
International Journal of Computing and Digital Systems
2025, VOL. 17, NO. 1, 1–10

http://dx.doi.org/10.12785/ijcds/1571031205

Harnessing Deep Learning for Early Detection of Cardiac
Abnormalities

Prutha Annadate1, Dr. Mangesh Bedekar2 and Dr. Mrunal Annadate3

1Department of Computer Engineering and Technology -Artificial Intelligence and Data Science,Dr. Vishwanath Karad MIT World
Peace University, Pune, India

22Department of Computer Engineering and Technology ,Dr. Vishwanath Karad MIT World Peace University, Pune, India
3Department of Electrical and Electronics Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, India

Received 17 May 2024, Revised 29 November 2024, Accepted 5 December 2024

Abstract: Sudden Cardiac Arrests (SCAs) are potentially lethal events that occur suddenly and without warning, causing the heart’s
electrical system to malfunction and impairing heart function. If not addressed promptly, these events can lead to serious consequences.
Early detection and timely intervention are crucial for increasing survival rates and minimizing long-term damage. In this context,
this study explores the potential of using fog computing and Deep Learning (DL) algorithms in conjunction with Internet of Things
(IoT) devices to improve the understanding and prediction of SCAs. The primary goal is to create a reliable, real-time system capable
of detecting potential SCA events, analyzing relevant data, and enabling prompt interventions. The study employs a multidisciplinary
approach, combining fog computing for IoT devices with machine learning techniques. Fog computing is used to collect and process
real-time data from wearable devices like smartwatches and health monitors at the edge, while DL algorithms, specifically a Multilayer
Perceptron with ReLU as the activation function for faster convergence, are used to detect patterns and anomalies that may indicate an
impending SCA. The model achieved an impressive average accuracy of 99.52%, outperforming previous models and converging more
rapidly. One of the key innovations of the study is an alert system that sends notifications when an SCA is predicted. The findings
indicate that combining DL, fog computing, and IoT devices significantly enhances the understanding of SCAs. The system’s ability
to process and analyze data in real time allows for swift, targeted interventions, potentially saving lives. Additionally, the continuous
learning capabilities of the DL algorithms enable the system to improve its predictive accuracy over time, making it a valuable tool
for cardiovascular health monitoring. This research demonstrates how the integration of machine learning, particularly DL, with fog
computing can transform our understanding of and response to SCAs, paving the way for advancements in emergency response systems
and healthcare.
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1. Introduction
Sudden Cardiac Arrests (SCA) are a critical medical

emergency requiring immediate and precise intervention for
the best outcomes. They are often unpredictable and can be
fatal if not treated promptly. Given their significant impact
on public health, advancing our understanding of SCA and
improving response mechanisms is paramount. The Amer-
ican Heart Association (AHA) reports over 356,000 Out-
of-Hospital Cardiac Arrests (OHCA) occur annually in the
U.S., with nearly 90% being fatal. There is a need for better
surveillance systems to monitor cardiac arrest occurrences,
as current estimates rely on registries and clinical trials.
The annual incidence of EMS-assessed OHCA is 356,461
as seen in Figure 1. [1]

Figure 1. Annual Incidence of EMS Assessed OHCA.

This need for better monitoring systems gives rise to
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the convergence of cutting-edge technologies, such as fog
computing and Machine Learning (ML) and Deep Learning
(DL) with healthcare; offering new possibilities for address-
ing the complexities of SCA. Fog computing, which extends
cloud computing to the edge of the network, and DL, which
enables systems to learn from data, are particularly promis-
ing in this regard. The American Heart Association[2]
highlights the increasing use of remote monitoring systems
powered by IoT in detecting and managing cardiac abnor-
malities, including sudden cardiac arrest. IoT technology
enables continuous monitoring of cardiovascular metrics,
significantly aiding in early detection and personalized in-
tervention strategies. A report from MarketsandMarkets[3]
indicates that the global fog computing market in healthcare
is expected to grow from USD 1.7 billion in 2022 to USD
5.4 billion by 2027, at a CAGR of 25.3% during the forecast
period. All of these factors bolster the motivation of the
authors to conduct this study.

This research explores the synergistic potential of fog
computing and DL within the framework of the Internet
of Things (IoT) to provide a comprehensive and innovative
approach to understanding, predicting, and effectively man-
aging sudden cardiac arrests. By leveraging data analytics
at the edge of the network, this work aims to revolutionize
real-time comprehension and response to SCA events.The
integration of fog computing and DL in IoT devices holds
the promise of enhancing cardiovascular health monitor-
ing and emergency medical care. It has the potential to
enable early detection of SCA risks, timely interventions,
and personalized treatment strategies, ultimately leading to
improved patient outcomes and a reduction in SCA-related
mortality rates.

2. RelatedWorks
The research presented in [4] evaluates the performance

of various deep learning architectures in the classification
of ECG arrhythmias. The study compares the effective-
ness of different models, including LSTM and CNN-based
approaches. In [5], the study investigates the potential of
edge computing for real-time ECG data processing and
analysis. The research highlights the advantages of edge-
based solutions in reducing latency and improving the
efficiency of ECG monitoring systems. The study in [6]
explores the use of transfer learning techniques for ECG
signal classification across different populations. The re-
search demonstrates the effectiveness of transfer learning in
adapting models to diverse patient demographics. Accord-
ing to [7], the integration of ECG monitoring with wearable
technology and mobile health applications is reviewed. The
study examines the impact of such integrations on patient
engagement and adherence to monitoring protocols. The
research presented in [8] investigates the application of
hybrid machine learning models for ECG signal analysis.
The study focuses on combining different algorithms to
enhance classification accuracy and robustness. In [9], the
study explores the use of ensemble learning techniques for
ECG arrhythmia detection. The research highlights the ben-

efits of combining multiple classifiers to improve diagnostic
performance. In [10] the purpose of the study is to evaluate
and compare various transfer learning techniques for ECG
classification in the context of ECG arrhythmia detection.
An ECG dataset from Kaggle is multi-classified using the
proposed model, CAA-TL, which is enhanced with real-
time and other datasets (healthy and unhealthy).The study in
[11] evaluates the impact of noise reduction techniques on
ECG signal quality and classification accuracy. The research
focuses on various methods for preprocessing ECG data to
enhance diagnostic reliability. In [12], the research explores
the use of attention mechanisms in deep learning models
for ECG signal classification. The study demonstrates how
attention mechanisms can improve the interpretability and
accuracy of ECG analysis. According to [13], the integra-
tion of ECG data with other health metrics, such as physical
activity and sleep patterns, is reviewed. The study highlights
the potential for comprehensive health monitoring and per-
sonalized treatment strategies. In [14] the study’s objectives
are to examine and assess unsupervised ECG clustering
methods, most of which have been created in the previous
ten years. Recent advances in machine learning and deep
learning algorithms, along with their useful applications, are
the main focus. [15] The research noted that while various
attempts have been made to quantify diagnostic distor-
tion brought about by low-dimensional ECG representation
techniques, no widely recognized quantitative measure has
been developed specifically for this purpose. The purpose
of the suggested framework was to address the need for
an effective and dependable way to evaluate diagnostic
distortion brought on by ECG processing methods.[16] The
study’s findings highlight the distinctions between the two
AI-ECG techniques, ML and DL. With a focus on particular
ECG variables for focused tasks such wide QRS complex
(The QRS complex is the waveform in an ECG that reflects
the electrical activity as the heart’s ventricles prepare to
pump blood by contracting.) tachycardia discrimination, the
machine learning approach makes use of expert domain
knowledge. On the other hand, for more general tasks like
a thorough 12-lead ECG interpretation, the DL technique
depends on a more extensive and independent recognition of
several ECG parameters. The study highlights how crucial
it is for researchers working on AI-ECG solutions to com-
prehend these distinctions. In [17], the study investigates
the effectiveness of various feature extraction techniques
for ECG signal processing and classification using machine
learning algorithms. The research focuses on the impact of
feature selection on classification accuracy and the potential
for integrating advanced algorithms to enhance diagnostic
capabilities. According to [18], the implementation of wear-
able ECG monitoring systems has significantly advanced
the ability to detect arrhythmias in real-time. The study
reviews various wearable technologies and their perfor-
mance in continuous heart rate monitoring and arrhythmia
detection. The research presented in [19] explores the use of
convolutional neural networks (CNNs) for ECG signal clas-
sification. The study highlights the improvements in diag-
nostic accuracy achieved by CNNs compared to traditional
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machine learning methods. In [20], the study examines the
integration of ECG data with other physiological signals,
such as blood pressure and temperature, for comprehensive
cardiovascular monitoring. The research emphasizes the
potential benefits of multi-modal data fusion in improving
diagnostic accuracy. The study in [21] reviews the applica-
tion of reinforcement learning techniques for real-time ECG
monitoring and anomaly detection. The research focuses
on the adaptability of reinforcement learning algorithms to
dynamic cardiac conditions. According to [22], the use of
Generative Adversarial Networks (GANs) for augmenting
ECG datasets is explored. The study demonstrates how
GANs can generate synthetic ECG signals to enhance
training datasets and improve the robustness of classification
models.In [23] during ECG patch monitoring, the PPG-
based algorithm showed a high positive predictive value for
concurrent AF detection. Numerous participants were suc-
cessfully enrolled in the study, yielding a diverse dataset for
analysis. Fitbits in particular are wearable technology that
could be useful in identifying people who have undiagnosed
AF.According to [24], the development of real-time ECG
monitoring systems using IoT technologies is reviewed.
The study emphasizes the potential of IoT for enabling
continuous heart health monitoring and timely intervention.
In [25] with training and application on 3D VCG, the DL
architecture showed improved precision with high F1-scores
of 99.80% and 99.64% in leave-one-out cross-validation and
cross-database validation protocols, respectively.[26] The
study’s findings highlight the clinical significance of minute
variations in QRS when evaluating diastolic dysfunction,
decreased EF, the onset of HF, and the responsiveness of
therapy. The study acknowledges that precise physical mea-
surements are necessary to detect these minute variations,
but it also proposes that using artificial intelligence (AI)
to analyze ECG data may result in a faster and more
thorough evaluation, particularly when working with big
populations. [27] Several research gaps in the field of AI-
based electrocardiography are identified by the review. First
of all, it points out that the majority of research are proof-of-
concept investigations, and it’s frequently unclear what level
of private data was used in these studies. This implies that
more extensive and standardized datasets are required, and
the authors stress the significance of clinical validation in
various contexts and collectives. Artificial intelligence (AI)
solutions are often perceived as being opaque, which high-
lights the necessity for AI algorithms to be transparent and
comprehensible. [28] The article’s observations highlight
how AI is revolutionizing ECG analysis. The conversation
is on the enthusiasm that machine learning and computer
techniques have brought about, which has resulted in the
revival of the ECG, one of the most important diagnostic
instruments. [29] The findings demonstrate that, despite its
lengthy history, electrocardiography is still relevant today.
The growing interest in ECG is ascribed to advances in
artificial intelligence (AI), namely in the areas of machine
learning and deep learning, which are predicted to open
up new avenues for the assessment and interpretation of
ECG data. The reference to overcoming shortcomings in

traditional computer-assisted ECG examination points to
a positive assessment of AI’s potential to solve problems
in this field. [30] The study takes a broad approach, in-
tegrating knowledge from the supervised AI algorithms’
mathematical foundation with an emphasis on their use
in Electro-Cardio-Gram (ECG) analysis (An ECG is a
test that records the heart’s electrical activity to assess
its rhythm and function). The techniques entail explaining
how AI has transformed physicians’ ability to diagnose
patients by analyzing ECGs. The mentioned algorithms are
trained on large datasets by finding underlying patterns
without the need for hard-coded rules. A few AI ECG
cardiac screening algorithms are also reviewed, with a
focus on those that identify several structural and valvular
disorders, episodic atrial fibrillation, and left ventricular
dysfunction. [31] The assessment indicates that even with
the significant advancements in artificial intelligence and
the technology applications in cardiac electrophysiology,
there can still be unanswered questions that need to be
answered. Validation studies to guarantee the accuracy and
dependability of AI-assisted illness signature recognition
in electrocardiography may be one area where research
is still lacking. The review may also suggest that more
research is needed to determine whether AI can be used
in population-based atrial fibrillation detection, taking into
account ethical, economical, and accessibility issues. The
promise of extended realities, non-invasive ablation therapy,
and robots in EP care may point to the necessity for more
investigation into the practical difficulties and therapeutic
efficacy of these innovations. [32] The review suggests that
even with these encouraging improvements, there might
still remain unanswered research questions. Among these
would be the requirement for validation studies to evaluate
the effectiveness and dependability of AI models in the
real world for identifying different phenotypic features
and cardiovascular diseases.In [33] the goal of the project
was to create a toolbox for Electrocardiography (ECG)
analysis with a graphical user interface that is easy to
use. The toolkit was made to cover every stage of ECG
analysis, from statistical research to the recording device.
Furthermore, a novel feature computation approach was
put out for ECG analysis with the goal of offering unique
information that goes beyond the primary wave amplitudes
and durations.In [34] according to the study, compared to
MPP followed by a 12-lead ECG, single-time point lead-I
ECG devices in primary care may be a more economical use
of NHS resources for detecting AF in patients with signs or
symptoms and an irregular pulse. [35] The study included
180,922 patients with 649,931 normal sinus rhythm ECGs.
The AI-enabled ECG identified atrial fibrillation with an
AUC (AUC (Area Under the Curve) measures the ability
of a classification model to distinguish between classes,
with values closer to 1 indicating better performance.) of
0.87 (95% CI 0.86-0.88), sensitivity of 79.0%, specificity of
79.5%, F1 score of 39.2%, and overall accuracy of 79.4%.
When including all ECGs acquired during the first month
of each patient’s window of interest, the AUC increased to
0.90 (95% CI 0.90-0.91), sensitivity to 82.3%, specificity to
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83.4%, F1 score to 45.4%, and overall accuracy to 83.3%.
The objective of the study in [36] was to evaluate four dis-
tinct approaches to data reduction for continuous ECG data
obtained in cynomolgus monkeys during a validation study.
Jacketed telemetry was used to collect the data. On various
dosing days, the animals were given ascending doses of
moxifloxacin after either a vehicle or vehicle treatment. On
each dosing day, continuous ECG recordings were made
for 25 hours. Four data reduction techniques were then ap-
plied: large duration averages (0.5-4 hours), super-intervals
(3.5-9 hours averages), 1-min average snapshots, and 15-
min average snapshots. In [37] according to the study,
smartphones are expanding the use of ECG and arrhythmia
detection, enabling a larger population to have access to the
technology. The conversation focuses on how smartphone-
based solutions, such as Kardia Mobile and ECG Check,
are better at detecting arrhythmias than more conventional
wearable monitors that are primarily intended for activity
tracking. [38] The purpose of the study was to describe and
assess a novel automated technique for identifying reversals
in the precordial and peripheral leads of ECGs. The method
was designed to analyze cable reversals using basic criteria
that took into account correlation dependencies between
leads. [39] It was shown that automated ECG interpretation
software excluded AF with the highest accuracy. It was
discovered that, nonetheless, its diagnostic capacity for AF
was comparable to that of all medical specialists. In primary
care, General Practitioners (GPs) were shown to have a
higher specificity of AF diagnosis from ECG than nurses. In
[40] the study found that the idea for creating a cloud-based
health care system came from recent developments in cloud
computing and mobile technology. These systems have the
potential to improve accessibility and convenience for med-
ical professionals and patients by enabling the automated
gathering and sharing of medical data. In [41] the study
found that a useful technique for detecting the QRS complex
in the 12-lead ECG was the combination of signal entropy
and SVM. In [42] the standard 12-lead ECG is frequently
used to diagnose heart disease, but it may not always be
the best method, according to the study. Investigation into
other techniques, like the examination of high-frequency
QRS components, may yield more diagnostic data.

In conclusion, there are a number of research gaps that
need to be filled even though ML and DL have the potential
to completely transform cardiac arrhythmia diagnosis and
ECG analysis. These include the requirement for research
on the clinical applications of AI-based ECG analysis,
standardized datasets, and validation studies. Closing these
gaps will make it more likely that AI will be successfully
incorporated into clinical practice to improve cardiac care.
This paper fills a research vacuum by examining the need
for studies on the practical applications of AI-based ECG
analysis with the help of the alerting system and edge based
analysis for accessing the health of an individual in short
cycles, to find a potential for SCA, and alert them. This
prompts an individual at risk to facilitate interaction with
their nearest physician and potentially avoid a SCA.

3. Methodology
The aim of any medical detection system is to send alerts

and/or detect a potential problem, in our case, the likelihood
of a Sudden Cardiac Arrest (SCA). The process begins with
the acquisition of data from edge sources, predominantly
numeric in nature. The initial phase of data processing
involves preliminary data analytics, which includes essen-
tial data cleaning and preparation procedures to render
the data suitable for further analysis. These data cleaning
steps include the elimination of duplicates, rectification
of errors, and ensuring consistent formatting of the data
[43]. Subsequently, the data is modeled using a Multi-
Layer Perceptron (MLP), the architectural details of which
are elaborated upon below. The primary objective of the
preliminary analytics phase is to determine whether an alert
should be triggered.The proposed methodology is seen in
Figure 2

Figure 2. Proposed Methodology

More advanced analytics can be performed at the cloud
level on the processed data [44]. We used the 2-lead record-
ings from the open-source ’INCART 2-lead Arrhythmia
Database’ for our investigation. A lengthy recording from
one lead is used to create a rhythm strip to guarantee an
accurate evaluation of the heart rhythm. Lead II is the
recommended option for recording the rhythm strip due to
its ability to clearly display the P wave [45]. A ECG is seen
in Figure 3

Figure 3. ECG cited from [46]
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A. Dataset Preparation
For this project, we utilized the publicly available IN-

CART 2-lead Arrhythmia Database, which contains anno-
tated ECG recordings for arrhythmia detection. The dataset
consists of recordings from 75 subjects, with each recording
spanning 30 minutes. The data was resampled to 250 Hz and
segmented into 10-second windows for analysis, ensuring
compatibility with real-time processing requirements [47].

B. Feature Selection
The dataset was preprocessed to extract 34 distinct

features from the raw ECG signals. These features include
time-domain metrics such as heart rate variability (HRV),
RR intervals, P-wave morphology, and frequency-domain
components derived from a wavelet transform[48]. This
approach was chosen to capture both temporal and spectral
features of the ECG, enhancing the accuracy of SCA
prediction. Recent studies emphasize the significance of
feature selection in reducing noise and improving model
performance, particularly in edge-computing environments
[49].

C. Fog Computing Integration
In this system, fog computing plays a critical role in

real-time SCA detection. Preliminary data analytics, in-
cluding data cleaning (e.g., removing duplicates, correcting
errors), is performed at the edge level as seen in Figure
??. This minimizes the latency associated with transmitting
large amounts of data to the cloud for analysis. Essential
steps such as feature extraction and preliminary alerting
are handled locally to ensure immediate responses, while
more computationally intensive tasks, such as advanced data
analytics and model refinement, are deferred to the cloud
[50]. Fog computing also aids in reducing bandwidth usage
and ensures that critical medical alerts can be generated in
real time [51]. To simulate fog computing, multi-threading
was employed, which allowed multiple fog nodes to operate
concurrently. Each fog node operates as an independent
thread, processing its assigned portion of the dataset in
parallel with other nodes. This ensures that computations
are performed concurrently, thereby reducing the overall
processing time. The multi-threading setup allows multi-
ple fog nodes to handle tasks simultaneously, efficiently
simulating the decentralized nature of fog computing. To
account for the variability in real-world network conditions,
the system simulated latency and packet loss for each fog
node:

• Latency Simulation: For each node, random delays (in
the range of 0.1 to 1.5 seconds) were introduced to
mimic real-world network latency. This ensured that
each fog node experienced variable processing times,
simulating different network conditions.

• Packet Loss Simulation: A probability of packet loss
(set at 20%) was added. If packet loss occurred, the
fog node would skip processing its chunk of data
and return no result, simulating real-world packet loss
scenarios in edge computing environments.

Figure 4. Fog Computing Flow

At each fog node, a neural network model was instanti-
ated to process the data locally. The MLP model was built
using Keras and was identical across all fog nodes, ensuring
consistent predictions. The nodes performed forward prop-
agation and returned the predictions to the central system,
mimicking the real-time processing behavior of fog nodes.
The predictions from each fog node were aggregated in real
time. This was facilitated by using a shared queue, where
each fog node would place its result after processing its
assigned data chunk. The results were collected and later
combined to form the final decision. This step ensured
that all nodes contributed to the overall prediction task,
replicating the cooperative nature of fog computing.

D. Model Architecture
The processed data is fed into a Multi-Layer Perceptron

(MLP) architecture with five hidden layers. Each hidden
layer consists of 100 neurons, selected after performing
hyperparameter tuning to balance model complexity and
efficiency.

The output layer uses the sigmoid activation function,
making the model well-suited for binary classification tasks
such as predicting the likelihood of SCA. The training was
conducted using the Adam optimizer, with a learning rate of
0.1, which has been shown to provide robust convergence
for ECG-based anomaly detection models [52].

The input layer of our model consists of 32 inputs,
representing the features used for prediction. The hidden
layers consist of 100 neurons each, with the Leaky ReLU
activation and only the output layer consists of Sigmoid
activation.

Our model employs a MLP architecture with five hidden
layers, as shown in Figure 5, each utilizing the Rectified
Linear Unit (ReLU) activation function defined as:
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f (x) = max(0, x) (1)

This choice of activation function is known for its ability
to facilitate faster convergence during training. Each hidden
layer is composed of 100 neurons, allowing the model to
effectively capture the complexities inherent in the dataset
[53].

Figure 6. showcases the activation functions used.
Furthermore, the output layer of the MLP employs the
sigmoid activation function, defined as:

f (x) =
1

1 + e−x (2)

Figure 5. Architecture of Multilayer Perceptron

The input layer of our model consists of 32 inputs,
representing the features used for prediction. The hidden
layers consist of 100 neurons each, with the Leaky ReLU
activation and only the output layer consists of Sigmoid
activation.

Figure 6. ReLu v/s Logistic Sigmoid cited from source [54]

The sigmoid function maps any real value to the range
(0,1), making it particularly suitable for binary classification

tasks, as it outputs probabilities, providing a measure of
confidence for the prediction of SCA occurrence [55].

E. Evaluation Metrics and Validation
To evaluate the model’s performance, we employed

metrics such as accuracy, precision, recall, and F1-score,
ensuring that the model’s predictions align with the clinical
significance of early SCA detection [56].

Given the imbalanced nature of the dataset, with rela-
tively few SCA events compared to normal heart rhythms,
SMOTE (Synthetic Minority Over-sampling Technique)
was applied during training to balance the dataset [57].

4. Results
In order to make precise predictions, the proposed

methodology runs each epoch with a batch size of 60.
To model 60 readings a minute. The data is processed
in batches of 60 rows, with accuracy measured for each
batch. Accuracy is defined as the proportion of correct
classifications or predictions in each batch.

The graph illustrates how model accuracy evolves with
increasing training data. Overall, the graph in Figure 7
reveals that accuracy of the data batches fluctuates between
0.6 and 1.0, with no discernible trend over time. Average
accuracy of the proposed model is 99.52%.

Figure 7. Tensorboard for Accuracy over epochs

The output of the MLP gives the probability of a SCA
occurring in the range of 0 to 1, with 1 being the 100%
probability of it occurring. Quantifying these occurrences
gives us a peek into the possibilities of a SCA as shown in
Figure 8

And to ascertain how many individual chances of SCA
are predicted in Figure 9 helps with better understanding
of the rarity of the occasion. We can safely presume that a
SCA is a rare occurrence.
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Figure 8. Count of 100% probability of SCA occurrence.

Figure 9. Total Alerts

A. Classification Report
Table I is a consolidated view of results.

• Class 0 (Fog node 0): The model has a precision
of 0.71 and recall of 0.22, indicating it identifies a
fair amount of relevant instances but misses many
true positives. This results in a low F1-score of 0.34,
reflecting its limited effectiveness in classifying this
category.

• Class 1 (Fog node 1): The model performs excep-
tionally well with perfect precision, recall, and F1-
score of 1.00. This class has a large support (30,679),
suggesting the model is highly reliable for this class.

• Class 2 (Fog node 2): The model can’t make any
predictions since no data is received from this node.

• Class 3 (Fog node 3): With a precision of 0.95 and
recall of 0.87, this class shows strong performance,
evidenced by an F1-score of 0.91, suggesting the
model is effective at identifying this category.

• Class 4 (Fog node 4): The model performs almost
perfectly with high precision, recall, and F1-score
values of 0.99. This indicates it reliably classifies this
class, which has a substantial support (4,023).

Overall, the model’s accuracy stands at 99.50%, indi-
cating it correctly classifies the majority of instances. The

ROC AUC score of 0.80 reflects a good ability to distinguish
between classes, as seen in Figure 10.

Figure 10. ROC curve

In comparison to existing models, our deep learning
approach for arrhythmia detection demonstrates superior
performance. Liu et al. (2019) achieved an accuracy of
98.88% with a similar dataset but did not report ROC
AUC scores, limiting direct comparison on that metric; our
model surpasses Liu’s model as seen in [58]. Acharya et al.
(2019)[59] implemented various CNN architectures, attain-
ing accuracies between 98% and 99% and high ROC AUC
scores, highlighting their strong performance. However, our
model’s accuracy of 99.50% and ROC AUC score of 0.80
not only matches but slightly exceeds these benchmarks,
emphasizing its exceptional capability in multiclass classi-
fication tasks. Additionally, Yoon et al. (2019) reported a
hybrid model with 99.2% accuracy and an AUC of 0.88,
showcasing the benefit of sequential dependencies. Despite
this, our model’s architecture and activation functions reflect
advanced design principles and robust performance, making
it highly competitive within the field of ECG classification,
as demonstrated by our results compared to Yoon’s model
in [60].

B. Fog Computing Results
Some fog nodes, such as node 2, experienced packet

loss, failing to transmit predictions due to common issues
like network instability, communication latency, or hard-
ware failures. In contrast, nodes 0, 1, 3, and 4 successfully
processed their data chunks from the INCART dataset and
returned predictions. The varying processing times (e.g.,
0.42 seconds for node 3 and 1.31 seconds for node 4)
reflect differences in computational load, resource capacity,
and network conditions across the fog nodes. This vari-
ation underscores the importance of robust, fault-tolerant
models, especially when working with critical datasets like
INCART, where delays, failures, or inconsistencies in data
transmission can impact the life of an individual. Results
are seen in Figure 11.
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TABLE I. Classification Report

Class Precision Recall F1-Score Support
0 0.71 0.22 0.34 45
1 1.00 1.00 1.00 30,679
2 0.00 0.00 0.00 1
3 0.95 0.87 0.91 398
4 0.99 0.99 0.99 4,023

Accuracy 0.99 35,146
Macro Avg 0.73 0.62 0.65 35,146

Weighted Avg 0.99 0.99 0.99 35,146

Figure 11. Fog computing model predictions output (5 nodes)

5. Discussion And FutureWork
This work addresses a crucial research gap by exploring

the practical applications of AI-based ECG analysis, par-
ticularly in the realm of edge-based analysis and warning
systems for short-term health assessment. Our primary
objective is to identify individuals at risk for Atrial Fib-
rillation (AF) and promptly alert them to seek medical
attention, thereby potentially preventing Sudden Cardiac
Arrest (SCA). We employed a methodology that processes
data in batches of 60 rows, calculates accuracy for each
batch, and progressively trains the model with increasing
data to monitor changes in accuracy. The architecture of
our Multilayer Perceptron (MLP) model, featuring five
hidden layers with ReLU activation functions and a sigmoid
activation function in the output layer, is adept at captur-
ing complex data relationships, resulting in an impressive
average accuracy of 99.5%. Our findings highlight the
potential of deep learning (DL) in predicting SCA risk, as
evidenced by the model’s probability predictions ranging
from 0 to 1. Although accuracy varied between 0.6 and
1.0 across different data batches, the analysis showed no
significant temporal patterns. This variability underscores
the inherent rarity of SCA incidents and the need for precise
and timely detection methods. Our research contributes
valuable insights into the practical applications of AI-
based ECG analysis, emphasizing its potential to enhance
cardiovascular health monitoring and emergency care.

However, several challenges remain. Ensuring data pri-
vacy and security is paramount, given the sensitivity of
health information. Establishing robust security measures
is crucial to protect patient data from unauthorized access
and breaches. Additionally, optimizing resource allocation
in edge and fog computing environments is vital for real-
time data processing. Efficient resource management can
significantly impact the performance and scalability of
AI models, ensuring timely and accurate ECG analysis.
Future improvements should focus on validating the ef-

fectiveness of machine learning models in real-world sce-
narios to confirm their reliability and efficacy in clinical
settings. Collaborative efforts among healthcare providers,
technology developers, and regulatory bodies are essential
to set standards and guidelines for deploying AI-based
ECG analysis technologies. By addressing these challenges,
stakeholders can facilitate the successful integration of these
transformative technologies into healthcare systems.

6. Conclusion
To sum up, this study significantly contributes to the

growing body of research on AI-based ECG analysis, il-
lustrating how advanced technologies like Deep Learning
(DL) and fog computing can enhance emergency medical
care and cardiovascular health monitoring. By leveraging
edge-based analytics and a Multi-Layer Perceptron (MLP)
model with an impressive accuracy of 99.5%, our research
demonstrates the potential of AI to revolutionize the early
detection of Sudden Cardiac Arrest (SCA) and improve pa-
tient outcomes. Our findings highlight the capability of DL
models to predict SCA risk with high precision, showcasing
a model that effectively handles real-time data processing
and provides timely alerts. This approach addresses critical
challenges in SCA management, such as the need for rapid
response and accurate detection, potentially reducing mor-
tality rates associated with cardiac emergencies. Future in-
vestigations should focus on expanding use cases to include
broader applications of AI in cardiac care, such as real-time
monitoring systems and personalized treatment strategies.
Additionally, addressing issues related to data privacy, se-
curity, and resource optimization in edge and fog computing
environments will be crucial for the successful deployment
of these technologies.Collaborative efforts among healthcare
providers, technology developers, and regulatory bodies
will be vital in establishing standards and guidelines for
integrating AI-based ECG analysis into healthcare systems.
Clinical trials and expanded applications will help refine
these models and ensure their practical utility, ultimately
advancing our ability to manage and prevent SCA and other
cardiovascular conditions.
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