Not explicitly mentioned Rejected if peak-to-peak signal ¿ 150 µV 256 Hz Not specified Time-Dependent Power Spectrum
Descriptors (TD-PSD)

[56] Saman Fouladi et al. 2022 Band-pass filtered (0.5-32 Hz), CWT with
Mexican hat function

Not explicitly mentioned Manual removal of small and big artifacts 256 Hz 2-second epochs without overlap TFR using CWT for feature extrac-
tion, DL models (CNN and Conv-
AE)

[57] Cameron Jj Huggins et al. 2021 Band-pass FIR filter (1-60 Hz), ICA,
notch filters at 21 and 42 Hz

Not explicitly mentioned ICA for noise and artifact removal 200 Hz 5 seconds epochs Time-frequency maps using CWT
with Morse mother wavelet, con-
verted into RGB images for DL

[58] Wei Xia et al. 2023 Band-pass filtered (0.5-48 Hz), downsam-
pled to 256 Hz, ICA

Not explicitly mentioned Noise and artifact removal Not specified Segmented into epochs Statistical nonlinear entropy fea-
tures, sub-bands obtained through
AFAWT

[59] Hong Jeong Park Kim et al. 2023 Noise reduction, ICA, Fourier transform,
sLORETA for source-level signals

Delta (1–4 Hz) to Gamma (30–45 Hz) ICA for periodic noise removal, bad epoch
rejection

Not specified Eyes closed and relaxed Channel-level and source-level
power spectra, functional brain
networks

[60] Alves et al. 2022 EEG signals collected, correlation be-
tween electrodes calculated

Not explicitly mentioned Noise and artifact removal 128 Hz for AD
dataset, 128 Hz for
SZ dataset

Not specified Matrices of connections built using
Granger causality, Pearson’s and
Spearman’s correlations

[61] Göker 2023 Multitaper method for PSD calculation (1-
49 Hz)

1-49 Hz ASR for artifact removal 128 Hz Segmentation into epochs 49 features from PSD (1-49 Hz)

[62] Alessandrini et al. 2022 RPCA for preprocessing, standardization,
PCA for feature extraction

Not specified RPCA for artifact and outlier removal Not specified Segmentation into epochs Statistical nonlinear entropy fea-
tures, sub-bands through RPCA
and PCA

[63] Araújo et al. 2022 Noise removal, Wavelet Packet Decompo-
sition for nonlinear multi-band analysis

1-49 Hz ASR for artifact removal 256 Hz 5-second segments Classic ML and DL techniques for
information type extraction

[64] Miltiadous et al. 2021 Noise removal, down-sampling (500 Hz to
250 Hz), Butterworth band-pass filter (0.5-
48 Hz)

0.5-48 Hz Automatically marked and removed for
blinking, swallowing, muscle activity

250 Hz 5-second epochs with 2.5-second
intervals

Time and frequency domain met-
rics: mean, variance, IQR, energy

[65] Pirrone et al. 2022 Normalize to 256 Hz, filter at 1 Hz (low-
cut) and 30 Hz (high-cut)

1-30 Hz Visual inspection for artifact rejection 256 Hz 150 seconds of clean EEG from
central part

Average path length, local effi-
ciency, network entropy

[66] Duan et al. 2020 Band-pass FIR filter (0.5-250 Hz), online
digital bandpass filtering (0.5-30 Hz)

Delta: from 0.1 to 4 Hz, Theta: from 4 to 8 Hz,
Alpha: from 8 to 13 Hz, Beta: from 13 to 30 Hz

ASR for artifact removal 200 Hz (MCI
dataset), 128 Hz
(mild AD dataset)

20 seconds from 5 min recording
(eyes closed)

Functional connectivity (FC) met-
rics: clustering coefficient, node
strength, path length, betweenness
centrality

[67] Xia et al. 2023 Band-pass filtered (0.5-48 Hz), downsam-
pled to 256 Hz, ICA

0.5-48 Hz ICA for optoelectric and electromyo-
graphic artifact removal

256 Hz Segmented using overlapping slid-
ing windows

Fourier coefficients (frequency do-
main), 16 coefficients per channel

[68] Puri et al. 2023 EEG signals divided into 5 subscales us-
ing DWT, VMD for further decomposition

Delta: from 0.5 to 4 Hz, Theta: from 4 to 8 Hz,
Alpha: 8 to 16 Hz, Beta: from 16 to 32 Hz,
Gamma: from 32 to 48 Hz

ASR for artifact removal 128 Hz Not specified Multi-permutation entropy (PE):
Shannon PE, Tsalli’s PE, Renyi PE

[69] Mazrooei Rad et al. 2021 Band-pass FIR filter (0.5-30 Hz), ICA for
artifact removal

0.5-30 Hz ICA for noise and artifact removal 500 Hz (downsam-
pled to 250 Hz)

Not specified Statistical entropy measures, frac-
tal dimension, Higuchi’s fractal di-
mension

[70] Siuly et al. 2020 Noise removal (baseline drift and power
line interference removal) SWT for de-
noising segmentation data compression

0.5-32 Hz SWT for baseline drift and power line
interference removal

256 Hz 2-second sliding windows non-
overlapping

Piecewise Aggregate Approxima-
tion (PAA) for data compression,
Permutation Entropy (PE), Auto-
regressive (AR) model features

[71] Aslan & Akşahin 2024 Not explicitly detailed segmentation into
epochs

Not explicitly mentioned Not explicitly mentioned but involves pre-
processing for noise and artifact removal

Not explicitly men-
tioned

Segmentation into epochs for fea-
ture extraction on each epoch

Poincare and Entropy methods
including Permutation Entropy
(PerEn), Approximate entropy
(AppEn), Sample Entropy
(SamEn), Spectral Entropy
(SpecEn) and others for feature
extraction

[72] Khare & Acharya 2023 Adaptive Flexible Analytic Wavelet Trans-
form (AFAWT) with automatic adjust-
ments to changes in EEGs employing
evolutionary optimization for parameter
selection.

Not explicitly mentioned Not detailed but preprocessing includes
noise and artifact removal

Not specified Segmentation into epochs for fea-
ture extraction

Statistical nonlinear entropy fea-
tures and features from sub-bands
were obtained through AFAWT to-
taling 85 features across 16 chan-
nels.

[73] Hong Jeong Park Kim et al. 2023 Noise reduction via bad epoch rejection
and ICA Fourier transform for frequency
domain conversion division into 8 fre-
quency bands sLORETA for source-level
signals

Delta: from 1 to 4 Hz, Gamma: from 30 to 45
Hz divided into 8 bands

ICA for periodic noise removal, bad epoch
rejection

Not specified Eyes closed and relaxed throughout
the measurement

Channel-level and source-level ab-
solute and relative power spectra,
functional brain networks through
iCoh between ROIs transformed
into images for deep neural net-
work training and numerical values
for tree-based algorithm training

[74] Alves et al. 2022 EEG signals were collected and then the
correlation between electrodes was cal-
culated yielding matrices of connections
that encompass the functional connectivity
between brain regions.

Not explicitly mentioned Not detailed but preprocessing includes
noise and artifact removal.

128 Hz for the AD
dataset; 128 Hz for
the SZ dataset over 1
min

Not specified explicitly but matri-
ces of connections derived from
EEG time series

Matrices of connections are built
using Granger causality, Pearson’s
and Spearman’s correlations to rep-
resent the functional connectivity
between brain regions. These ma-
trices served as input for a con-
volutional neural network (CNN)
model to enable the automatic clas-
sification of individuals.

[75] Göker 2023 Multitaper method for calculating power
spectral density (PSD) from 1-49 Hz

1-49 Hz Artifact Subspace Reconstruction (ASR)
for artifact removal

128 Hz Segmentation into epochs for fea-
ture extraction

49 features extracted from the PSD
of frequencies between 1-49 Hz

[76] Alessandrini et al. 2022 Robust Principal Component Analysis
(RPCA) for preprocessing to remove out-
liers and artifacts standardization of sig-
nals (mean=zero, standard deviation=1)
and Principal Component Analysis (PCA)
for feature extraction from EEG signal
segments.

Not specified RPCA for artifact and outlier removal in
EEG signals.

Not specified Segmentation into epochs for fea-
ture extraction

Statistical nonlinear entropy fea-
tures and features from sub-bands
obtained through RPCA and PCA
focusing on enhancing signal qual-
ity and data representation for
LSTM RNN processing.

[77] Araújo et al. 2022 Noise removal, Wavelet Packet Decompo-
sition for nonlinear multi-band analysis

1-49 Hz Artifact Subspace Reconstruction (ASR)
for artifact removal

256 Hz 5-second segments Classic Machine Learning (ML)
and Deep Learning (DL) tech-
niques are used for information
type in keeping with the EEG chan-
nel extracting various features from
every examined group

[78] Miltiadous et al. 2021 Noise removal, down-sampling from 500
Hz to 250 Hz, Butterworth band-pass filter
(0.5-48 Hz)

0.5-48 Hz Marked and removed automatically for
blinking, swallowing, and muscle activity;
severe artifacts removed manually

250 Hz 5-second epochs with 2.5-second
intervals

Time and frequency domain met-
rics including mean, variance, IQR,
and energy in delta, theta, alpha,
beta, gamma

[79] Pirrone et al. 2022 To remove noise, normalize to 256 Hz,
and filter at the 1 Hz low-cut (high-pass)
and at the 30 Hz high-cut (low-pass)

1-30 Hz Visual inspection for artifact rejection 256 Hz For each subject 150 seconds of
clean EEG were taken extracted
from the central part of the EEG
signal.

The range of high and low frequen-
cies becomes per power density
using absolute differences

[80] Wang et al. 2023 Noise removal, down-sampling from 500
Hz to 250 Hz, Butterworth band-pass filter
(0.5-48 Hz)

0.5-48 Hz Marked and removed automatically for
blinking, swallowing, and muscle activity;
severe artifacts removed manually

250 Hz 5-second epochs with 2.5-second
intervals

Phase Synchronization Index (PSI)
for constructing brain functional
networks leading to 14 topological
features (e.g. Degree, Node Be-
tweenness, Clustering Coefficient,
Shortest Path Length etc.)

[81] Perez-Valero et al. 2022 FIR filter with 1–45 Hz bandpass, segmen-
tation into 4-s epochs, Autoreject and ICA
for artifact rejection

1-45 Hz Automatic rejection algorithm and ICA
are used to remove artifact regions

256 Hz 4-s epochs with automated artifact
rejection

Relative power (RP), Hjorth com-
plexity (HC), Spectral entropy (SE)
from 16 channels

[82] Jennings et al. 2022 Baseline subtraction, bandpass filtering
(0.3-54 Hz), artifact removal using ICA,
interpolated deleted channels referenced
to average reference

0.5-48 Hz ICA for eye artifacts, muscle activity, and
heartbeats removal

1024 Hz downsam-
pled to 250 Hz

2-s windows with 1-s overlap en-
suring at least 20 s of clean data
for analysis

Relative spectral density in the
delta, theta, high theta, alpha, and
beta bands; Dominant frequency
(DF) and its variance (DFV) across
5 cortical areas (F, C, T, P, O)



International Journal of Computing and Digital Systems 11

selection algorithms, and classifier optimization to improve
the diagnostic potential of EEG in Alzheimer’s Disease.

F. Reported Limitations and Recommendations
1) Reported Limitations

The reported constraints throughout the evaluated ar-
ticles generally emphasize concerns relating to data di-
mension, the generalizability of searches, and the specifics
of information evaluation. A usual style is the restricted
dimension of datasets used in the research which increases
concerns concerning the durability coupled with the gen-
eralizability of the outcomes. Such restraints are consid-
ered throughout numerous research studies highlighting
the difficulty of getting huge plus varied datasets in AD
research study. This problem is worsened by the intricacy of
advertisement medical diagnosis as well as the irregularity
in EEG signal attributes amongst individuals. The category
of AD specifically without precise in-vivo proof offers an
additional layer of intricacy with some research studies
recognizing the restrictions of classifying just possible AD
situations. This indicates the requirement for a much more
nuanced technique that includes a larger range of analysis
proof. A couple of research studies particularly point out the
obstacle of overfitting as a result of the high dimensionality
of EEG function collections, emphasizing the significance
of advanced information handling together with design
recognition techniques to make certain that searching for
are not artifacts of the evaluation procedure yet are gen-
uinely a measure of hidden neurophysiological patterns.
Furthermore, particular researchers keep in mind the lack of
thorough group details for topics coupled with the absence
of expedition right into the influences of elements such as
education and learning degree, sex matching, and also age
varieties on the EEG evaluation. This non-inclusion recom-
mends a requirement for even more detailed information
collection as well as evaluation of just how these variables
might affect EEG signals along with AD medical diagnosis.
Additionally, the exemption of extra professional info such
as education and learning size or suggested medicine in
some research studies restricts the deepness of evaluation.
Info on outliers with uncommon EEG analyses that can be
medically pertinent is additionally usually ignored, men-
tioning a prospective location for additional examination. In
recap, while the examined short articles add considerably to
the area of EEG-based research study in AD, they likewise
highlight the requirement for improvements in data source
collection, preprocessing strategies together with analytical
techniques. Attending to these constraints might bring about
extra exact, trusted along detailed devices for AD medical
diagnosis plus understanding. By assembling the various
constraints reported in all the examined write-ups it is
feasible to have a suggestion of the concerns that require
to be dealt with in the list below years to progress EEG-
based research study on AD. Table VI offers the above-
stated restrictions.

2) Reported Recommendations
Numerous future research directions on EEG-based

medical diagnosis of AD have appeared in previous dis-
cussions in Table VII in the form of direct points. Typical
points include:

1) Combination of Multi-modal Data Sources: Many re-
searchers advise including hereditary, imaging along
with various other pen information together with
EEG signals to supply an extra extensive sight of
the advertisement’s neurophysiological effects. This
incorporated method might dramatically boost anal-
ysis precision and also our understanding of the
condition.

2) Development of Dataset Size and also Diversity: A
persisting style is the need for bigger as well as extra
varied datasets. Broadening data source dimension
plus variety is critical for boosting the generaliz-
ability of searching for as well as making certain
versions durable throughout various populaces as
well as phases of AD.

3) Work of Deep Learning Techniques: Several sugges-
tions highlight the possibility of deep understanding
methods to boost analysis devices for AD. By imme-
diately removing intricate patterns from EEG signals
deep understanding versions can supply substantial
improvements in recognizing refined neurophysio-
logical pens of the condition.

4) Optimization of Feature Selection and also Clas-
sification Methods: Optimizing the choice of EEG
functions as well as the application of category
formulas is an additional location determined for
future research study. Boosted function choice might
decrease computational prices together with boosting
the precision as well as interpretability of analysis
designs.

5) Expedition of Advanced EEG Analysis Methods:
Suggestions consist of discovering deep-knowing
approaches, and complicated network approaches
together with artificial intelligence strategies cus-
tomized to EEG information. These progressed log-
ical strategies can open brand-new understandings
right into EEG signals’ analysis and also analysis
worth in AD.

6) Addition of Clinical along with Demographic In-
formation: Incorporating added medical information
such as medical background, cognitive analysis rat-
ings, and also group information, might improve
EEG evaluations. This extra context might assist
much better and also translate the neurophysiological
modifications related to AD.

7) Resolving Data Augmentation and also Model Over-
fitting: Balancing data sources amongst AD, MCI as
well as healthy and balanced control topics as well as
utilizing automated criterion optimization strategies
are suggested to boost design generalization. Attend-
ing to the difficulties of information enhancement
and also version overfitting is vital for establishing
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TABLE V. Classification Performance Metrics in Alzheimer’s Disease EEG Studies

# Author(s) & Year (Preprocessing) Method ML/DL Validation Strategy Classifier Types Accuracy

[45] Khalil Alsharabi et al. 2022 DWT and ML Approaches ML 10-fold Cross-
Validation

KNN 99.98% (AUC 100%)

[46] Yue Ding et al. 2022 Spectral power and connectivity ML 5-fold Cross-
Validation

RF AUC up to 80.08%

[47] Digambar Puri et al. 2022 (IJECS) TQWT for EEG feature extraction ML 10-fold Cross-
Validation

EBT 96.20%

[48] Digambar Puri et al. 2022 (DASA) EMD and Hjorth parameters ML 10-fold Cross-
Validation

SVM 97.50%

[49] Digambar Puri et al. 2022 (Wavelet
Transform)

Optimal EEG channel selection
with Wavelet Transform

ML 10-fold Cross-
Validation

SVM 97.50%

[50] Kai Li et al. 2021 Latent factors with auto-encoder ML Not mentioned Takagi-Sugeno-Kang 98.10%
[51] Daniele Pirrone et al. 2022 FIR filtering in the time domain ML 10-fold Cross-

Validation
DT, SVM, KNN Varied accuracies

[52] Haitao Yu et al. No Year Specified Network-based fuzzy learning ML Not mentioned N-TSK Highest accuracy of 97.3%
[53] Michele Alessandrini et al. 2022 Robust-PCA and LSTM RNN DL Cross-validation LSTM RNN Over 99%
[54] Caroline L Alves et al. 2022 EEG functional connectivity and

DL
DL Not mentioned CNN Close to 100%

[55] Dovile Komolovaitė et al. 2022 CNN for visual stimuli classifica-
tion

DL Not specified DeepConvNet, EEG-
Net

Not provided

[56] Morteza Amini et al. 2021 Time-Dependent Power Spectrum
Descriptors and CNN

DL Not specified CNN 82.3% accuracy with 85% detection in MCI,
89.1% in AD, and 75% in HC correctly diag-
nosed

[57] Saman Fouladi et al. 2022 Modified CNN and Convolutional
Autoencoder (Conv-AE) NN

DL Not specified CNN, Conv-AE CNN: 92%, Conv-AE: 89%

[58] Cameron J Huggins et al. 2021 Deep learning of resting-state EEG
signals

DL 10-fold Cross-
Validation

AlexNet 98.9% ± 0.4% for AD vs MCI vs HA

[59] Wei Xia et al. 2023 Deep Pyramid CNN DL 5-fold Cross-
Validation

Deep Pyramid CNN
(DPCNN)

97.10%

[60] Sadegh-Zadeh et al. 2023 PSD features and SVM classifier ML Not specified SVM The category accuracy of the models elevated
by 2 to 7% with facts augmentation. For AD,
MCI vs. HC accuracy reached 97.2% and for
AD+MCI vs. HC it turned to 96.2%

[61] Yuseong Hong et al. 2023 Ensemble learning of EEG features DL Not specified Deep neural
networks, tree-
based ML

88.5%

[62] Chen Wang Zhang Zhang Tao 2023 Multi-feature fusion learning DL Not specified CNN and ViT 80.23%
[63] Tawhid et al. 2023 Frequency Band-based Biomarkers

for MCI Detection
DL Not specified CNN Not provided

[64] Yu et al. 2020 WVG Network-Based Fuzzy
Learning

ML Not specified TSK fuzzy system 97.12% accuracy

[65] You et al. 2020 NN relay using gait and EEG data DL Not explicitly men-
tioned

Cascade Neural
Network (CNN with
AST-GCN for gait
and ST-CNN for
EEG)

91.07% for HC, MCI, AD; 93.09% for HC vs.
MCI/AD

[66] Duan et al. 2020 Topological Network Analysis on
EEG

DL Not specified ResNet-18 MCI: 98.33% (best) 93.42% (average); mild AD:
100% (best) 98.54% (average)

[67] Xia et al. 2023 Deep Pyramid CNN DL 5-fold Cross-
Validation

Deep Pyramid CNN
(DPCNN)

97.10%

[68] Puri et al. 2023 Dual Decomposition: DWT-VMD
and MPEs

ML 10-fold Cross-
Validation

EBT 95.20% for three-class; 97.70% for two-class

[69] Mazrooei Rad et al. 2021 EEG and ERP Analysis using
LDA, Elman NN, and CNN

ML/DL Not specified LDA, Elman NN,
CNN

LDA: 59.4%-66.4%, Elman NN: 92.3%-94.1%,
CNN: 97.5%-99%

[70] Siuly et al. 2020 Piecewise Aggregate Approxima-
tion (PAA), Permutation Entropy
(PE), and Auto-regressive (AR)
model

ML 10-fold Cross-
Validation

ELM, SVM, KNN ELM: 98.78%

[71] Aslan & Akşahin 2024 Poincare and Entropy Methods ML Not specified Not specified Not provided
[72] Khare & Acharya 2023 Adaptive Flexible Analytic

Wavelet Transform (AFAWT)
ML 10-fold Cross-

Validation
XBM 99.85%

[73] Hong Jeong Park Kim et al. 2023 Ensemble learning of EEG features ML/DL Not specified Ensemble of DNN
and tree-based ML

88.5%

[74] Alves et al. 2022 EEG functional connectivity and
deep learning

DL Not specified CNN Not specified

[75] Göker 2023 Multitaper and Ensemble Learning ML Not specified Logit Boost 93.04%
[76] Alessandrini et al. 2022 EEG-based ad detection using

RPCA and LSTM RNN
DL Not specified LSTM RNN Improvement of about 5% over baseline PCA

[77] Araújo et al. 2022 Smart-Data-Driven System EEG
Nonlinear Analysis

ML/DL Leave-One-Out Decision Trees,
SVM, CNN, etc.

Up to 93.8% (various comparisons)

[78] Miltiadous et al. 2021 Classification of EEG Signals ML K-fold CV, Leave-
One-Patient-Out

Decision Trees, Ran-
dom Forests, etc.

AD: 78.5% with DT, FTD: 86.3% with RF

[79] Pirrone et al. 2022 EEG Signal Processing and Super-
vised ML

ML 70% training/30%
test split

DT, SVM, KNN AD vs HC: 97%, HC vs MCI: 95%, MCI vs AD:
83%, Three-class: 75%

[80] Wang et al. 2023 MOPSO-GDM algorithm for EEG-
based functional network analysis

ML 10-fold cross-
validation strategy

SVM, Naive Bayes,
Discriminant Analy-
sis

Excellent classification error rate of 6.7 (93.3%
accuracy) with feature vector size reduced to 20

[81] Perez-Valero et al. 2022 Automated pipeline the usage of
industrial EEG machine and auto-
mated class

ML Leave-one-subject-
out cross-validation

SVM and LR with
SVM performing
best

It is comparable to the best-reported studies on
AD detection by automated processing and com-
mercial EEG systems

[82] Jennings et al. 2022 Spectral properties from EO and
EC EEG signals were used to im-
prove dementia diagnosis accuracy.
KNN and SVM models were em-
ployed to differentiate groups using
spectral data

ML 10-fold cross-
validation

KNN, SVM, Logis-
tic Regression

The KNN model achieved a specificity of 87%
and a sensitivity of 92% in distinguishing be-
tween AD and dementia (HC) in addition to a
specificity of 75% accompanied by a sensitivity
of 91% in distinguishing between dementia with
DLB and AD (Advertisement)



International Journal of Computing and Digital Systems 13

TABLE VI. Reported Limitations in EEG-Based Alzheimer’s Disease Research

# Author(s) & Year Reported Limitations

[45] Khalil Alsharabi et al. 2022 Limited by dataset size and the scope of EEG data analysis.
[46] Yue Ding et al. 2022 The study might have limitations due to the classification of only probable AD without

definitive in-vivo evidence.
[47] Digambar Puri et al. 2022 (IJECS) Dataset size is small affecting the generalizability of the findings.
[48] Digambar Puri et al. 2022 (DASA) Not explicitly mentioned
[49] Digambar Puri et al. 2022 (Wavelet

Transform)
Not explicitly mentioned

[50] Kai Li et al. 2021 Small dataset size not including MCI subjects reliance on sensor-level EEG analysis
[51] Daniele Pirrone et al. 2022 The study highlights the challenges related to data splitting especially considering data

imbalance loss and concept drift.
[52] Haitao Yu et al. No Year Specified The study does not specify the number of subjects involved or their demographic details
[53] Michele Alessandrini et al. 2022 Not explicitly mentioned
[54] Caroline L Alves et al. 2022 The study does not specify limitations
[55] Dovile Komolovaitė et al. 2022 Not explicitly mentioned
[56] Morteza Amini et al. 2021 Not explicitly mentioned
[57] Saman Fouladi et al. 2022 Not specified in the provided text
[58] Cameron J Huggins et al. 2021 Not specified
[59] Wei Xia et al. 2023 Not specified
[60] Sadegh-Zadeh et al. 2023 The main limitations include a small dataset size and unbalanced dataset distribution which

may affect the generalizability of the results.
[61] Yuseong Hong et al. 2023 Not specified
[62] Chen Wang Zhang Zhang Tao 2023 Previous literature acknowledges the challenge posed by the limited data set size which

may affect the generalizability of findings.
[63] Tawhid et al. 2023 The study’s limitations include the limited size and diversity of the datasets which may

affect the generalizability of the findings. The impact of different education levels gender
matching or age ranges wasn’t deeply explored.

[64] Yu et al. 2020 The EEG feature set’s high dimensionality could overfit and was therefore stated as the
main limitation. Furthermore the generalizability of the study findings in question may be
restricted by the specific attributes of such an experimental database.

[65] You et al. 2020 It is limited by the specific features of the EEG dataset used.
[66] Duan et al. 2020 The generalizability of the study may be negative due to the restricted characteristics of

the EEG data used.
[67] Xia et al. 2023 The main limitations include the challenges of data augmentation and potential model

overfitting due to the high dimensionality of EEG feature sets.
[68] Puri et al. 2023 The study’s main limitation is the relatively small dataset size, especially for MCI patients.
[69] Mazrooei Rad et al. 2021 The study acknowledges the challenge of data augmentation and the potential for model

overfitting due to the high dimensionality of EEG feature sets.
[70] Siuly et al. 2020 The small size of the dataset may affect the generalizability of the results.
[71] Aslan & Akşahin 2024 The fundamental problem is the small dataset size which may affect the generalizability of

the consequences. Additionally, the observation was carried out on uncooked EEG statistics
without preprocessing for noise reduction.

[72] Khare & Acharya 2023 The main limitation is the use of a single dataset with a small number of subjects which
may affect the generalizability of the findings.

[73] Hong Jeong Park Kim et al. 2023 The research’s core concern is the EEG data while additional clinical information like the
period of education and the prescription drugs are important as they can improve the study’s
quality. Moreover it also talks about the outliers showing abnormally high or low absolute
powers that could be very much significant clinically but they are not discussed.

[74] Alves et al. 2022 The study acknowledges the small dataset size which is a common issue in disease
classification studies but highlights that even with this limitation the proposed method
showed high accuracy.

[75] Göker 2023 The small sample size have negative effects on the generalization of the results
[76] Alessandrini et al. 2022 The main limitation is the small training data set which affects the generalizability of the

results
[77] Araújo et al. 2022 The smaller size of the utilized dataset affects the generalizability of the results
[78] Miltiadous et al. 2021 The ability to generalize is affected by the size of the used data
[79] Pirrone et al. 2022 An important factor that affects the generalizability of results is when the data set is small.
[80] Wang et al. 2023 What may negatively affect the generalizability of the results is when the data set is small
[81] Perez-Valero et al. 2022 The small size of the data set may affect the generalizability of the results. Other conditions

that could overlap with AD symptoms are not included.
[82] Jennings et al. 2022 Small sample size exclusion of subjects due to insufficient clean EEG data and potential

overlap of dementia symptoms not accounted for in the study.
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trusted analysis devices.
8) Application to Other Neurological Disorders: Ex-

tending the methods established for AD medical
diagnosis to various other neurological problems is
viewed as a guaranteeing instruction. This strategy
can result in wider applications of EEG evaluation
in neurology plus psychiatry.

9) Real-time Diagnosis coupled with Embedded Device
Implementation: Some researchers recommend the
advancement of real-time analysis systems as well
as their application on ingrained gadgets. This might
settle the reduced expense, and easily accessible
analysis devices that can be utilized in professional
as well as residence setups.

Together, the ideas highlighted here indicate how lively
and progressive such work can be; which areas should be
next studied so that diagnosis could be improved by EEG,
expanded its use beyond what it has already accomplished,
and thus enhance patient prognosis in AD.

4. CONCLUSION
The systematic review of the intelligent strategies for

the diagnosis of AD from EEG signals is one big step
forward in exploiting advances in neuroimaging and com-
putational algorithms in surmounting the AD challenge
for timely diagnosis. The integrated analysis across 38
articles highlighted the potential of ML and DL approaches
combined with EEG data for enhancing the diagnostic
ability toward gaining insights into the neurophysiological
underpinnings of this disease. It has pointed out some of
the major milestones in this area regarding the development
of sophisticated CAD systems, which effectively put EEG
signals into practical applications for the early, accurate,
and automated recognition of AD. These efforts actually
show the power of EEG as a very useful marker for AD
through improvements of techniques for signal processing
and the application of sophisticated analytical frameworks.
It reviewed a diverse range of preprocessing methods, ef-
fective ML/DL techniques, varying validation methods, and
reported accuracies, thus painting a broad picture of how
these approaches could aid diagnostics. Contrasted with
these steps forward in the field are many more limitations
and challenges within the context of the modern research
environment that remain to be overcome, such as the need
for larger and more heterogeneous datasets in order to
achieve greater generalizability of results, the integration
of multi-modal data sources for deeper investigation, and
the exploration of sophisticated EEG analysis methodolo-
gies and deep learning algorithms in approaches toward
Alzheimer’s disease detection. Recommendations extracted
from the reviewed articles that may be used to guide further
investigations recommend an increase in dataset size and
diversity, providing new avenues for integrating genetic,
imaging, and clinical data alongside EEG signals. Exploring
innovative ML/DL techniques would help overcome the cur-
rent challenges and open new avenues for research toward
more robust, accurate, and early diagnostic capabilities.

A. Summary of Contributions
The presented study evaluates the efficacy of EEG-

based diagnostic methods against traditional neuroimaging
techniques in AD. The contributions that are made include:

1) Evaluation of EEG-Based Diagnostic Methods:
Demonstrates the potential of EEG as a non-invasive,
cost-effective, and accessible tool for detecting neu-
rophysiological markers indicative of AD, emphasiz-
ing its promise for early-stage diagnosis.

2) Identification of Promising Algorithms: Identifies
and evaluates various ML and DL algorithms applied
to EEG data, highlighting specific algorithms with
high accuracy in distinguishing between healthy and
AD cases.

3) Challenges and Limitations: critically review the
existing limitations of EEG-based diagnostics, in-
cluding signal reliability problems, environmental
disturbances, and the need for larger and more varied
datasets that provide insight into what further work
is required.

4) Higher Diagnosis Likelihood: This indicates the in-
tegration potential of EEG analysis with ML and
DL techniques that may result in diagnosis accuracy
and reliability improvements and a trend toward
fully automated, unbiased diagnostic procedures to
enhance clinical decision-making.

5) Full Overview: This gives a full overview of the
current trends in EEG-based diagnosis of AD, com-
prising recent studies, methodologies, and technol-
ogy advances, thus providing a useful resource for
researchers and clinicians.

1) Critical Evaluation
In particular, the findings of this review evidence impres-

sive progress in the application of ML and DL techniques in
EEG-based AD diagnosis. Advantages of these techniques
include processing and analysis of large amounts of EEG
data, complex pattern identification that would otherwise
not be visible by simple analysis, and the boosting of
accuracy in early AD detection. However, some limitations
lie in the extended and diversified datasets that are required
to have generalizable and robust models. Multi-modal data
integration is also indispensable for a comprehensive diag-
nosis, yet it remains challenging because of the complexity
involved in handling heterogeneous data types. Besides, ML
and DL models are computationally resource-intensive and
intellectually demanding, and accessibility and implemen-
tation may be limited by demands for these resources. The
probability of overfitting and the requirement for advanced
feature selection and optimization techniques raise several
challenges.

2) Practical Implications
The practical implications of these findings for clinicians

and researchers. Modern ML and DL techniques on the
EEG-based AD diagnosis will further develop more accu-
rate and early diagnostic tools in clinical application. This
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TABLE VII. Reported Recommendations in EEG-Based Alzheimer’s Disease Research

# Author(s) & Year Recommendations

[45] Khalil Alsharabi et al. 2022 Explore the integration of multi-modal data sources including genetic and imaging data for a more comprehensive analysis.
The use of deep learning techniques could enhance diagnostic performance.

[46] Yue Ding et al. 2022 Suggest further studies with larger datasets and the potential integration of deep learning techniques for better diagnostic
tools.

[47] Digambar Puri et al. 2022 (IJECS) Future work to include larger datasets and explore deep learning methods for AD diagnosis.
[48] Digambar Puri et al. 2022 (DASA) The study emphasizes the efficiency of using a reduced number of EEG channels for diagnosing AD suggesting a potential

direction for further optimizing EEG-based AD detection methodologies.
[49] Digambar Puri et al. 2022 (Wavelet

Transform)
The study emphasizes the efficiency of using a reduced number of EEG channels for diagnosing AD suggesting a potential
direction for further optimizing EEG-based AD detection methodologies.

[50] Kai Li et al. 2021 Future research should concentrate on fine-tuning algorithmic methods to accurately diagnose Alzheimer’s’ disease from
EEG data by combining complex network measures with machine learning

[51] Daniele Pirrone et al. 2022 The study suggests further exploration of the feature extraction method for AD diagnosis and its potential application on
embedded devices for real-time diagnosis.

[52] Haitao Yu et al. No Year Specified This research points to local efficiency and clustering coefficient as key aspects in AD identification via EEG signals and
recommends further optimization of network attributes used in N-TSK fuzzy classifiers.

[53] Michele Alessandrini et al. 2022 Demonstrates the potential of RPCA preprocessing in enhancing AD diagnosis accuracy with corrupted EEG data.
[54] Caroline L Alves et al. 2022 Highlights the potential of DL and EEG connectivity for diagnosing neurological disorders
[55] Dovile Komolovaitė et al. 2022 Highlighted the effectiveness of CNNs and the potential of synthetic data augmentation for improving classification accuracy
[56] Morteza Amini et al. 2021 Further studies on enhancing feature extraction and classification methods to identify AD using EEG signals.
[57] Saman Fouladi et al. 2022 To confirm the effectiveness of DL models in interpreting electroencephalograms to make early diagnosis of cognitive

impairment and mild AD.
[58] Cameron J Huggins et al. 2021 Not specified
[59] Wei Xia et al. 2023 Not specified
[60] Sadegh-Zadeh et al. 2023 The study suggests future work could include the application of this method to larger and more balanced datasets as well

as the exploration of other neurological disorders using the proposed approach.
[61] Yuseong Hong et al. 2023 Continuous analysis of independent QEEG features for neurological disorders diagnosis
[62] Chen Wang Zhang Zhang Tao 2023 Further research will involve model validation with larger and more heterogeneous datasets to enhance predictive accuracy

and reliability. Moreover, the applicability of the technique to other types of dementia beyond Alzheimer’s disease is also
proposed.

[63] Tawhid et al. 2023 Future studies should therefore target the validation of findings using larger, more heterogeneous datasets. The role of
education, age, and gender should be investigated in the context of MCI detection using EEG, together with other machine
learning models or frequency bands for further insight.

[64] Yu et al. 2020 FutSubsequent investigations should prioritize the enhancement of function selection to improve both model accuracy and
interpretability. Furthermore, it is advisable to conduct analogous validations of the proposed model utilizing diverse and
extensive patient datasets to reinforce the generalizability of the findings.

[65] You et al. 2020 Extend the framework to other neurologic diseases and optimize EEG data collection for HC.
[66] Duan et al. 2020 In the future, more data should be collected from patients with MCI and mild AD patients with these same instruments

to get a better analysis done. Further research is needed regarding the similarities of the datasets obtained from MCI and
mild AD data.

[67] Xia et al. 2023 Future work includes balancing the dataset among AD, MCI, and HC subjects, enhancing model generalization through
diverse EEG datasets, and employing automatic parameter optimization techniques.

[68] Puri et al. 2023 Future work could also attempt to extend this dual decomposition technique for diagnosis in other neurodegenerative
disorders, such as epilepsy, various sleep disorders, Parkinson’s disease, and major depressive disorders. Deep learning
models on the EEG datasets could be implemented to enhance the accuracy of diagnosis.

[69] Mazrooei Rad et al. 2021 Future work shall be focused on increasing generalizability, using a wide range of EEG datasets, other neural network
architectures, and combination models with other kinds of biomarkers for more accurate diagnosis of AD.

[70] Siuly et al. 2020 Generalize the applicability of the approach by adjusting the methodology to accommodate larger datasets and assessing
its efficiency in multi-class scenarios, differentiating between patients with mild cognitive impairment, healthy controls,
and advertisement subjects.

[71] Aslan & Akşahin 2024 It suggests that future studies could further be oriented to fine-tune the methodology of feature selection in a way to reduce
computational cost and increase model accuracy. Moreover, it is suggested that further studies include deep learning methods
and an expansion of the dataset.

[72] Khare & Acharya 2023 Further studies could provide further validation for the proposed model with larger, more diverse datasets. The flexibility
and transparency of the model reveal promising ways to optimize the automatic detection of Alzheimer’s disease while
delivering comprehensible machine-learning forecasts for use in the clinic.

[73] Hong Jeong Park Kim et al. 2023 This study opens up the potential of combining various features of EEG to yield enhanced performance in the diagnosis of
neurodegenerative disorders and could be of great benefit for deep learning and machine learning techniques. Additional
clinical data requires further investigation, and the challenge of outliers should be faced during the analysis of EEG data.

[74] Alves et al. 2022 The paper claims that the procedure is ’general’ and can be implemented by most brain disorders with existing EEG
records. Rather, it encourages more studies with bigger datasets and other clinical information to improve diagnosis.

[75] Göker 2023 Further development of the model to include more diverse and larger datasets to be generalized with other biomedical
signals for early disease diagnostic.

[76] Alessandrini et al. 2022 The paper suggests the method is generalizable and could be adapted for any brain disorder with available EEG data.
It recommends further research to include larger datasets and additional clinical information for an enhanced diagnosis
process.

[77] Araújo et al. 2022 Enhance the system by incorporating larger datasets and additional clinical information for diagnosis.
[78] Miltiadous et al. 2021 Many tests must be performed on a larger sample of clinical EEG records to validate the methodology. In doing so the

classification of different types of other dementias and the possible expansion and differentiation of seizure waveforms for
dementia will be explored.

[79] Pirrone et al. 2022 The combination of devices is the future development of low-cost real-time diagnosis.
[80] Wang et al. 2023 Expansion to larger clinical datasets for validation exploration of other neurological disorders using the proposed method

and enhancement of algorithm efficiency for real-time diagnosis.
[81] Perez-Valero et al. 2022 Further research with larger sample sizes and inclusion of typical patients seen in neurological services to validate the

method’s effectiveness in a clinical setting.
[82] Jennings et al. 2022 A validation cohort is recommended for further validation of findings suggesting future research to include larger datasets

and potentially additional clinical information for improved diagnostics.
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can be of great assistance, especially to the clinicians who
will be better placed to determine sensitive data, thus facili-
tating early intervention that is precise. These findings open
up new avenues for researchers toward the further discovery
of neurophysiological markers of AD and the development
of more optimal diagnostic algorithms. Most important
for translation into clinical practice are augmenting data
collection with tools that are user-friendly in a clinical space
and technologies that function harmoniously with current
clinical workflows. Collaboration among researchers, clin-
icians, and institutions is essential for the standardization
of EEG data collection and analysis protocols, thereby
improving the reproducibility and comparability of studies
conducted in various contexts.

3) Future Research Directions
To advance the field of EEG-based AD diagnosis, future

research should focus on:

1) Future studies shall focus on acquisition and usage
of large, heterogeneous datasets having wide demo-
graphic and clinical variabilities. This will increase
the generalizability for machine learning and deep
learning models and ensure results that relate to more
heterogeneous populations. Specific efforts should
be developed to integrate data coming from very
different sources, such as very diverse geographical
regions or even stages of AD, into those data sets
for the construction of robust diagnostic algorithms.

2) Multi-Modal Data Integration: Combining EEG data
with other neuroimaging techniques and clinical
information, such as MRI and PET scans, genetic
data, among others, can provide detailed diagnostic
accuracy and an in-depth view of AD progression.
The integration of data from different modalities
should provide a holistic view that allows for better
prediction and classification into stages of AD. Some
strategies employed towards effective multimodal
integration include the development of frameworks
that can handle heterogeneous data types and using
advanced fusion techniques to combine seamlessly
information arising from different sources.

3) Advanced Preprocessing Techniques: Developing ad-
vanced preprocessing techniques to improve EEG
signal quality, including methods to minimize noise
and artifacts, standardize data collection procedures,
and enhance signal reliability.

4) Innovative Classification Methods: Further investi-
gate and create more innovative methods for classi-
fication using ML and DL, such as CNNs, RNNs,
and VAEs, to fine-tune and prove their performance
in the diagnosis of AD.

5) Developing a real-time monitoring and early de-
tection system for AD using portable, user-friendly
EEG devices integrated with robust ML algorithms
that enable the continuous monitoring of individual
cohorts in such conditions.

6) Personalized Diagnosis and Treatment: Aiming for

personalized approaches for AD diagnosis and treat-
ment, tailoring diagnostic models to individual pa-
tient profiles to improve the precision and effective-
ness of interventions.

7) Collaboration between researchers, clinicians, and
institutions in the standardization of protocols for
EEG data collection and analysis to improve re-
producibility and comparability across studies in
different settings.

8) Ethical and Privacy Considerations: Making provi-
sions for ethical and privacy concerns associated
with the use of EEG data and ML algorithms in any
clinical set-up. Patient data confidentiality, informed
consent, and the creation of an ethical framework in
the use of AI in healthcare are a necessity. Prospects
and potential risks arising from automated diagnostic
processes should be urgently and closely assessed so
as to ensure patient rights and trust are protected.

Although the systematic review covers a wide range
of research, it is intrinsically limited by both the quality
and overall scope of the literature included. Important
limitations include the potential for publication bias, as the
review relies on published studies that may not fully capture
the scope of all research done in this field. Additionally, the
heterogeneity across included studies—ranging in terms of
methodologies, sample sizes, and populations—has made it
challenging to reach generalizable conclusions. Moreover,
the inclusion criteria, even if necessary for the parameters
of this review, might have missed relevant studies published
in languages other than English or which fell outside of the
chosen time frame.

This review encapsulates the current state of the field of
EEG-based AD diagnosis, both in its promising achieve-
ments and in the difficulties ahead. By addressing the
identified limitations and embracing the proposed directions
for future studies, the field may significantly advance. As
such, EEG with advanced computational models may have
the potential to transform AD diagnosis, enabling timely
interventions and improving outcomes for sufferers of this
debilitating condition.
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