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Abstract: Drug development has traditionally been expensive and time consuming. Computational approaches such as machine learning
have been widely applied to improve efficiency, yet interpreting prediction outcomes remains a challenge. This study aims to improve
the efficiency of Alzheimer’s drug discovery by conducting QSAR (Quantitative Structure Activity Relationship) modelling with
Random Forest model to predict the inhibition potential (IC50 values) of each Alzheimer’s drug candidate compound. A total of 5779
compounds were collected from ChEMBL and PubChem databases. The QSAR model in this study was built using features that
were extracted by generating 1024 Morgan Fingerprints representing the substructure of compounds. In this study, SHapley Additive
exPlanations (SHAP) are implemented to understand locally and globally important features from the prediction results of the developed
model. The effectiveness of the QSAR model in this study was tested with 10-fold cross validation, where the developed regression
model can achieve a MAPE score of 11.10% and the classification model achieves an AUC-ROC score of 84.77%. In this work,
molecular docking is conducted to simulate how a drug binds to its target and verify the best molecules’ effectiveness. Additionally, a
web based application was developed in this study to facilitate predicting the bioactivity value of Acetylcholinesterase (AChE) inhibitors.
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1. INTRODUCTION
Alzheimer’s disease is a brain disease that causes a

gradual decline in memory, thinking ability and behaviour.
This disease is the most common cause of dementia, which
is a condition that causes a decrease in mental function
that interferes with daily activities. The early symptoms
of Alzheimer’s disease are usually not obvious, but some
early symptoms may occur, such as difficulty remembering
new things, difficulty completing daily tasks, difficulty find-
ing words, difficulty understanding new information, and
mood changes. or behaviour. Alzheimer’s disease cannot be
treated yet, but medication such as rivastigmine can help
delay the illness’s progression by blocking cholinesterase
[1]. Annually, the number of people with Alzheimer’s
disease is still rising. However, designing one drug still
takes more than ten years with expensive costs. In general,
drug development consists of pre-discovery, preclinical de-
velopment, clinical trials and reviewing stages. In the initial
stage, researchers screen candidate drug compounds, and
this stage up to preclinical development can take 5-6 years
[2].

Due to the limitation of the wet lab approach, it is
not efficient to test all possible chemicals as therapeutic
candidates manually. Afterwards, in silico studies (compu-
tational approaches) became widely used to help increase
efficiency. Where, the implementation of Artificial Intelli-
gence in recent Drug Target Interaction (DTI) studies is
enabling cost-effectiveness [3]. In the process of screening
the Alzheimer’s drug candidates, it is crucial to analyze
the drug target interaction with the target enzyme that is
responsible for Alzheimer’s disease.

To be an effective drug, a compound must be able
to reach the target enzyme in the body at a sufficient
concentration level so that it can remain in bioactive form
until the desired biological process occurs [4]. In this
study, Acetylcholinesterase (AChE) was selected as the
target enzyme that is responsible for Alzheimer’s Disease.
This study aims to conduct a DTI study by designing a
Quantitative structure-activity relationship (QSAR) model.
QSAR is used in drug discovery to predict biological
activities and toxicity in a way to screen out compounds
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that don’t have drug-like properties [5]. Where, the drug
compounds need to consider several basic aspects such as
absorption, distribution, metabolism, excretion, and toxicity
(ADMET).

In this research, a Random Forest model was developed
to predict bioactivity values in an effort to improve the ef-
ficiency of screening candidate compounds for Alzheimer’s
drugs. While machine learning significantly enhances the
ability to process large datasets, issues surrounding the
interpretability of these models affect public trust in their
application within drug development and genomics. Fur-
thermore, ethical concerns and potential biases in machine
learning models have fueled the ongoing discussion on
interpretability approaches in recent years.

To address these challenges, this study employs SHAP
(SHapley Additive Explanations) to interpret the prediction
outcomes of the Random Forest model, both locally and
globally. By using SHAP, we aim to provide a clearer
understanding of the key features driving the model’s
predictions. This novel approach will not only enhance
the transparency of the prediction process but could also
offer deeper insights into the factors that influence the
effectiveness of Alzheimer’s drug compounds.

2. RELATED WORKS
A. SARS-CoV-2 3CLpro Inhibitor Classification

The study [6] developed a neural network to identify the
bioactivity class of SARS-CoV-2 3CLpro protein inhibitor.
The dataset used in this study collected from ChEMBL
and PubChem databases contain over 300,000 experimental
data from screening SARS-CoV-2 3CLpro inhibitors. In
this study Lipinski and PaDEL descriptors were examined
as feature extraction methods. A various ensamble models
were trained in this study including Random Forest, Bag-
ging, Extra Tree, LGBM, XGB, and AdaBoost. A neural
network model was also designed in this study and outper-
formed the ML methods with 93accuracy. The performance
of models trained with PaDEL descriptors outperformed and
suitable for high-throughput QSAR modeling.

The Explanatory factor identified in this study by im-
plementing SHapley Additive exPlanations (SHAP) on the
XGB classifier. The SHAP model could improve the inter-
pretability of XGB model by finding the important finger-
prints from PaDEL descriptors. The SHAP provides a more
comprehensive and comprehensible depiction of the feature
importances compared to the conventional approaches such
as feature importance scores. Because SHAP values account
for feature interaction, allowing for a deeper understanding
of how each feature influences the model’s prediction.

B. Antimalarial Predictive Models
Antimalarial medication resistant happening for Chloro-

quine and Artemisinin-based Combination Treatment
(ACT), consequently malaria became endemic in most
locations. The study [7] implemented and compared five

various ML including Support Vector Machine (SVM), Ran-
dom Forest (RF), Extreme Gradient Boost (XGB), Logistic
Regression (LR) and Artificial Neural Network (ANN) to
build antimalarial predictive models. Those models were
developed to predict the bioactivity class of drug against
Plasmodium Falciparum Parasite. From the ChEMBL and
PubChem databases, a total of 4794 compounds were
retrieved and extracted into 1444 PaDEL descriptors.

The classification of anti-plasmodial activities in this
study conducted with a threshold IC50 ≤ 1µM as active
compounds and IC50 > 1µM as inactive compounds. In
this study various numbers of features were used and
selected with Recursive Feature Elimination (RFE). The
result shows XGB model with 361 features, reach the best
recall of the ‘active’ label with 0.81 and F1 score of 0.83.
The XGB model outperformed the designed ANN model
which achieved the recall of the ‘active’ and F1 score of
0.79 and 0.80, respectively. This study implies that without
compromising much precision, the XGB and ANN could
identify the new anti-malaria drug formation around 81%
and 79%, respectively.

C. ChemBERTa
The research [8] builds a model to forecast the molecular

characteristics of SMILES strings using a Natural Lan-
guage Processing (NLP) approach. Based on the RoBERTa
transformer architecture, ChemBERTa is a model that was
trained using the PubChem dataset, which has 77 million
SMILES strings. ChemBERTa was created by combining
six layers and twelve attention heads, which produced
seventy-two distinct attention mechanisms. HuggingFace
library’s Byte-Pair Encoder (BPE) serves as the founda-
tion for the tokenizer created on the ChemBERT model.
Tokenization at both the character and word levels is
combined in BPE, a hybrid tokenization technique. When
it comes to several categorization tasks from MoleculeNet
and attention-based visualization modalities, this model
performs competitively. This model requires significant
computational resources for training and inference com-
pared to simple machine learning models. The size and
interpretability of the model also needs to be considered,
since it can be challenging to interpret the internal workings
on complex models.

3. MATERIAL AND METHODS
A. Datasets

In this study, a total of 5,779 data compounds were used
for model construction and molecular docking as final val-
idation. The primary dataset was obtained from the public
open-source database ChEMBL, a well-known repository
containing manually curated bioactive molecules with drug-
like properties [9]. By searching for Acetylcholinesterase
(AChE) protein targets in ChEMBL, 24 AChE protein
datasets from different organisms were identified. For this
study, the AChE protein with ChEMBL ID CHEMBL220
was selected, as it represents a single protein from Homo
sapiens (human).
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TABLE I. Sample of ChEMBL Dataset

ChEMBL SMILES IC50

CHEMBL133897 CCOc1nn(-c2cccc(OCc3ccccc3)c2)c(=O)o1 750.0
CHEMBL336398 O=C(N1CCCCC1)n1nc(-c2ccc(Cl)cc2)nc1SCC1CC1 100.0
CHEMBL131588 CN(C(=O)n1nc(-c2ccc(Cl)cc2)nc1SCC(F)(F)F)c1ccccc1 50000.0
CHEMBL130628 O=C(N1CCCCC1)n1nc(-c2ccc(Cl)cc2)nc1SCC(F)(F)F 300.0
CHEMBL130478 CSc1nc(-c2ccc(OC(F)(F)F)cc2)nn1C(=O)N(C)C 800.0

Next, compounds with reported IC50 bioactivity values
against the CHEMBL220 protein were gathered, yielding
a total of 6,949 compound records. After a data cleaning
process, which excluded incomplete or erroneous entries,
3,575 compounds remained for analysis and model con-
struction. Each compound in the dataset is represented using
Simplified Molecular Input Line Entry System (SMILES)
notation, which allows for precise molecular representation
using graph theory principles [10]. The dataset also includes
IC50 values, which indicate the concentration required to
inhibit 50% of the target protein’s biological or biochemical
activity [11]. Table I provides a sample of the dataset, with
each entry including the ChEMBL ID, SMILES represen-
tation, and corresponding IC50 value.

An additional dataset was collected from the PubChem
Database, consisting of 115 Acetylcholinesterase (AChE)
inhibitors, each represented by a SMILES string. Unlike the
primary dataset, this collection does not include bioactivity
values. In this study, these compounds were used to validate
the predicted inhibition potency of the model through
molecular docking.

B. QSAR Modeling
QSAR Modeling was developed in this study with Ran-

dom Forest to determine the association between chemical
compounds’ structural features and the biological activity
of Alzheimer’s medicines. Using a variety of mathematical
techniques, QSAR aims to associate structural, chemical,
statistical, and physical attributes with biological potency.
The physicochemical properties are taken into account,
including partition coefficient and the existence of certain
chemical features.

The QSAR Modeling in this study shown in Fig. 1 and
begins with data preparation, which includes data collection
from the ChEMBL and PubChem databases, as well as data
cleansing and transformation. Then, exploratory data anal-
ysis was carried out by computing Lipinski’s Descriptor,
ADMET Screening, and statistical analysis using the Mann-
Whitney U Test. In the final stage of QSAR Modeling,
a model is created using Random Forest and trained us-
ing compound data that has been extracted using Morgan
Fingerprints. Then, the Random Forest model’s predictions
were analyzed using the SHAP approach.

1) Data Preparation
Before the ChEMBL dataset was used for model con-

struction, first prepared by removing redundant data and

missing values data. Each data is SMILES of a compound
that represents a candidate for AChE inhibitor. The bioac-
tivity value in IC50 is used as a label for constructing the
regression model. However, the collected dataset has a wide
range of IC50 values, so it converted into negative loga-
rithmic in molar concentration units (M). The conversion
calculation shown below:

pIC50 = −log10(IC50) (1)

Two bioactivity classes ‘active’ and ‘inactive’ com-
pounds are created for performing classification prediction.
According to prior research, ‘active’ compounds have an
IC50 ≤ 1µM and ‘inactive’ compounds have an IC50 > 1µM
[12]. The calculations for converting IC50 to pIC50 for each
bioactivity class are shown below:

• Active

IC50 < 1µM = IC50 < 10−6M

pIC50 = − log10(10−6M)
pIC50 > 6

(2)

• Inactive

IC50 > 10µM = IC50 > 10−5M

pIC50 = − log10(10−5M)
pIC50 < 5

(3)

2) Exploratory Data Analysis
The exploratory data analysis in this study was carried

out to investigate the bioactivity class ’active’ and ’inactive’
from two different populations. It is conducted by doing sta-
tistical analysis and screening of drug candidate molecules
based on Lipinski’s Rule of Five, where medications that
can be ingested orally need to match the following require-
ments:

• Molecular weight < 500 Daltons

• Hydrogen bond donors < 5

• Hydrogen bond acceptors < 10

• The logarithm of octanol-water partition coefficient
(ClogP) < 5 or (MlogP < 4.15)

Four new features including molecular weight (MW),
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Figure 1. Workflow of QSAR Modeling for examining the AChE inhibitor candidates.

hydrogen bond donors (NumHDonors), hydrogen bond ac-
ceptors (NumHAcceptors), and the logarithm of octanol-
water partition coefficient (ClogP) calculated to conduct
a statistical analysis. The statistical analysis performed
with Mann-Whitney U-test to evaluate the hypothesis H0:
bioactivity classes ‘active’ and ‘inactive’ come from the
same population.

TABLE II. Mann-Whitney U-Test Results

Feature Statistics P-
value α Interpretation

pIC50 882716.5 0.048372 0.05 Reject H0
MW 823729.0 0.000001 0.05 Reject H0
NumHDonors 850778.5 0.000198 0.05 Reject H0
NumHAcceptors 879139.0 0.028911 0.05 Reject H0
ClogP 859996.5 0.002051 0.05 Reject H0

Based on the Mann-Whitney U-Test result in Table II,
the statistical test results on all features successfully rejected
hypothesis H0. In summary, the groupings of compounds
with the bioactivity classes ”active” and ”inactive” do not
originate from the same data population.

3) Model Construction
All SMILES in ChEMBL dataset were extracted into

Morgan Fingerprints before used in the model construc-
tion process. Morgan Fingerprints, also known as circular

fingerprints, are vectors that depict the substructure of
molecules with different atomic radii [13]. In total there
are 1024 Morgan Fingerprints that were generated from all
SMILES strings that represent each compound in ChEMBL
dataset.These fingerprints consist of binary numbers, where
each bit indicates the presence or absence of specific
molecular substructures. This numerical representation is
essential for training the Random Forest model, as it can
only process numerical data.

This study constructed two models for different tasks:
regression and classification. The regression model was
created to predict the bioactivity value pIC50, and a clas-
sification model developed to distinguish the bioactivity
class ‘active’ and ‘inactive’. Both models developed using
Random Forest, which is an ensemble model consisting
of multiple decision trees. Each model was trained using
100 decision trees, with the regression model applied Mean
Squared Error (MSE) as the criterion, and the classification
model using the Gini Index.

A simple algorithm like Random Forest was selected to
facilitate easier interpretation of predictions. However, un-
like a single decision tree, the predictions from an ensemble
of multiple decision trees cannot be directly understood. To
address this, SHAP (SHapley Additive exPlanations) was
implemented in this study to provide clear and interpretable
explanations for the prediction results. Each model’s perfor-
mance was evaluated using 10-fold cross-validation.
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C. Evaluation Metrics
The main metric that will be used in evaluating the re-

gression model is Mean Absolute Percentage Error (MAPE)
score.

M =
1
n

n∑
t=1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣ (4)

Where At is the actual value and Ft is the forecast
value. MAPE was chosen to evaluate the regression model
because it shows the error in percentage and makes it easy
to compare with different datasets or model performances.

Apart from MAPE, R2 is used to measure the de-
pendency between features and the prediction result. R2

calculations can be done as follows:

• The sum of squares of residuals

S S res =
∑

i

(yi − fi)2 (5)

• The total sum of squares

S S tot =
∑

i

(yi − ȳ)2 (6)

R2 = 1 −
S S res

S S tot
(7)

Evaluation of the classification model was done using
the AUC-ROC (Area Under the Receiver Operating Char-
acteristic Curve) metric. AUC-ROC measures the two-
dimensional area under the ROC curve, with values ranging
from 0 to 1. AUC-ROC equals to one indicates a model with
perfect performance. The ROC curve has two parameters:

• TPR (True Positive Rate)

T PR =
T P

T P + FN
(8)

• FPR (False Positive Rate)

FPR =
FP

FP + T N
(9)

The F1 metric is also used to evaluate the performance
of the classification model. F1 calculates the average of
precision and recall which is mathematically defined as
follows:

precision =
T P

T P + FP
(10)

recall =
T P

T P + FN
(11)

F1 =
2 × precision × recall

precision + recall
(12)

D. SHAP
Shapley Additive exPlanations (SHAP) is a method

developed to explain prediction of an instance by calculating
the contribution of each feature to the prediction result
[14]. SHAP was designed based on Shapley values which
is one of the game theory concepts. SHAP was developed
with unification concept and shows improved computational
performance and/or better consistency of human intuition
than previous approaches [15].

Suppose f is the original prediction model which will be
explained by the explanation model g. Explanation model
g is a simpler model that estimates a more complex model
f. The explanation model g is additive, which means that
the explanation carried out based on the sum of the con-
tributions of each feature. Mathematically, the concept of
additive feature attribution in the SHAP method is defined
as a linear function of binary variables as follows:

g(z′) = ϕ0 +

M∑
i=1

ϕiz′i (13)

Where z′ ∈ {0, 1}M , M is the number of input features
simplified to binary values (0 or 1), and ϕi ∈ R is the
attribution for each feature.

4. RESULTS AND DISCUSSION
A. Model Performances

This research develops a Random Forest model to
predict the bioactivity of Alzheimer’s drug candidate com-
pounds in two schemes, regression and classification. 10-
fold cross-validation was used to evaluate the Random
Forest performance to predict the pIC50 value. The result
is shown in the Table III:

TABLE III. Regression Performance

Fold MAPE R2

Fold-1 0.1155 0.7080
Fold-2 0.1119 0.7168
Fold-3 0.1017 0.7638
Fold-4 0.1257 0.6902
Fold-5 0.1003 0.7688
Fold-6 0.1124 0.7493
Fold-7 0.1092 0.7624
Fold-8 0.1020 0.8030
Fold-9 0.1121 0.7023

Fold-10 0.1191 0.6772

Average 0.1110 0.7342
Std 0.0077 0.0388

The standard deviation value for the 10-fold cross-
validation indicates that there is not much variation in
the MAPE and regression model values between folds.
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In other words, the model has sufficient stability for ten
trials using random data. The prediction performance is
deemed acceptable, with an average MAPE score of 11.10%
indicating a reasonably low error. According to the average
R2 value, 73.42% of the variability in the target data can
be explained by the regression model. The table below
shows the performance of the classification model using
the Random Forest Classifier created for this study.

TABLE IV. Classification Performance

Fold AUC-ROC F1 Score
Fold-1 0.8381 0.8703
Fold-2 0.8350 0.8692
Fold-3 0.8368 0.8730
Fold-4 0.8590 0.8847
Fold-5 0.8663 0.8872
Fold-6 0.8277 0.8575
Fold-7 0.8595 0.8835
Fold-8 0.8292 0.8656
Fold-9 0.8781 0.9008

Fold-10 0.8468 0.8764

Average 0.8477 0.8768
Std 0.0162 0.0118

Based on the standard deviation values, Table IV il-
lustrates the F1 and AUC-ROC values in the classifica-
tion model are stable in 10-fold cross-validation. Based
on the average AUC-ROC score, which is 84.77%, this
classification model performs well in differentiating across
classes. The F1 value of 87.68% indicates that the model’s
classification performance also demonstrates a good balance
between precision and recall values.

Overall, the regression and classification performance
of the Random Forest model in predicting pIC50 values
was acceptable and stable, as indicated by consistent results
across 10-fold cross-validation. However, further improve-
ment in prediction performance would require additional
data, which is challenging to obtain due to the difficulty and
high cost of gathering new compounds that could potentially
inhibit the target protein through wet-lab experiments. This
limitation makes it difficult to enhance the model’s accuracy
with the current dataset. To improve the model, future work
could explore the integration of transfer learning or semi-
supervised learning to leverage data from similar proteins
or related bioactivity studies.

B. SHAP Interpretation

Figure 2. SHAP Summary of PubChem Dataset Prediction

Fig. 2 presents the SHAP summary for predictions made
on the PubChem dataset. This summary highlights the
fingerprints that are most important for the classification
predictions. Among 1024 Morgan fingerprints, the bar chart
shows the 20 most important substructures.
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Figure 3. 20 most important Morgan Fingerprints

Fig. 3 shows the visualization of 20 most important
Morgan Fingerprints based on SHAP summary results.
Those important features include Morgan Fingerprints 247,
683, 928, 394, 762, 1013, 727, 780, 117, 311, 38, 973, 411,
992, 917, 669, 602, 448, 340, and 931. Overall, the features
displayed in the SHAP summary have a class 0 value higher
than class 1. This indicates that the absence of these features
further increases their dominance in the predicted results.

TABLE V. Detail of Selected ’Active’ Compound

SMILES COC1=C(C=C2C(=C1)CC(C2=O)CC3C
CN(CC3)CC4=CC=CC=C4)OC

pIC50 8.1036
Bioactivity
Class

Active

To find out feature importance locally, you can see the
results of the SHAP force plot on a data point. The Fig. 4
shows a SHAP force plot on a data point with the bioactivity
class prediction ”active” from Table V.

Figure 4. SHAP Force Plot of Selected ‘Active’ Compound

The chosen ’active’ compound’s forecast result, f(x), in
the force plot is -1.87 below average. As seen by the ’red’
arrow displays 668=0, 184=0, 309=0, and 26=0, meaning
the absence of these substructures has a greater impact on
the bioactivity prediction into the ’active’ class. In the other
hand, the ’blue’ arrow displays 1013=0, 491=0, 688=0, and
448=0, indicating that the absence of these substructures
decreases the selected compound predicted to be an ’active’
class.

TABLE VI. Detail of Selected ’Inactive’ Compound

SMILES CCCCN(CCCC)SN(C)C(=O)OC1=CC=
CC2=C1OC(C2)(C)C

pIC50 4.9145
Bioactivity
Class

Inactive

In contrast, The Fig. 5 shows an example of a force plot
for compounds with predicted bioactivity class ’inactive’
classification results in Table VI.

Figure 5. SHAP Force Plot of Selected ‘Inactive’ Compound

The force plot findings indicate that there is a signif-
icant difference of -451.94 between the basis value and
the expected outcomes of f(x). This demonstrates that the
expected value for this compound is significantly less than
the average expected value derived from the data that was
utilized to train the model. Subsequently, it demonstrates
that no feature increases the prediction outcomes of these
data points in the bioactivity class ’inactive’ categorization
significantly. On the other hand, the ’blue’ arrow indicates
that features 602, 575, 422, and 247 have a value of 0. The
number 0 denotes the lack of substructures 602, 575, 422,
and 247, which lessens the impact on the compound data’s
specific ”inactive” bioactivity class prediction.

C. Molecular Docking
In general, the molecular properties of compounds such

as pIC50 are obtained manually through research results
from the wet lab. Molecular Docking is a method that
investigates interactions of ligand which is a small molecule
with a target protein’s binding site [16]. A lower binding
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affinity indicates a stronger binding interaction. Protein-
ligand docking in this research predicts the position and
orientation of an Alzheimer’s drug candidate compound as
ligand on the Acetylcholinesterase protein as receptor.

Molecular docking in this study was conducted using
AutoDock Vina [17]. The ligands were first prepared with
AutoDockTools by adding rotatable bonds. The protein,
serving as the receptor, was also prepared by adding polar
hydrogens and defining the grid box that covers the docking
area. The grid box used for molecular docking in this study
is shown in Table VII. The prepared output for both ligands
and receptors was saved in PDBQT format.

TABLE VII. GridBox Configuration

Configuration Value
size X 70
size Y 46
size Z 40

Center X -8.471
Center Y -41.155
Center Z -37.05

In this study, molecular docking is used to validate the
prediction results of the Random Forest model, for a new
dataset that does not yet have labels. The dataset used in this
analysis is a dataset taken through the PubChem database.
In this study, only compounds with the highest and lowest
pIC50 bioactivity values are selected to be conducted on
molecular docking.

TABLE VIII. Molecular Docking Results on The ’Active’ Ligand

Mode Affinity(kcal/mol) Dist from best mode
rmsd l.b. rmsd u.b.

1 -13.18 0 0
2 -11.42 3.32 10.33
3 -11.34 2.023 3.081
4 -11.02 1.609 2.223
5 -10.92 3.584 10.3
6 -10.7 2.843 4.706
7 -10.67 3.593 9.67
8 -10.6 1.594 2.529
9 -10.51 3.551 10.97

Std 0.7778 0.8326 3.6691

Figure 6. The docking pose of the ‘active’ ligand

Table VIII shows molecular docking result on an ‘active’
ligand with nine docking modes on the target protein
Acetylcholinesterase. The docking mode represents one
possible orientation and conformation of the ligand at the
protein target binding site. Based on these results, docking
mode 1 has the lowest affinity value at -13.18 kcal/mol,
indicating that the ligand can bind very strongly to the
protein target.

Fig. 6 shows the docking pose of the ’active’ ligand
located in the pocket binding site of target protein. This
shows that the compound chosen as the ’active’ ligand has
the potential to properly inhibit the biological function of
the target protein Acetylcholinesterase. In other words, the
compound could be a good candidate for an Alzheimer’s
drug.

TABLE IX. Molecular Docking Results on The ’Inactive’ Ligand

Mode Affinity(kcal/mol) Dist from best mode
rmsd l.b. rmsd u.b.

1 -5.845 0 0
2 -5.488 3.303 6.034
3 -4.694 3.34 5.013
4 -4.586 9.233 10.2
5 -4.44 8.409 10.04
6 -4.272 31.37 32.14
7 -4.202 8.214 10.15
8 -4.173 9.814 12.34
9 -4.123 28.61 29.96

Std 0.5802 10.2252 9.8350
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Figure 7. The docking pose of the ‘Inactive’ ligand

Table IX and Fig. 7 show the results of molecular
docking on ’inactive’ ligands. The lowest binding affinity
of the ’inactive’ ligand is -5,845 kcal/mol, which is much
higher than that of the ’active’ ligand. This shows that the
’inactive’ ligand has a weaker binding interaction than the
’active’ ligand.

Based on the visualization of the docking pose for
the ’inactive’ ligand, the position of the ligand is still in
the pocket binding site of the target protein. This would
make sense considering that all data collected through the
PubChem database is Acetylcholinesterase inhibitors. So,
all PubChem ligands that are predicted to be ’inactive’ also
still have the potential to inhibit the function of the pro-
tein target. However, the standard deviation values for the
RMSD lower bound and upper bound for ’inactive’ ligands
are much higher than those for ’active’ ligands. This shows
that the ’inactive’ ligand has much lower conformational
flexibility or specificity when binding to the protein target.
Conformational flexibility in ’inactive’ ligands can make the
ligand structure less able to lock properly at the binding site
of the protein target. This allows the inhibitory potential of
’inactive’ ligands to be lower compared to ’active’ ligands.

D. Web Application Development
The development of a web application has also been

done in this research. The web application developed with
Django framework and Python as the programming lan-
guage. The system was designed as a web application since
mostly bioactive prediction tools such as SwissTargetPre-
diction [18] were developed as web applications. The use
case diagram of the web application developed in this study
is shown in Fig. 8.

Figure 8. Use Case Diagram

Some interfaces and features of designed web applica-
tion are shown in the Fig. 9, Fig. 10, Fig. 11, Fig. 12, and
Fig. 13.

Figure 9. The Home Page

In the Home page, user can see the visualization of 3D
structure of target enzyme AChE. To obtain the bioactivity
prediction result, users can input the chemicals in the
SMILES string using a format file (.csv, .xlsx, or .txt) and
then click the predict button.

Figure 10. The Prediction Result Page
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The prediction result will be shown in a table and sorted
descending based on the pIC50. On this page users can
download the prediction result as csv file and proceed local
analysis for a compound.

Figure 11. SHAP local interpretation

The local analysis will show SHAP force plot for each
class ‘active’ and ‘inactive’.

Figure 12. Shap Summary

On the same page, users will get the SHAP Summary,
which shows a bar chart highlighting the most important
features.

Figure 13. Visualization the 3D structure of compound

In this web application, the user can also download
the 3D structure of compound in PDB format. Where, a
molecular docking analysis requires the compound’s three-
dimensional structure.

Conclusion
In Conclusion, the Random Forest Method can be

utilized as a suitable model for QSAR modeling in
Alzheimer’s drug discovery, considering ease of interpre-
tation and maintaining a respectable degree of prediction
accuracy (MAPE regression model 11.10% and AUC-ROC
classification model 84.77%). Aside from that, adopting
SHAP as an explanation model can help in both local
and global interpretation by comprehending the essential
elements of the Random Forest classification model pre-
diction outputs in QSAR modeling. Specifically, SHAP
interpretation helps identify the most important Morgan
Fingerprints, providing insights into the features that sig-
nificantly influence the model’s predictions. According to
the molecular docking validation result, the binding affinity
and the pIC50 have a negative correlation as expected.
Moreover, a web-based tool has been created in this study
to help with the screening process of Alzheimer’s medica-
tion candidate. For future studies, we will investigate the
stability of the docking poses of active and inactive ligands
through molecular dynamics simulations.
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