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Abstract: Efficient crop management and treatment rely on early detection of plant stress. Imaging sensors provide a non-destructive and
commonly used method for detecting stress in large farm fields. With machine learning and image processing, several automated plant
stress detection methods have been developed. This technology can analyze large sets of plant images, identifying even the most subtle
spectral and morphological characteristics that indicate stress. This can help categorize plants as either stressed or not, with significant
implications for farmers and agriculture managers. Deep learning has shown great potential in vision tasks, making it an ideal candidate
for plant stress detection. This comprehensive review paper explores the use of deep learning for detecting biotic and abiotic plant
stress using various imaging techniques. A systematic bibliometric review of the Scopus database was conducted, using keywords to
shortlist and identify significant contributions in the literature. The review also presents details of public and private datasets used in
plant stress detection studies. The insights gained from this study will significantly contribute to developing more profound deep-learning
applications in plant stress research, leading to more sustainable crop production systems. Additionally, this study will assist researchers
and botanists in developing plant types resilient to various stresses.
Keywords: Deep learning, Imaging techniques, Machine vision, Machine learning, Plant phenomics, Plant stress.

1. INTRODUCTION
A. Background and Motivation

Plants are an essential component of life on earth,
providing vital resources like oxygen. However, they can
experience plant stress, which can hinder their performance
and function [1]. Early detection of plant stress is crucial
for farmers to reduce agriculture losses [2, 3]. There are
various methods for detecting plant stress, including visual
observation and artificial intelligence-based techniques [4].
By detecting crop health issues, stress on yield, and im-
proving irrigation and fertilizer application, this technology
can help develop stress-tolerant crops and combat diseases
and pests [5, 6]. However, some challenges still exist in
designing robust and universal models that can identify
stress in different types of plants under diverse conditions
[7]. Incorporating sensor data and environmental parameters
into scalable and real-time plant stress detection models for
large-scale farming is also necessary [8]. It’s worth noting
that exposure to different external elements can negatively
affect plants and may be considered as plant stress [9].

B. Bibliometric Review
Bibliometric analysis is one of the most used and

rigorous ways to explore and analyze extensive scientific

information. It also helps us to untangle the developmental
perspectives of that particular domain and reveal the new
development directions within the same field [10]. To con-
duct a thorough literature review, one can explore several
databases, including Scopus, Science Direct, Mendeley,
Research Gate, and Google Scholar, among others. In this
particular study, we opted to utilize the Scopus database,
and the database was accessed on 28 April 2024. The
literature review presented in this paper encompasses all
relevant studies available up to that date. This paper uses
a keyword-based search approach for the literature study.
The keywords employed in this literature review include
“plant stress detection”, “abiotic stress,” “biotic stress,”
“plant stress,” “deep learning,” and “machine learning.”
For a broad search “plant stress detection” keyword is
used with “Abiotic stress” and “Biotic stress” keywords to
further categorize studies based on plant stress types. Other
keywords such as “plant stress,” “machine learning,” and
“deep learning” are used to narrow down and restrict the re-
search to automated vision-based applications in plant stress
detection. TABLE I presents a list of primary keywords
used to carry out this plant stress study review. Visualization
of bibliometric keyword-based analyses using VOSviewer
software is shown in Figure 1. The survey of the literature
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is carried out for a period of 2020 to 2024.

TABLE I. List of keywords for bibliometric review

Keywords Number of Publications

Plant stress detection 1,972
Abiotic stress 121
Biotic stress 63
Plant stress 87
Machine learning 69
Deep learning 56

Figure 1. Keyword analysis visualization

Figure 2. Plant stress using deep learning (DL) documents by year

According to the results of this bibliometric analysis,
plant stress research is a rapidly evolving area in the
scientific community, with a growing number of researchers
focusing on deep learning (DL) as evident from Figure 2.
In this review paper, the objectives are:

1) To identify the publication trends in deep learning-
based plant stress studies using keyword-based bib-
liometric analysis.

2) To review, analyze, and categorize the deep learning-
based plant stress studies based on stress type and
imaging techniques.

3) To present a brief summary of publicly available
datasets for plant stress detection.

This paper presents a general deep-learning pipeline for
plant stress detection and commonly used deep-learning
models for plant stress detection in section 2. The next
section 3 discusses applications of deep learning studies
based on image types. Section 4 presents deep learning
studies based on plant stress types. Publicly available
datasets for plant stress detection are covered in section 5.
Lastly, Section 6 presents conclusions and future research
directions in the study area.

2. DEEP-LEARNING PIPELINE FOR PLANT
STRESS DETECTION
According to Latif et al. [11], traditional plant stress de-

tection involves manual inspection and relies on experience.
This approach can be time-consuming and requires trained
personnel, as noted by Khalifani et al. [12]. Fortunately,
recent advancements in deep learning techniques have made
it possible to automate the process using a UAV-based
camera system, significantly reducing the time required.

Plant stress detection using deep learning relies primar-
ily on plant or plant leaf images as input. The process
involves several stages, beginning with image acquisition.
The next step is image pre-processing, which includes noise
reduction, contrast enhancement, image resizing, colour
correction, segmentation, feature extraction, and more [13].
Once completed, an image dataset is created with different
sets for training, validation, and testing. These sets are then
fed into the deep learning model for training and testing.
The Figure 3 below illustrates the general methodology
for plant stress detection using deep learning. Advanced
technology can be utilized to detect plant stress, which can
be detrimental to their health and growth.

A. Image Acquisition and Pre-Processing
Plant stress detection involves different image acquisi-

tion techniques; each technique covers a various range of
electromagnetic spectrum. Visible images are used to detect
stress by leaf color or chlorosis. In multispectral imagining,
images are captured in different spectral bands. Hyper-
spectral images capture detailed information but require
high computational power to process [14]. Thermal images
capture temperature changes in plants, but they are affected
by environmental temperature [15]. Fluorescence imaging
detects photosynthesis efficiency by measuring chlorophyll
fluorescence [16]. Also, X-ray or MRI imaging can be
used to examine internal structures, but it is costly. Image
pre-processing is an essential task in deep learning-based
plant stress detection. It involves processing raw image
datasets to prepare for training artificial neural networks.
Techniques involved are image enhancement, formalization,
noise reduction, color space conversion, image resizing,
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Figure 3. Plant stress detection using deep learning

data balancing, edge detection, and feature extraction. Im-
age dataset augmentation increases the diversity of dataset
[17].

B. Common Deep Learning Models for Plant Stress Detec-
tion
Deep learning is a powerful tool that can help identify

and categorize different stress conditions that can harm
plants [18] [19].

1) Convolutional Neural Networks
Among the most commonly used deep learning archi-

tectures is the convolutional neural network (CNN), which
is highly effective in extracting spatial characteristics from
images related to plant stress [20]. By implementing CNNs,
plant stress symptoms can be detected with greater precision
due to their advanced pattern and texture recognition capa-
bilities in visual data [11]. Ünal [21] used various image
processing techniques, including noise reduction, contrast
augmentation, and image normalization. They then used
shape detection, texture-based analysis, and color-based
image segmentation for feature extraction. By utilizing
the VGG16 and VGG19 models, they could classify rice
salinity stress based on its severity. The study found that

combining image enhancement, feature extraction, and deep
learning resulted in an accuracy of 99.04% in detecting
salinity stress with severity.

Classic CNN is less effective on complex patterns and
large datasets. ResNet is a deeper version of CNN that
performs well on vanishing gradient problems compared
to classic CNN [22]. ResNet performance remains as it is
after increasing the depth of the network. It detects fine
features in images and avoids performance degradation due
to the deepness of the network [23]. ResNet can be used
in multiclass plant stress classification, but it requires high
computation power due to depth. Inception networks like
GoogleNet include multiple convolution layers in one layer
due to these local and global features being captured simul-
taneously. GoogleNet can be used for pant stress images
of different resolutions and fewer features for classification
[24]. In agriculture, Chandel et al. [25] created a mobile
device that employs artificial intelligence to detect crop
water stress in real-time using the Raspberry Pi board and
a camera equipped with GoogleNet. The device underwent
successful tests on wheat and maize crops, achieving an
accuracy rate of 92.9% and 97.9%, respectively. Inception
types of networks have the disadvantage that their training is
complex due to multiple convolutions in one layer. U-Net
architecture is used for image segmentation and accurate
detection of feature location. U-Net is used for exact stress
area detection in images of higher resolution. DenseNet
uses fewer parameters and reuses features. Due to this,
DenseNet is good for a small number of datasets in plant
stress classification. EfficientNet can achieve high accuracy
with less computational power, so it can be easy to apply
on the field of the farm on portable devices with low cost
[26].

2) Attention-based Models
Attention-based models focus on the part of the image,

which is important for classification. In one of the stud-
ies, Alirezazadeh et al. [27] employed the convolutional
block attention module (CBAM) in CNN to achieve high
classification performance. CBAM was applied after output
feature maps of CNN to highlight more features. The study
discovered that EfficientNetB0 with CBAM attained a high
classification accuracy of 86.89%. In another paper, Dong
et al. [28] conducted a study in which the ResNet50Evo-
SE model with channel-wise attention mechanism (SE)
achieved the highest accuracy of 98.97%. Further, the
YoloV8-CBAM model with image data helped to obtain
a recognition accuracy of 0.9653 in water-nitrogen stress
recognition [28]. Additionally, Swaminathan and Vairava-
sundaram [29] proposed a two-stage deep convolutional
neural network to identify plant stress symptoms.

3) Recurrent Neural Networks
Recurrent neural networks (RNN) analyze sequential

data in plant stress detection. Continuous data from sensors
can be analyzed for symptoms of stress [30]. RNN can
process soil, temperature, and humidity datasets for initial
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stage detection of disease or stress on plants. Long-short
term memory (LSTM) cells are advanced versions of RNN,
and it has an advantage over classic RNN in analyzing long-
term dependencies in the data. LSTM can store information
for a long time, and can detect slowly changing signs of
stresses on plants. Gated recurrent units (GRU) are simpli-
fied versions of LSTM, which require low computational
power but less efficiency [31].

3. DEEP LEARNING FOR PLANT STRESS DETEC-
TION USING DIFFERENT IMAGE TYPES
Plant health can be evaluated using various imaging

techniques. These methods involve capturing images of the
plant and processing them to determine whether the plant
is experiencing any stress [32]. Additionally, leaf color
and shape can be assessed using imaging techniques and
compared with a pre-existing dataset of healthy and stressed
plants to make an informed decision [33].

A variety of images that are employed during the de-
tection of plant stress come with strengths and weaknesses.
Red, green, and blue (RGB) images are the most commonly
used imaging types, which a low-cost ordinary digital cam-
era can take, and even now, mobile also has powerful RGB
image cameras inbuilt [34] [35]. Stress in plants can be
identified by color and patterns in RGB images. The yellow
color on the plant leaf may indicate nutrition deficiency or
an unhealthy plant [36] [37]. Near-infrared (NIR) images
are used in plant stress detection due to their capability
to collect information that is not visible to the naked eye
[38] [39]. NIR images are more sensitive to physiological
changes in plants than RGB images [40]. RGB images
are more affected by environmental conditions, but NIR
images are more resistant to environmental conditions.
Water content in plants and chlorophyll levels are easily de-
tected by NIR images, helping to detect drought stress and
nutrition deficiency in plants [41]. It can detect abnormal
physiological changes in plants, which can indicate stress
or diseases in plants [42].

Hyperspectral imaging is effectively used for plant stress
detection because of its capability to capture a larger range
of spectral information [43]. Hyperspectral imaging gives
information about large bands of spectra that show small
changes in plats physiological, color, or water content,
which indicates stress in plants [44]. Hyperspectral imaging
can detect highly accurate physiological changes that other
imaging techniques can not [45] [46]. As it is a non-
destructive method, it can be used to monitor plants contin-
uously [47]. It is fast analyzed using image processing, so
onsite uses are possible [48]. Overall, hyperspectral imaging
is an effective method for plant stress detection [49]. The
thermal camera can capture temperature changes in a leaf
of plants, which indicates stress or diseases in plants [50]. It
can also be used to monitor how effectively water is used by
plants and the photosynthesis performance of plants [51]. A
recent study by Ruffing et al. [52] successfully identified the
presence of salt, copper, and cesium stress in Arabidopsis

thaliana plants through the use of hyperspectral reflectance
imaging and multispectral curve resolution (MCR) analysis
[52]. This method accurately distinguishes between different
types of metal stress in plants [53]. In another study,
Ruan et al. [54] employed meta-learning to detect drought
and freeze stress in tomatoes, resulting in high detection
accuracy with fewer training images required. Compared to
other methods, this approach requires fewer image datasets.
Shao et al. [55] utilized hyperspectral imaging to analyze
the stages of infections caused by Fusarium root rot fungi in
chili pepper leaves. Their use of successive projection algo-
rithms (SPA) on hyperspectral images enabled the detection
of biotic stress. By utilizing two wavelengths of the spectral
model, they achieved an impressive prediction accuracy of
87%. Dutta et al. [56] used satellite-based hyperspectral
imaging to detect diseases in Canjanus cajan plants. Their
two-step wilt detection method and disease-specific spectral
index allowed for earlier disease detection by two to three
weeks compared to the multispectral imaging method [56].
Experts have employed thermal imaging to identify water
stress in various plant species. A recent study by Watt et al.
[57] utilized thermal imaging to examine the effects of water
stress on radiata pine by withholding water for nine days.
The study aimed to determine the physiological character-
istics of radiata pine affected by water stress. Normalized
canopy temperature, which measures the difference between
the temperature of the canopy and the surrounding air, was
used to observe physiological changes. The results revealed
that three physiological traits displayed a significant dif-
ference one day after treatment, indicating the potential of
thermal imaging for early detection of water stress in radiata
pine. Another study by Kurunc et al. [58] used thermal
imaging to detect water stress on wheat crops; it was used
for four irrigation levels from no water stress to severe water
stress. Pre-irrigation images were found to reflect water
stress conditions more than post-irrigation conditions. Seng
et al. [35] used a Dalbergia cochinchinensis sepsis plant for
a water stress detection experiment in this study.

A combination of physiological parameters and an in-
frared thermal imaging system was used to achieve high
efficiency [59]. It was found that using a combination
of physiological parameters and infrared thermal imaging
gives high efficiency and can be used for stress detection.
The water needs of plants can be detected, which helps
in irrigation management. Orzechowska et al. [60] uses
Arabidopsis thaliana plants to detect light and salt stress.
The plant was exposed to four different levels of salt
concentration. The study found that thermal imaging has
a high efficacy on slat stress detection and light stress
detection. Park et al. [61] in this study experimented on
the ginger plant for abiotic environmental stress detection
using chlorophyll fluorescence imaging. The researchers
established the physiological stress indicators using the
spectral chlorophyll ratio approach. Their findings indicate
that partial least squares discriminant analysis (PLS-DA)
outperformed other fluorescence imaging methods currently
in use.
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TABLE II. Deep learning based plant stress studies using various image types

Study Plant used Model used Dataset Findings of studies

RGB Images

RGB Images
Ghosal et al.
[62]

Soybean CNN private It gives highest classification accuracy of
94.13%.

Anami et al.
[63]

Paddy
crop

CNN VGG-16 private The VGG-16 achieved stress classification
accuracy by learning of 95.08%.

Esgario et al.
[64]

Coffee
tree

CNN AlexNet,
GoogLeNet, VGG19,
ResNet50

private Trained network ResNet50 obtained max-
imum success results at 94.05% accuracy
for biotic stress classifications and 84.76%
accuracy for severity estimations.

Butte et al.
[65]

Potato
plant

Retina-UNetAg, is a
variant of Retina-UNet

public Archive Dice score coefficient of 0.74
for distinguishing between a stressed and
healthy plant

Thermal Images

de Melo et al.
[66]

Sugarcane Inception-Resnet-v2 net-
work

private Accuracy of 83% detection.

Bompilwar
et al. [67]

Tomato CNN private Achieve 93% test accuracy

Abdulridha
et al. [68]

Avocado
Multi-
spectral
and RGB
image

K-nearest neighbor
(KNN) and Multilayer
perceptron (MLP)
neural network

private Among other methods, MLP gave the
highest classification accuracy of 86% in
symptomatic

Hyperspectral images

Yu et al. [69] Lettuces Inception based Deep
learning model

private Classifications accuracy of 98.86%.

Zhu et al. [70] Rice De-Striping CNN (DS-
CNN) and Nitrogen
diagnosis CNN (ND-
CNN)

private Got 99.56% classification accuracy

Feng et al.
[71]

Soybean Dilated convolution neu-
ral network (DC2Net)

private Accuracy of 96.87%, 97.77% and 97.77%
for detecting of asymptomatic, healthy and
symptomatic plant images.

Fluorescence Image

Shomali et al.
[72]

Tomato artificial neural network
(ANN)-based algorithm

private Separation of stressed and non stressed
plant with 93.67% accurately.

Li et al. [73] Arabidopsis
thaliana

CNN with DeepLearn-
MOR (Deep Learning of
the Morphology of Or-
ganelles)

private Accuracy of 97% to detect abnormalities.
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Arief et al. [74] conducted a study utilizing chlorophyll
fluorescence imaging to detect drought and heat stress
in strawberry plants. They devised an innovative imaging
system that analyzed the maximum quantum efficiency of
photochemistry. Their research revealed a robust correlation
between the chlorophyll meter and the developed system.
The results of the study demonstrate that the chlorophyll
fluorescence imaging system can accurately detect spatial
and temporal dynamics. TABLE II provides a summary of
studies on plant stress detection using deep learning with
various imaging techniques.

Figure 4. Plant stress types and sub-types

4. DEEP LEARNING STUDIES BASED ON PLANT
STRESS TYPES
Abiotic stress is a term used to describe stress caused by

non-living factors, such as drought, extreme temperatures,
salinity, and nitrogen scarcity. Among these, drought is one
of the most common and devastating types of abiotic stress,
which can cause plants to wilt, shrink, or die altogether.

Similarly, temperature extremes like freezing can cause frost
damage to plants, while heat waves can cause scorching
[85]. In a study by Azimi et al. [75], they concentrate on
detecting abiotic types of stress due to nitrogen deficiency.
Nitrogen deficiency affects plant growth, shape, and color
these changes are detected by imaging techniques. This
study compares deep learning methods with machine learn-
ing methods for abiotic stress detection and found that deep
learning methods outperform machine learning. Another
study by Azimi et al. [76] uses two variants of Chickpea
plant JG-62 and Pusa-372. They studied the effect of water
stress, which comes under the abiotic stress type, using the
deep earning model CNN-long short-term memory (CNN-
LSTM) and got 14% more accuracy than other models
known at that time. In one other study by An et al. [77], they
performed an experiment for maize drought stress detection.
They used the CNN model for Abiotic stress detection
and found that the training time required for ResNet50 is
less than the ResNet152 model. They also compared deep
learning with the machine learning method and found that
deep learning has 10.05% more accuracy.

The causes of biotic stress are pathogens, pests, and
weeds, which compete with plants for resources, damage
plant tissues, and spread among plants [86] [87]. Biotic
stress can significantly impact plant growth, yield, and
quality [88] [89]. In a study by Nazeer et al. [80] biotic
stress detection on cotton by Cotton Leaf Curl Gemini Virus
(CLCuV) using deep earning model CNN was performed.
They used publicly available datasets from Kaggle and
private datasets and achieved a maximum accuracy of 99%.
Another study by Zhang et al. [81] used hyperspectral and
chlorophyll fluorescence imaging for stress detection. They
found that high-level fusion-based CNN has more accuracy
than single source-based CNN. Subeesh and Chauhan [82]
conducted a study on tomato plants to detect biotic stress
by pest infestation. They used different CNN models and
found that the proposed attention-based CNN mode has high
accuracy.

Deep learning studies based on plant stress types and
their sub-types summarized information provided in TABLE
III. Additionally, Figure 4 provides a graphical representa-
tion of these stress types and sub-types.

5. PUBLIC PLANT STRESS DATASETS
With the recent advancements in computer-based tools

and sensor technology, the engineering sector and plant
research have been able to collaborate and share open
datasets for detecting plant stress. This joint effort has
resulted in the development of public datasets and computer
vision challenges that are solely focused on detecting plant
stress. As a result, multiple methods can be compared on
shared datasets, developing and ensuring optimal perfor-
mance. This section highlights some of the most prominent
imaging datasets used in studies on detecting plant stress. A
comprehensive database of grapevine leaves was compiled
by Ryckewaert et al. [90] through the capture of hyperspec-
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TABLE III. Summary of deep learning studies based on stress types

Study Plant used Image type Model used Highlights of studies

Abiotic stress studies

Azimi et al. [75] Sorghum RGB digital
image

CNN ResNet18, NasNet
large model, proposed
23 layer CNN model are
used

Proposed model has 4.5%
less accuracy than NasNet
large model

Azimi et al. [76] Chickpea
plant

RGB digital
image

CNN-long short-term
memory (CNN-LSTM)
network

Classification performance
achieved 98.52%.

An et al. [77] Maize RGB digital
image

DCNN, ResNet50,
ResNet152

Drought stress detection and
classification accuracy lev-
els 98.14% and 95.95%, re-
spectively.

Azimi et al. [78] Chickpea
plant

RGB digital
image

Residual Neural Net-
work ResNet-18

ResNet achieve classifica-
tion performance 86%

Zeng et al. [79] Rubber tree Hyperspectral
image

multi-scale selective
attention (MSA-CNN)
model

Highest accuracy obtained
for this model 98.44%

Biotic stress studies

Nazeer et al. [80] Cotton RGB digital
image

CNN Maximum obtained accu-
racy of 99%

Zhang et al. [81] Rice Fluorescence
and
Hyperspectral
image

High-level fusion-based
CNN

The training, validation, and
testing datasets performed
classifications with an accu-
racy of 100%, 97.7% and
97%.

Subeesh and
Chauhan [82]

Tomatoes RGB digital
image

Attention-based CNN
model

Obtain accuracy of 97.87%

Gautam and Rani
[83]

Mango RGB digital
image

CNN model VGG16,
VGG19, and RestNet

Accuracy of 98.12% for
proposed model

Malvade et al.
[84]

Rice RGB digital
image

CNN models namely
VGG-16, InceptionV3,
ResNet50, DenseNet121
and MobileNet28 are
used

RestNet50 model gives
higher efficiency of 92.61%

tral imagery. The leaves were meticulously measured under
controlled conditions using a hyperspectral camera with the
visible and near-infrared spectrum. The dataset comprises
of hyperspectral acquisition from seven grape leaf varieties,
including healthy leaves and those exhibiting symptoms of
grapevine diseases, which could indicate biotic or abiotic
stress on any organ. In Menegassi et al. [91] research, a
collection of thermographic images was employed to inves-
tigate the impact of subsurface drip irrigation on arborio
rice’s stress levels under different soil moisture and salt
concentrations. The study was structured into three blocks,
each containing thirty plots, to gauge the salinity level
of the soil solution and calculate the normalized relative
canopy temperature (NRCT) index. The findings indicated
a heightened vulnerability to saline stress during several
critical stages of plant development, such as flowering, grain

filling, and harvest [91]. A recent study by Gupta et al. [92]
resulted in the creation of a freely accessible image dataset.
This dataset showcases images of both water-stressed and
controlled wheat plants, specifically capturing chlorophyll
fluorescence images of Raj 3765 wheat plants over a period
of sixty days [92]. Each set of images includes twenty-four
images featuring both control and drought conditions.

Similarly, Sandhu [98] developed an image dataset that
showcases control and drought conditions for wheat plants,
with images having a resolution of 72 dots per inch (DPI).
Moreover, a feature dataset was also constructed and made
available to ensure that the dataset remains useful for
future studies. According to Butte et al. [65], the dataset
comprises aerial agricultural images of a potato field. The
images display both healthy and diseased plants and have
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TABLE IV. Publicly available datasets for plant stress

Dataset Types of images No of images Unique identifier

Sandhu [93] RGB images 2880 https://doi.org/10.17632/jnjd835ncg.2
Pabuayon et al. [94] Hyperspectral images 984 https://doi.org/10.5061/dryad.2jm63xsrm
Bacher [95] Hyperspectral and NIR images 7524 https://doi.org/10.25739/eztp-dj42
MA [96] Chlorophyll fluorescence images 98 https://doi.org/10.21227/7eck-8z89
Ryckewaert [97] Hyperspectral images 204 https://doi.org/10.57745/WW7TY7

Figure 5. Sample plant stress images in the dataset [99]

manually delineated boundaries. The images were captured
by a three-dimensional recording (3DR) Solo drone at a
height of three meters, utilizing a Parrot Sequoia multi-
spectral camera. The RGB images measure 750 × 750
pixels, while the spectral monochrome red, green, red
edge and near-infrared images measure 416 × 416 pixels
[65]. Furthermore, each image has a corresponding XML
file containing the labeled boundaries. According to the
research conducted by Pabuayon et al. [100], the dataset
includes images of plants that were captured using a spectral
range of 550 and 1700 nm. This range covers the green-
red region up to the proximal part of the SWIR region,
with each individual image taken at a spectral interval of
4.77nm. The images were taken daily in the afternoon, from
1400H to 1600H, for a total of eighteen times over nineteen
days during the salinity stress experiments [100]. However,
there was a seven-day gap in the image collection due to
the imaging system not working.

Machado et al. [101] conducted a study that featured a
dataset designed to assess the impact of abiotic stress on
soybean crops in the Brazilian state of Minas Gerais. The
dataset utilized advanced image processing techniques for
vegetation, leaf, and soil sensors, as well as climate data.
The research was carried out over two growth stages, with
UAV flights being used to generate maps of chlorophyll, soil
moisture, and pH levels. TABLE IV offers a comprehensive
list of publicly available plant stress datasets, complete with
image types, the number of images, and their unique iden-
tifiers. For a glimpse of what’s available, we’ve included
sample images from Orka et al. [99] publicly available
dataset in Figure 5.

Obtaining research-specific datasets is a crucial task in
deep learning-related research. Collecting image datasets
of plants has many challenges, including environmental
conditions, natural lighting conditions and water supply to
plants. These conditions affect the collection of data and
their quality. Noise in data due to different environmental
conditions and more time required to collect data from areas
of farm or forest. The environmental condition also varies
symptoms of the same stress on the plants due to changes
in temperature, natural light and humidity.

The plant stress dataset has more possibility of suffering
from sampling biases due to challenges in data collection.
Most data is collected from one geographical location, and
it will not be exactly the same for other locations with
different environmental conditions. Also, in the field or in
laboratory conditions, common stress class image datasets
are easily collated, but stress from rare diseases has a very
small number of images, which will lead to class imbalance.

Transfer learning has the ability to overcome problems
due to less numbered image datasets and sample biases of
the datasets. In transfer learning, the pre-trained model is
used on similar but new datasets and fine-tuned for new
datasets. If the pre-trained model was trained on a large
dataset, then for a new small or imbalanced dataset, it can
be used with transfer learning to get results in very little
time because initialized weights are on the boundary of the
final weights.

6. CONCLUSIONS AND FUTURE WORK
According to this literature review, deep learning has

proven to be an effective method for identifying and as-
sessing plant stress through the analysis of intricate patterns

https://doi.org/10.17632/jnjd835ncg.2
https://doi.org/10.5061/dryad.2jm63xsrm
https://doi.org/10.25739/eztp-dj42
https://doi.org/10.21227/7eck-8z89
https://doi.org/10.57745/WW7TY7
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within extensive datasets. The review highlights noteworthy
progress in the examination of plant morphology, physi-
ology, and spectral response under stress conditions. The
article also emphasizes the numerous potential applications
of deep learning in the realm of plant stress research,
including:

1) Images and spectral data show different aspects of
stress. Thus, deep learning models can distinguish
between these aspects and identify stress types for
prompt interventions and mitigations.

2) By utilizing this deep learning approach, it is pos-
sible to determine the degree of damage caused by
the prevailing stress and its effects on the resulting
yield loss.

3) These deep learning-based approaches for analyzing
huge volumes of plant images promote quick and
reliable stress-tolerant plant breeding.

4) Agricultural managers can integrate deep learning
models into their operations as a source of informa-
tion for optimal resource allocation, thereby provid-
ing an opportunity to conduct targeted interventions
guided by real-time stress detection.

Despite these remarkable achievements, several challenges
remain to be addressed:

1) Training of robust and large models is based on
publicly available datasets related to particular crop
varieties and stress types. Hence, understanding how
deep learning models arrive at a specific decision and
building trust in these results is challenging.

2) In low-resource environments, training and deploy-
ment of deep learning models require substantial
computation and, thus, act as barriers to adoption.

Using deep learning for plant stress detection has lim-
itations due to the unavailability of high-quality datasets
and domain-specific data. Acquiring high-quality images of
plants under different stress conditions is difficult due to
changes in light conditions, environment and geographical
areas. Data annotation requires experts in that area, and it is
a time-consuming process. Plan stress symptoms visualized
may vary in different environmental conditions. The deep
learning model’s decision-making prediction is difficult due
to its black box process. Environmental conditions like
light, temperature, rain and wind vary with time, which
makes it difficult for deep-learning models to accurately
detect plant stress. The computational cost of deep learning
implementation on farms is high, which can not be afforded
by small farmers or researchers. Over-fitting and unitability
of an effective transferring model is also one challenge.

Future advancement in plant stress detection includes
automation in annotation by using semi-supervised or weak
supervised models can be used for to get annotate data. To
deal with the black box problem in deep learning, advance-
ment in explainable AI can give a solution. Research in

techniques that can highlight part of the image that indicates
stress, like Grad-CAM, makes model results more pre-
dictable. By not depending on one type of data, processing
multiple types of data, like multimodal deep learning, can
increase accuracy. Hybrid modeling combines deep learning
with other techniques and develops a lightweight model that
can be implemented in small farms with portable devices.
Detecting changes in signs of stress on the plants and their
progress can detect stress early using time series data using
improved RNN or LSTM networks.

In order to tackle the challenges that modern agriculture
faces and promote sustainability and reliability, it is crucial
for various stakeholders to collaborate. These stakeholders
may include botanists, engineers, farmers, and researchers
in machine vision. The present paper offers an extensive
overview of deep learning research that pertains to detecting
plant stress. This knowledge can be applied to disease
detection and prevention in agriculture, ultimately leading
to early intervention and reduced losses.
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