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Abstract: The integration of patient data is crucial in healthcare informatics. It involves organizing and integrating heterogeneous health
data from various Electronic Health Records (EHRs). Attribute alignment is a fundamental step in data integration. It involves mapping
data attributes across different datasets. Most of the data maintained in EHRs does not follow standard terminologies in healthcare.
Therefore, it becomes difficult to integrate patient health data from diverse data sources for generating historic medical records. The
research work carried out overcomes this problem by developing a vital sign ontology using OpenEHR health standards. It helps to
map the vital signs observations of the patients from its proprietary sources uniformly. The work also leverages the power of supervised
learning algorithms to automate the mapping of different health datasets to the proposed ontology. The approach is evaluated on patient
health datasets, considering both standard and non-standard datasets. The research work employs different machine learning algorithms,
such as Support Vector Machine (SVM), Naive Bayes, Logistic Regression, k-nearest neighbor (KNN), AdaBoost, and Neural network,
in order to evaluate the best algorithm for the proposed approach. The evaluation results conclude that Naive Bayes exhibits the highest
accuracy, with minimum misclassification rate, in both the training and validation phases for automatically mapping the health datasets
with the proposed ontology.
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1. Introduction
The integration of large volumes and a variety of patient

data is a major concern in the healthcare domain. Data
integration requires data interoperability. Healthcare data
comes from diverse sources, including hospitals, clinics,
laboratories, wearable devices, and patient-generated data. It
has resulted in interoperability issues, thus making data in-
tegration a challenging task. Semantic data integration aims
to preserve the meaning of the data between various data
sources. It provides meaningful data integration. Ontology
plays an integral role in performing semantic data integra-
tion [1]. It aids in the improvement of semantic interoper-
ability [2]. Ontology-based data integration aims to bridge
these differences by mapping data elements to ontology
concepts. Ontologies provide a structured and standardized
way to represent and describe medical concepts. It aids in
harmonizing and making sense of diverse health data for a
range of uses, such as clinical decision support, research
endeavors, and population health management. Common
healthcare ontologies include SNOMED-CT, LOINC, and
UMLS (Unified Medical Language System) [3]. These
ontologies provide a common vocabulary and semantic

framework for data integration.

The Ontology incorporates domain information via
classes, objects, and data properties. The classes represent
a concept of a domain. It is defined in the form of a
hierarchy. A class may have many sub-classes. The rela-
tionships provide the association between the concepts. The
attributes describe various features of the concept, and the
elements in the ontology are represented by its instances.
Integrating health data from various sources provides a com-
plete view of a patient’s medical history, leading to more
accurate diagnoses and personalized treatment plans. The
healthcare providers can identify trends, predict outcomes,
and take preventive measures, ultimately improving patient
outcomes. It also facilitates in medical research. However,
integration of patient data has significant challenges such
as data silos, interoperability, data privacy and legal is-
sues. Integrating machine learning with ontology alignment
creates a strong framework for clinical decision support
by integrating standardized data with advanced analytics
and improved accuracy. The integration of different data
sources needs to align their schemas to the Ontologies. In
healthcare sector also, the health records of the patients
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Figure 1. Mind map diagram of blood pressure concept by
OpenEHR [4]

are maintained by various health providers. The patient
EHR employs diverse vocabularies for the representation
of a concept. Thus, there is a need to develop an Ontology
that represents the global schema for data integration, and
map the data sources to the global schema. The research
work carried out proposed a Vital Sign Ontology (VSO) to
provide a unified view of patient vital signs data sources.

The work utilizes the openEHR [4] health standard for
development of ontology. It is an open standard that outlines
the management, store, retrieval, and exchange of health
data in electronic health records. It aims to standardization
of record to achieve universal interoperability among all
electronic health data.

OpenEHR provides an archetype model of a clinical
domain for describing clinical knowledge. An archetype
is a specification of different clinical concepts such as
ECG result, Blood Pressure, etc. The figure 1 shows the
mind map of OpenEHR archetype. The objective of this
research work is to design a Vital Signs Ontology (VSO)
based on openEHR health standard for schema alignment.
A schema mapping approach is applied to find the best ma-
chine learning algorithm to map different data sources with
the proposed VSO ontology. Schema mapping is a vital
technique in health informatics that affects data integration,
interoperability, and overall healthcare quality. It plays an
important role in transforming and normalizing data to
ensure consistency across different sources. This research
addresses the problem of schema mapping and alignment
of health data from different sources while ensuring the data
privacy.

2. Background
In the healthcare sector, data integration involves con-

solidating a large variety and volume of data from diverse

sources such as hospitals, clinics, and wearable devices. The
integration of these data sources is crucial for enhancing
clinical decision-making and patient care.

A. Challenges of data interoperability
Data interoperability within healthcare presents signifi-

cant challenges, primarily due to the disparate nature of the
systems and the lack of uniform standards. These challenges
hinder the effective exchange and utilization of critical
health information across different platforms.

B. The role of semantic data integration
Semantic data integration is a process in which meaning

is preserved across heterogeneous systems, allowing for the
uniform understanding and use of information. It is the key
mechanism to address the issues of interoperability through
the delivery of a context-rich integrated data environment.

C. Ontologies in healthcare
Ontologies are a key component of semantic data inte-

gration since they provide a structured and standardized way
to represent medical concepts, hence supporting harmoniza-
tion of very diverse health data. Other common healthcare
ontologies will be SNOMED-CT, LOINC, and UMLS for
a common understanding among different systems.

D. Development of a Vital Sign Ontology (VSO)
The research focuses on developing a Vital Sign On-

tology based on the openEHR standard. The VSO intends
to standardize the representation of vital signs data, align
various sources of data to a global schema, and facilitate
the effective integration of healthcare information.

E. Research objectives
The research is looking for better schema alignment and

the search for viable machine learning algorithms that will
perform the mapping of a set of data sources onto VSO.
This approach leverages the openEHR archetype model,
characterized by rich descriptions for different clinical con-
cepts. Specifically, two important points of research are as
follows:

1) Schema alignment: Align the data structure among
the various sources of health information into one
and a common unified schema, in this context be-
ing the VSO, which is aligned using the standard
definitions from the openEHR archetype model.

2) Machine learning mapping: The identification of the
most suitable machine learning techniques to be used
for mapping various data sources to the unified VSO
schema with accuracy.

3. Mathematical Representation
A. Symbols definition

Let us define the symbols used in the formulation:

• S - the collection of source schemas from multiple
data sources.
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• D - the data set collected from these sources.

• V - the schema of the VSO.

• A - a set of openEHR archetypes, which define the
structure and semantics that V is supposed to meet.

• f - the function of the map done by the machine
learning algorithm, mapping data D from schema S
to V .

• θ - the parameters of the machine learning model that
is utilized in f .

B. Formula for mapping function
The mapping function f is defined by:

f (D; θ) = V̂ (1)

where V̂ is the predicted alignment of data D according to
the VSO schema V , based on the parameters θ.

C. Objective function to optimize
The objective of the research is to find the optimal

parameters θ that minimize the loss function L, which
measures the discrepancy between the aligned data V̂ and
the VSO schema V:

θ∗ = arg min
θ

L(V, V̂) (2)

where L could be a function that measures how well V̂
aligns with V , incorporating various factors like the fidelity
of mapping, the semantic accuracy based on A, and possibly
other domain-specific criteria.

4. RelatedWork
Several ontology-based solutions for data exchange and

integration among various clinical data sources has been
proposed in the literature. Kock-Schoppenhauer et al. [] per-
formed integration of clinical data at heterogenous isolated
system using ontology and semantic web technologies. Peng
et al. [5] performed an ontology-based solution for inte-
gration of heterogeneous health services and data captured
in home environment. Many studies involve transformation
of healthcare data to standard terminologies to enable its
exchange. Kiourtis et al. [6] performs ontology alignment
to map the health care data in RDF format to HL7 FHIR.
Peng et al. [5] proposed an Ontology using HL7 FHIR
interoperability standard to integrate health data sources
with various other web-based health services. Cimmino
et al. [7] provides semantic interoperability of various
IoT devices through ontology mappings. It represents the
specifications of these devices in RDF data format and
provides SPARQL query interface to discover and access
IoT devices. Gupta et al. [8] performed the machine learning
approach to map the schema of different data sources. Frid
et al. [9] uses the ontologies to consolidate the clinical data
for clinical research. The traditional methods of schema
mappings are rule based, lexical based etc. These techniques
are simple and easy to implement. They are highly accurate

for specific domains where rules are well-defined. However,
these techniques are inflexible and difficult to maintain as
ontologies evolve. They are prone to false positives due
to homonyms and synonyms. Machine learning offers a
transformative approach to addressing the limitations of
traditional methods in both EHR data integration and on-
tology alignment. Machine learning algorithms are capable
of efficiently processing large amounts of data, allowing
for scalable and automated integration and alignment op-
erations. They can continuously learn and adapt to new
data, resulting in increased accuracy over time. Ontology-
based solutions for integration of health data are widely
studied in the past. The table I represents the related studies
on ontology alignment and data integration. However, the
work performed in the past does not define an ontology to
record the basic vital signs of the patients such as Blood
Pressure, temperature, pulse pressure, etc. These vital signs
observations are the first step of any clinical evaluation
and are the prime indicator of patient health readings. The
research work carried out proposed a vital sign ontology
according to the OPENEHR health standard for integrating
patient data.

5. Methodology
The work carried out presents the methodology of VSO

ontology and thereafter it maps the different sources to the
proposed ontology using machine learning algorithm.

A. Vital sign ontology development
The development of an ontology involves identification

of concepts, classes and data properties. The work carried
out developed an ontology for the concept of vital signs
of a human body. The data properties of the ontology
are designed in accordance with the data properties of the
OpenEHR health standard archetype for different concepts
of vital signs. It provides the global view of underlying data
sources for data integration.

Vital signs indicate the status of the essential functions
of the body. The vital signs are regularly monitored by
health professionals for assessing the health of a person. The
OpenEHR standard provides a template that contains the
various data elements of a vital sign’s concepts. There are
four prime vital signs of the human body: Blood Pressure,
pulse pressure, body temperature and respiratory rate.

The Blood pressure [19] is the measurement of arterial
blood pressure of an individual. The concept of blood
pressure is described in four different attributes accordance
to OpenEHR health standard. These are Systolic (sys),
Diastolic (dys), Mean Arterial Pressure (MAP) and Pulse
Pressure (PP). Systolic is a measure the maximum arterial
blood pressure. It is the contraction phase of the cardiac
cycle. Diastolic is measures the minimum arterial blood
pressure. It is the rest phase of the cardiac cycle. MAP is the
average arterial pressure that occurs over the entire course
of the cardiac cycle of the heart, and PP is the difference
between Systolic and Diastolic observation. The other prime
vital signs considered in this research are Body temperature
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TABLE I. Related studies on ontology alignment and data integration

Reference Year Methodology Key Findings
Mitra et al. [10] 1999 Rule based approach written in first order

logic
Support name matching and structural
matches on is-a hierarchy

Wen et al. [11] 2000 Uses schema design information as meta-
data for training neural network

Uses attribute cluster to produces similar-
ity score to match it attribute in another
schema

Madhavan et
al. [12]

2001 Linguistic (attribute name) and structural
(context) similarity

Performs Schema based mapping using
name, data type and constraints of data
sources.

Fagin et al. [13] 2009 It is a constraint-based approach. It uses
the constraints to create a query on source
schema and create a query on target
schema. The schema is mapped using
value correspondence

The approach is used for relational
databases with constraints defined on
schema value

Knoblock et
al. [14]

2012 Uses Probabilistic and Rule based ap-
proach

Provides mapping between data sources
and Ontology. It computes average proba-
bility of occurrence of an attribute to target
class

Birgersson et
al. [15]

2016 Approach used for mapping XML data
formats using xpath.

Faced problems such as mapping of new
unseen xpath, incorrect mapping with sim-
ilar attribute name but different values.

Rouces et al. [16] 2016 It defines the heuristics and uses linguistic
approach.

It finds the complex relationship between
arbitrary linked datasets and mediated
schema.

Rajkomar et
al. [17]

2018 Scalable and accurate deep learning with
electronic health records

Demonstrated the scalability and accuracy
of deep learning models in predicting mul-
tiple medical events using EHR data in
real-world clinical settings.

Xu et al. [18] 2022 Deep learning for EHR Comprehensive coverage of use of deep
learning for EHR

(temp) [20], Pulse or Heart rate (rate) [21], and Respiration
rate (resp) [22].

A variety of tools are available for Ontology develop-
ment, such as Hozo [23], Swoop [24], etc. Protege is one
of the open-source and widely used ontology development
editors [25], [26]. It provides a graphical user interface
for designing an ontology. It facilitates the building of an
Ontology in various data formats such as OWL, XML,
RDFS, etc. It provides a plug-and-play environment, which
assists the fast development of an application. It is supported
by a large community of users such as academic and
business communities .

The proposed Vital Sign Ontology design consists of
a class called Observation. It represents the measurements
of various vital signs of a patient. The data properties
of the observation class are the four main vital signs of
the human body. These are Blood Pressure, Temperature,
Heart rate, and Respiratory rate. The data properties of an
ontology represent a relation that relates an entity to the
datatype literals, such as date, number or a string. The data
properties of the vital sign observation class are designed
in accordance with the data provided by the OpenEHR

Figure 2. The graphical representation of proposed vital sign ontol-
ogy showing classes and data properties

standard. The graphical representation of VSO in Protege
is shown in figure 2.

The VSO in Protege is implemented with two different
classes: Thing and Observation.
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Figure 3. Architecture of SMOD approach

1) Thing class: The Thing class is a standard class
in Protégé. All the other classes in the Protégé are
defined under Thing class. It acts as a superclass.

2) Observation class: This class represents various vital
sign observations of the patients. It has various data
properties such as sys, dys, pp, map, rate, temp, and
resp. The data properties relate the observation class
with the individual data instances.

B. Schema mapping
The schema mapping is performed by mapping the data

source attributes to the corresponding ontology-mapped
attributes. The proposed approach uses the SMOD [8]
approach to map the proposed vital sign ontology. Figure 3
depicts the architecture of SMOD. The approach has three
different phases.

1) Data extraction
This layer retrieves the data from different sources that

encompass a wide range of stored data types. The data
sources may be from three different category of data source,
that are Standardized data, non-Standardized data and Data
Streams. The Standardized data is the data that is stored
and maintained in the pre-defined data format. The Fast
Health Interoperability Resources (FHIR) is one of the the
standard data format created by Health Level Seven(HL7)
for easy exchange of EHR among the sources, whereas non-
Standardized data is created by different organizations in
their proprietary data format. This data may differ in their
schema and data formats, and Data streams are flow of data
generated by the data sources. It represents the data flow
from producer to consumer in real time. The data stream
can be divided into multiple windows. A record in a stream
consists of the key, value and timestamp. The data is pre-
processed and fetched using wrappers from their respective
sources.

2) Pre-processing
The pre-processing is done to prepare the data for

classification. It involves two key steps.

1) Data cleaning, PCA and Feature Selection: It in-
volves identification and removal of anomalies of
the datasets. It checks the data sources for missing
values, noisy and incorrect data, along with data
cleaning, the proposed model implements principal
component analysis(PCA) and feature selection in
the preprocessing.

Data Standardization
To ensure each feature has zero mean and unit
variance, standardize the data using:

Z =
X − µ
σ

(3)

where X is the original data, µ is the mean, and σ
is the standard deviation of each feature.

CovarianceMatrix Computation
The covariance matrix of the standardized data is
computed as follows:

Cov(Z) =
1

n − 1
ZT Z (4)

where ZT is the transpose of Z, and n is the number
of data points.

Eigenvalue Decomposition
Compute the eigenvalues and eigenvectors of the
covariance matrix. The eigenvectors represent the
directions of maximum variance, and the eigenvalues
represent the magnitude of the variance in those
directions.

Select Principal Components
Sort the eigenvectors by decreasing eigenvalues and
choose the top k eigenvectors to form a projection
matrix P.

Transform the Original Data
The transformed data T in the new feature space
defined by the principal components is given by:

T = ZP (5)

L1 Regularization (Lasso)
The objective function in Lasso regularization is
formulated as:

min
β

{
1

2n
∥Y − Xβ∥2 + λ∥β∥1

}
(6)

where Y is the output vector, X is the feature matrix,
β are the coefficients, λ is the regularization param-
eter, and ∥β∥1 is the L1 norm of the coefficients,
encouraging sparsity.

Adjusted Standardization Formula
To enhance the robustness of the model against
outliers, we adjust the standardization of features
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using the median and median absolute deviation
(MAD). The formula is given by:

Z =
X −median(X)

MAD(X)
(7)

where Z represents the standardized feature values, X
is the original feature data, median(X) is the median
of each feature, and MAD(X) is the median absolute
deviation of each feature.

Lasso Regularization with Dynamic Parameter
We introduce a dynamic regularization parameter in
Lasso regression that adapts based on the spread of
the coefficients:

λ = λ0 · e−α·std(β) (8)

where λ is the adaptive regularization parameter, λ0
is the base level of the regularization parameter, α is
a scaling factor that influences the rate of exponential
decay, and std(β) is the standard deviation of the
regression coefficients, β.

2) Computation of training data: Training data for the
prediction of Ontology-mapped global attributes is
computed. The health data sources use their propri-
etary attribute names. The automation of the schema
mapping process requires training data that can pre-
dict the global attribute names of the data sources.
The training data is created by performing the statis-
tical computations (min, max, avg, quartiles) on the
attributes of each data sources. The statistical com-
putations and their corresponding attribute names are
used as the training dataset.

3) Machine learning classification
The machine learning algorithm is applied on the train-

ing data that is created in pre-processing phase. The model
is trained to predict the global attribute classes.

Support Vector Machine (SVM)

minimize
1
2
∥w∥2 +C

n∑
i=1

ξi (9)

subject to yi(w · xi + b) ≥ 1 − ξi, ξi ≥ 0 (10)

K-Nearest Neighbors (KNN)

d(xi, x j) =

√√√ d∑
k=1

(xik − x jk)2 (11)

Naı̈ve Bayes

P(y|x1, . . . , xn) =
P(y)P(x1, . . . , xn|y)

P(x1, . . . , xn)
(12)

Logistic Regression

σ(z) =
1

1 + e−z (13)

z = w · x + b (14)

Neural Network

y = f (w · x + b) (15)

AdaBoost

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
(16)

6. Experiment Setup
The research work uses the dataset having the ob-

servations of one of the vital signs of the human body
i.e., Blood Pressure (BP). The datasets are mapped to
the proposed Ontology approach using SMOD approach.
The mapping accuracy on SMOD is evaluated on vari-
ous classification algorithms for mapping the data source
schemas. The different classification algorithms used for
evaluation are: SVM, K-NN, Naive Bayes, Logistic regres-
sion, Multi-layer Perceptron (MLP) Neural Networks, and
AdaBoost. Naive Bayes, SVM, Logistic Regression, KNN,
AdaBoost, and Neural Networks were chosen on the basis
of their wide acceptability for handling linear and non-
linear classification. Naı̈ve Bayes is based on probabilistic
measures of similarity. Its ability to handle large datasets
quickly makes it useful for initial alignment steps and for
generating probabilistic matches that can be refined further.
SVM is applied to ontology alignment by learning a deci-
sion boundary that separates matching from non-matching
concept pairs based on feature vectors derived from the
ontologies. Their ability to handle non-linear relationships
using kernel functions is particularly useful in capturing
complex similarities between concepts. Logistic Regression
probabilistic approach and is helpful where concepts from
multiple ontologies found equivalent. KNN can determine
alignment based on local patterns in the data, which is
helpful when dealing with heterogeneous ontologies with
varying structures. AdaBoost can combine different simple
classifiers to improve alignment accuracy. It can handle
diverse and complex relationships between ontologies. The
neural networks capture complex patterns and relationships
in data through multiple layers of abstraction. They are
highly flexible and capable of learning non-linear mappings.

A. Testbed
The proposed approach is applied to the data sources

containing BP observations of a patient. According to the
OpenEHR health standard, the BP observation is comprised
of four different attributes, these are systolic (sys), diastolic
(dys), mean arterial pressure (map) and pulse pressure (pp).
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The configuration of the machine is 8 GB of Random
Access Memory, 1.80 GHz Core i5 processor and 64-bit
Windows 10 Operating system.

The datasets utilized for the attribute mapping approach
are gathered from three distinct categories of data sources.
These are standardized HL7 Fast Healthcare Interoperability
Resources (FHIR) data format (JSON), non-standardized
data format (.csv files), and artificial data streams (key-value
pair). The datasets store the data in the different data models
and have different attribute names to store BP observations.
The table II describes different characteristics of datasets
used for experimentation such as type, data format and BP
Attribute names mentioned in respective datasets such as in
Cardio dataset Ap hi attribute represents for systolic BP
and Ap lo represents diastolic attribute.

Different wrappers are implemented to access the re-
quired BP observations from different categories of data
sources. There is no dataset available that exclusively stores
the BP observations of the patients. Therefore, the desired
BP attributes are selected from the available datasets. All the
datasets have both Systolic BP and Diastolic BP. However,
Mean Arterial Pressure (MAP) and Pulse Pressure (PP) ob-
servations was not found in any of the datasets. Therefore,
the values of MAP and PP are computed using the standard
formula, as shown in equations 17 and 18.

MAP =
S YS + 2 ∗ DYS

3
(17)

PP = S YS − DYS (18)

The details of the dataset used are as follows:

1) Dataset category-1: Health Standard HL7 FHIR data
format
The HL7 FHIR data format adheres to the JSON data

format standard [27]. Only a single artificial record is
created in this data format. The wrapper is implemented
to fetch the desired BP attributes and their readings. This
dataset contains both systolic and diastolic BP attributes.

2) Dataset category-2: Non-Standard datasets from online
repositories
The non-standard BP observations are taken from two

datasets. The first is referred to as ‘FemtoDos’ [28]. It
is associated with the prediction relationship between the
BP and Body Mass index of patients and another dataset
is taken from the cardiovascular disease dataset [29]. The
datasets are comprised of 225 and 70,000 records for BP
readings respectively. Both of the datasets contain systolic
and diastolic BP attributes.

3) Dataset category-3: Artificially created data streams
The artificial data stream is created on Kafka pro-

ducer [30]. It is in key-value pair format. It comprises

of total 174 total number of instances. The data stream
contains systolic and diastolic attributes.

The overall size of the dataset comprised of 70,400
records of BP observations of different patients.

B. Performance evaluation
The performance of the classification algorithms is eval-

uated on the basis of the accuracy achieved. The accuracy of
a classifier is computed using confusion matrix parameters
and k-fold cross-validation accuracy.

C. Data-preprocessing
Data pre-processing involves data cleaning. Data clean-

ing is the process of transforming and filtering raw data into
a usable form. It is performed to remove noisy and incorrect
observations from the data set. The dataset contains negative
and inaccurate blood pressure readings. The missing values
are replaced with the mean value of the attribute and
the dataset anomalies are removed using the imputation
technique.

The data pre-processing is also performed to generate
the training data. It involves computation of statistical
measures such as mean, min, max, and quartiles for each
attribute in the dataset. These statistical calculations for
each attribute are stored as features in individual files,
each designated with a target class of SYS, DYS, PP, or
MAP. The training data computed requires the statistical
features from large number of sources in order to increase
the size of training data. Hence, to address this challenge,
the dataset from each data source is partitioned into sets of
50 instances. The statistical computations of each group are
computed to form training data. Thus, for a dataset of size
70,400 rows, the final training dataset produced has a total
of 1,408 instances.

7. Experiment Results
The performance of the proposed ontology on SMOD

methodology is evaluated on six widely used classification
algorithms such as SVM, KNN, Naı̈ve Bayes, Logistic
Regression, Neural Network and AdaBoost. The evaluation
is conducted based on the various parameters; True Posi-
tive (TP), True Negative (TN), False Positive (FP), False
Negative (FN); shown in table III.

Based on these parameters, we evaluated following
performance metrics:

1) Accuracy: It is the simple & most intuitive metric.
It measures the proportion of correctly predicted
instances out of the total instances.

Accuracy =
T P + T N

Total Instances
2) Precision: It measures the accuracy of the positive

predictions made by a model. It tells us how many
of the predicted positive instances were actually
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TABLE II. Experimental dataset for evaluation of SMOD

Dataset BP[14] FemtoDos[15] Cardio[16] BP Stream
Type HL 7 FHIR standard Non-Standard Non-Standard Artificial stream
Format JSON CSV CSV Key-value

BP Attributes Systolic: systolic BP,
Diastolic: diastolic BP

SBP: systolic BP,
DBP: diastolic BP

Ap hi: systolic BP,
Ap lo: diastolic BP

Sys: systolic BP,
dys: Diastolic BP

TABLE III. Model evaluation parameters

Parameter Name Description
TP No. of correct positive predictions.
FP No. of incorrect positive predictions.

FN No. of actual positive cases that
were incorrectly predicted as negative

TN No. of correct negative predictions

positive.

Precision =
T P

T P + FP
3) Recall: It measures how well the model can identify

all the positive instances in the dataset. It is also
known as sensitivity or true positive rate.

Recall =
T P

T P + FN
4) F1 Score: It is the harmonic mean of Precision

& Recall. It provides a single metric that balances
both concerns, giving a better sense of the model’s
performance when you need to consider both false
positives and false negatives.

F1 S core = 2 ×
(

Precision × Recall
Precision + Recall

)
The comparison of Accuracy, Precision, Recall and F1-

score of classification algorithms are presented in table IV.

We conducted a comprehensive evaluation of several
machine learning algorithms to determine their effectiveness
in classification tasks. We used Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), Naive Bayes, Logis-
tic Regression, Neural Network, and AdaBoost for perfor-
mance comparison. The performance of these algorithms
was assessed based on four key metrics: accuracy, precision,
recall, and F1 score.

The SVM demonstrated exceptional performance,
achieving an accuracy of 99.6%, precision of 99.8%, recall
of 99.4%, and an F1 score of 99.5%. These metrics indicate
that the SVM is highly reliable and robust in classifying the
data correctly. Similarly, Naive Bayes showed outstanding
results with an accuracy of 99.6%, precision of 99.7%,
recall of 99.5%, and an F1 score of 99.4%. The KNN
algorithm also performed well, with an accuracy of 98%,
precision of 98%, recall of 96%, and an F1 score of
97%, though it was slightly less effective in identifying
positive instances compared to SVM and Naive Bayes.

TABLE IV. Comparison of Confusion matrix parameters on different
classification algorithms

Algorithm SVM KNN Naive
Bayes

Logistic
Regression

Neural
Network AdaBoost

Accuracy (%) 99.6 98 99.6 94 47 74.5
Precision (%) 99.8 98 99.7 94 42 64

Recall (%) 99.4 96 99.5 93 47 75
F1

Score (%) 99.5 97 99.4 94 39 67

Logistic Regression also gives the good accuracy of 94%,
precision of 94%, recall of 93%, and an F1 score of
94%. This indicates that Logistic Regression is a reliable
model but has certain limitations when compared to SVM,
Naive Bayes, and KNN. The Neural Network exhibited
significantly lower performance, with an accuracy of 47%,
precision of 42%, recall of 47%, and an F1 score of 39%.
AdaBoost performed moderately, achieving an accuracy of
74.5%, precision of 64%, recall of 75%, and an F1 score
of 67%.

The cross-validation is performed to analyze the ability
of the algorithm for unseen datasets. It helps to identify the
issues such as overfitting. It also provides insights into the
generalization of the model. The average accuracy achieved
for cross-validation scores for values of k= 5 and k=10 is
mentioned in the table V. The results reveal the highest
accuracy with a cross-validation score of 10.

The accuracy results of all six classification methods in
predicting the global ontology attribute label is compared in
figure 4. The experiment results revealed that SVM achieved
a CV score of 10, accurately classifying all attribute labels
with a accuracy of 99.7%. On the other hand, Naive Bayes
and kNN both attain 99.1% accuracy. The logistic regres-
sion yields 90.05% accuracy while the multilayer perceptron
neural network exhibits 80.5% accuracy. The accuracy for
AdaBoost comes out to 81%.

The experimental results of the confusion matrix and
cross-validation parameters reveal that both SVM and Naı̈ve
Bayes provides the highest accuracy in predicting the cor-
rect global class attribute.

8. Validation of results
Hypertension is widespread among individuals with car-

diovascular, kidney, and diabetic disorders [31]. It elevates
the likelihood of both kidney and cardiovascular ailments.
It has been seen that patient having diabetes are more likely
to have kidney disorders. The abnormal BP is one of the
major factors of causing these diseases [32]. Thus, the
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TABLE V. Comparison of average accuracy on different cross
validation parameters

Algorithm Cross
Validation K Average

Accuracy

SVM 5 - 99.41
10 - 99.7

Naive
Bayes

5 - 98.32
10 - 99.1

Logistic
Regression

5 - 88.61
10 - 90.05

Neural
Network

5 - 49
10 - 80.5

AdaBoost 5 - 79.1
10 - 81

KNN

5 3 98.81
5 5 98.62
5 7 96.91
5 9 92.83
10 3 99.1
10 5 98.91
10 7 98.33
10 9 98.82

Figure 4. Comparison of accuracy in predicting ontology attribute

datasets of cardiovascular, Diabetes and Kidney disorder
may have different ranges of BP values in comparison
to other datasets having normal BP readings. Hence, to
ensure result generalization and mitigate overfitting, the
experimental findings are validated using datasets covering
various diseases i.e., Diabetes, Heart, and Kidney.

A. Validation datasets
The experimental results are validated on three dif-

ferent disease datasets. These are Diabetes [33], Heart
problem [34], and kidney disease [35]. The details of
the validation datasets are presented in table VI. The
dataset size consists of 304 heart patients, 768 of diabetes
patient records, and 400 of kidney patient records. The

TABLE VI. Validation dataset

Dataset Instances BP attributes
Heart 304 trestbps

Diabetes 768 BloodPressure
Kidney 400 bp

desired Blood Pressure attributes are selected from these
datasets. To increase the training data size, each attribute
is partitioned into a group of 10 data size. The statistical
computations are applied to each group and validation is
performed for each group of a disease dataset.

B. Validation results
The validation results of the proposed work are shown in

table VII. The table shows the misclassification of predicted
attributes for different attributes of validation datasets. It
shows the percentage of misclassification occurring for
different classification algorithms on validation datasets. It
comprises of three types of attribute class labels. The local
attribute name is the attribute label used in the validation
dataset. Actual attribute label is the expected attribute name
based on the ontology, and predicted value give the response
we get on applying the algorithm.

The validation outcomes shows that most of the al-
gorithms has marginal misclassification rate of less than
2% . It has been revealed that Naive Bayes consistently
predicts attribute labels accurately across all three disease
datasets with very less misclassification rate, whereas other
classification algorithms fail to achieve higher accuracy for
at least one of the disease datasets. Although SVM exhibits
the highest training accuracy, it fails to accurately identify
all three datasets during validation, suggesting potential
overfitting of the training data. As illustrated, the logistic
regression technique classifies only a single dataset, and
AdaBoost classifies only two datasets accurately. With all
three disease datasets, the MLP neural network approach
shows poor accuracy in predicting the global attributes. It
shows the highest rate of misclassification. MLP neural
network performs similar to the lower accuracy obtained
throughout the training and validation phases.

The validation accuracy score on different disease
datasets is shown in figure 5. The results show that Naive
Bayes reliably predicts attribute labels across all three
disease datasets, whereas other classification algorithms
demonstrate lower accuracy in identifying attributes across
all the disease datasets.

9. Discussion
The experimental results for mapping the proposed

ontology demonstrated that the accuracy of SVM and Naı̈ve
Bayes classification algorithms is the highest using both
confusion matrix and cross-validation. The MLP neural net-
work and AdaBoost showed lower accuracy in both cases.
A neural network requires a huge amount of training data
to acquire sufficient model accuracy. Therefore, the neural
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TABLE VII. Validation Results

Classifier Name Dataset Name Attribute Class Label Misclassified(%)Local Actual Value Predicted Value

SVM
Diabetes BloodPressure DYS DYS/PP 29.7
Heart trestbps SYS SYS 0.2
Kidney bp DYS DYS 0.4

KNN
Diabetes BloodPressure DYS DYS/PP 5.4
Heart trestbps SYS SYS 1.1
Kidney bp DYS DYS 1.3

Naive Bayes
Diabetes BloodPressure DYS DYS 0.2
Heart trestbps SYS SYS 0.3
Kidney bp DYS DYS 0.3

Logistic regression
Diabetes BloodPressure DYS PP 54.1
Heart trestbps SYS SYS 1.1
Kidney bp DYS PP 35.2

Neural Network
Diabetes BloodPressure DYS PP 91.9
Heart trestbps SYS SYS 76.4
Kidney bp DYS SYS 81.3

AdaBoost
Diabetes BloodPressure DYS DYS 1.6
Heart trestbps SYS DYS 20.6
Kidney bp DYS DYS 0.8

Figure 5. Comparison of validation accuracy on different disease
datasets

network shows low classification accuracy in the proposed
approach. Similarly, AdaBoost is sensitive to outliers that
prevent it from giving high performance.

The validation results indicate that only the Naive Bayes
method achieves 99.6% accuracy in predicting attribute
labels across all three validation datasets. The reason of it
is that the SMOD approach utilizes statistical measures as
training features so there is high possibility that the test data
BP attribute values lie in their correct ranges. The difference
between experimental and validation results of SVM may
be that the SVM overfits the training data, whereas the

Naive Bayes algorithm does not overfits. Thus, results of the
evaluation of the SMOD over proposed Ontology concludes
that Naive Bayes shows better accuracy and is considered
as one of the promising algorithms among the six for the
generalization of the proposed schema mapping.

10. Conclusions
The research work carried out proposed the vital signs

ontology. The proposed ontology serves as a mediated
schema for data integration from diverse health data
sources. The query engines use mediated schema for query-
ing different data sources. The schema mapping approach
called SMOD map the vital signs of the patients to their
corresponding ontology attributes. The ontology-based data
integration approach provides global data definitions that
enable the access of different data sources in a consistent
manner.

The key contribution of the research work carried out
includes automation in the ontology alignment process,
reducing the need for manual intervention and speeding
up the integration process. It also enhances health Data
interoperability by enabling seamless data exchange and
integration across different health data. The work done
provides a scalable and efficient algorithm that can handle
large volumes of EHR data, making it feasible for use
in large healthcare organizations and research institutions.
Integrating patient health data raises several ethical con-
siderations, particularly around data privacy, security, and
maintaining patient confidentiality. The proposed approach
ensures patient data privacy by computing and exposing
statistical properties of patient’s health attribute observa-
tions, instead of actual health observations.This research
would help in improved clinical decision making, public
health monitoring, supports personalized medical care and
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enhanced clinical research. The proposed work is limited
to the primary vital signs of the patients. However, it can
be further extended to integrate much more medical records
such as ECG signals, text and medical images, etc.
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