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Abstract: Water is the secret of life and occupies over 70% of the Earth’s surface. It has become necessary to protect the water
resources around us from pollution and neglect, which can result in the loss of life and health. Artificial Intelligence (AI) has the
potential to improve water quality analysis, forecasting, and monitoring systems for sustainable and environmentally friendly water
resource management. As a result, this work focuses on the multi-model learning features to represent the state of the water and
determine its suitability category (i.e., safe or unsafe). This is done by building a jointly hybrid model between supervised algorithms
and unsupervised algorithms after fusing their outliers. In addition, the Gamel herd swarm optimization algorithm was applied to find
the optimum hyperparameters.Two datasets were used, in the first dataset the proposed hybrid model outperformed other models by
99.2% in accuracy, AUC, and f1 score, but in the second dataset, it achieved approximately 92% in accuracy, AUC, and f1-score.
Finally, the paper offered a methodology that researchers can use to anticipate water quality using hybrid machine learning.
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1. INTRODUCTION
Water is an important vital resource for sustaining

the life of living organisms, since clean water is used
in various aspects of life, such as drinking, agriculture,
energy generation, and entertainment [1]. But because of
modern technology, aquatic ecosystems have polluted the
water and the species that live in it. Most countries in
the world use chemicals in addition to selling them, which
exposes water to toxic substances and makes it unfit for
consumption by living organisms as well as agriculture. The
sustainability of all living things in the context of the new
green economy depends critically on the monitoring and
analysis of water quality [2]. Due to the existence of precise
water quality standards, traditional chemical monitoring
methods cannot assess the complex interactions and impacts
of many chemicals on microorganisms in water [3]. Many
organizations employ manual techniques to monitor water
quality and assess complicated interactions, calculating the
water quality index (WQI) equation after collecting samples
and analyzing them in a laboratory, which has proven to be
costly and time-consuming. Recently, many AI studies have
demonstrated the possibilities of employing ML technology
and sensors to process the problem of forecasting water
quality ,consumption and automating their monitoring, as
well as the ability to collect data in real time [4],[5]. ML,

a subfield of AI, allows a system to automatically learn
and train data in order to recognize trends and update itself
without the need for explicit programming [6]. ML opens
up new prospects for predicting WQI in water body inves-
tigations by giving photo-sensors that based on calculating
the wavelength of a given color or variations in amplitude
values, which may be utilized to detect various dissolved
water contaminants [7],[8].The outputs of these sensors
can generate data that is processed using ML techniques
with high accuracy and performance. ML models may
successfully mimic hydrological processes and pollution
transport when big datasets are available [9].
In this paper, a ML was used to predict the quality of
water whether it is suitable for drinking or not, instead
of traditional expensive methods that require time and
many efforts. A jointly hybrid technique was applied that
combines supervised ML methods and unsupervised ML
methods on a survey online dataset (Kaggle) and outper-
formed previous studies. The following contributions were
made:

1) The dataset was processed by using normalization
and oversampling to balance it.

2) The Light Gradient Boosting Model (LGBM)
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hyper-parameter’s were tuned using the Gamel herd
method.

3) The main contribution of water quality prediction
is whether it is suitable for use or not by using
the original features in the dataset, as well as new
features (outliers) extracted from unsupervised
ML methods Copula-Based Outlier Detection
(COPOD),Isolation Forest (IForest),and Cluster-
based Local Outlier Factor(CBLOF) and forming
combined features that are passed to LGBM
technique to perform the final prediction process.

4) The performance of the proposed models was
evaluated using a number of performance metrics
(accuracy, precision, recall, F1 score, AUC-ROC).

5) A comparison was done between LGBM technique
after balancing the dataset and the hybridized
LGBM with unsupervised (COPOD, IForest, and
CBLOF) ML approaches

6) A comparison was done between LGBM technique
with traditional ML.

7) Finally, the proposed model was compared to the
previous studies.

The rest of work organized as follow: section 2 will discuss
related work, section 3 and 4 will present structure of
supervised and unsupervised ML, section 5 will discuss
Gamel herd algorithm, section 6 will present description
and analysis of the dataset, section 7 will present correlation
analysis. Finally, section 8 will present Research Method-
ology and results discussion followed by section 9, which
is conclusion.

2. RelatedWork
Several previous studies have validated the use of AI

algorithms for water quality prediction and analysis. Here’s
a summary of these studies:
Furqan Rustam et al.[10] reviewed ML techniques to im-
prove the prediction of water consumption and quality,
using two types of unbalanced datasets, the first from the
Gaggle website to predict water quality and the second
from GitHub to predict water consumption. The limitation
of this study was unbalanced datasets. After tuning the
hyperparameters, paper employed a variety of ML methods.
This study improved Artificial Neural Network (ANN)
Model after adding ReLU activation function followed by
dropout layer with 50% dropout rate to reduce complexity
and prevent overfitting. The ANN model was constructed
up of three layers: the first and second layers each had 256
nodes, while the final layer had two nodes to predict water
quality and one node to predict water consumption. The
findings revealed that this study obtained an accuracy range
of 90% to 99%, with an enhanced ANN outperforming the
other models with an accuracy of 96% for forecasting water

quality and a 99% R2 score for water usage. At the same
time, Nida Nasir et al.[11] introduced study which involved
a variety of twelve ML algorithms, including Suport Vec-
tor Machine(SVM), Random Forest(RF), Logistic Regres-
sion(LR), Decision Tree(DT), CATBoost, Extreme Gradient
Boosting(XGBoost), and Multilayer perceptron(MLP), as
well as an ensemble of all models. To estimate water
quality, the paper analyzed data obtained from different
Indian towns. The CatBoost method was considered the
most dependable by the study, achieving 94.5% accuracy
and producing 100% accuracy after ensemble the models.
Duie Tien Bui et al.[12]assessed the efficacy of four
standalone algorithms :Random Forest (RF),Reduced Er-
ror Pruning Tree (REPT), Model Tree Algorithm (M5P),
and Regression Tree (RT) and twelve hybrid data-mining
algorithms(hybrids of standalones with CVPS, Bagging,
and Random Forest Classifier (RFC)) in predicting WQI.
The study relied on a dataset collected from northern Iran.
The modeling procedure found that fecal coliform content
was the most critical factor influencing WQI. The findings
showed that the performance of the separate and hybrid
models varied based on the differences in the input features
(water samples). The features with the highest correlation
coefficient had the most predictive power, and vice versa.
The hybrid (BART) approach outperformed the other hybrid
or standalone models, with an R2 score of 94%, although
it may not perform as well in different datasets and envi-
ronments.
Mohamed Torky et al.[13]presented ML techniques to pre-
dict whether drinking water samples are safe or dangerous,
in addition to predicting WQI.Nine ML models were used to
categorize water samples like RF and LGBM models which
outperformed other models with accuracy rates of 96% and
97%, respectively. As for regression, six models were used
to predict WQI, with superiority LGBM regression models
and Extra tree regression models with an accuracy of 95.5%
on the rest.
Fitore Muharemi et al.[14]employed time series data gath-
ered by the General Water Company of Germany as a
challenge to estimate water quality. The study used a vari-
ety of ML methods (LR,SVM, Linear Discriminant Anal-
ysis(LDA), recurrent neural network (RNN),ANN, Deep
Neural Network (DNN), and Long Short-Term Memory
(LSTM), and the findings revealed that imbalanced data
has a significant impact on the performance of ML algo-
rithms and makes them vulnerable. As a result, the paper
did not produce satisfactory findings, particularly when
applying time series algorithms (DNA, RNN, and LSTM).
Meanwhile, Umair Ahmed et al.[15]classified water quality
(WQC) and predicted WQI by applying a set of ML
algorithms. The researchers collected dataset from several
different sources for Lake Rawal in the city of Pakistan.
The research relied on a number of important parameters
after performing a number of preprocessing on them, such
as temperature, pH, and others. The results demonstrated
that gradient boosting and polynomial regression achieved
best accuracy for predicting WQI while in water quality
classification, the MLP model overcame the rest models
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with an accuracy of 85%. To forecast water quality, Md.
Mehedi Hassan et al. [16], applied several of supervised ML
models in India. The research relied on a dataset collected
from Kaggle consisting of a number of important biometric
features that indicate water quality and purity. The findings
showed that MLR outperformed the other models with
about 99% accuracy. At the same year, M. H. Al-Adhaileh,
and F. W. Alsaade [17] employed two approaches. The first
approach was to use the created Adaptive Neural Fuzzy
Inference System (ANFIS) algorithm to estimate WQI. The
second is to use Feed-Forward Neural networks (FFNN)
and K-Nearest Neighbors (KNN) to classify water quality.
The analysis was based on seven major features, and after
evaluation using a variety of performance indicators and
statistics, the two models produced the best results.
Saber Kouadri [18] proposed two scenarios: in the first
scenario, all parameters were utilized as inputs and tried
to shorten the time required for WQI computation. In
the second scenario, all inputs were decreased based on
sensitivity analysis and aimed to illustrate the fluctuation
in water quality in crucial instances where the required
assessments are not available. The study employed eight
AI algorithms to forecast water quality indicators in an
arid desert setting using 114 samples taken at various time
intervals from six aquifers in Illizi Province, southeastern
Algeria. The findings revealed that the MLR model had the
highest accuracy.
Afaq Juna et al. [19] predicted water quality based on
data at the kaggle website after processing it, such as
eliminating missing values using KNN imputer or manually.
The work applied a number of traditional ML methods,
in addition to improving the MLP model, which con-
sists of nine layers, with 256 nodes in each layer. The
model was implemented over 20 epochs and used the loss
function(binary crossentropy) with Adam Optimizer. The
results showed that the improved model with KNN imputer
achieved the best results with an accuracy of 99%. Table I
summarized Related Work.

3. SupervisedMachine Learning
Machine learning algorithms are trained using data that

is labeled. Each data point includes input characteristics and
their corresponding output labels.The LGBM algorithm is
an example of supervised ML that was applied in this work.
The algorithm was presented by Ke et al. [20] and based on
Decision Tree algorithm. In comparison to traditional tech-
niques, the algorithm’s design, which combines Gradient-
Based One-Sided Sampling (GOSS) and Exclusive Fea-
ture Pooling (EFB), offers high efficiency, accuracy, and
regression in data classification [21]. GOSS relies on high
gradients and leaves out features with low gradients. In
order to minimize the amount of features, mutually incom-
patible features are bundled together using EFB [22]. It is
characterized by:

1) It is called light because of its speed in training data.
2) Less memory consumption.
3) Reaching the best accuracy.

4) Dealing with big data.
5) Followed parallel learning
6) It reduces the cost of loss because it relies on

dividing the tree into leaves and not at the depth
level that used in previous Boosting algorithms.

4. UnsupervisedMachine Learning
Unsupervised machine learning algorithms identify pat-

terns and structures within data without requiring labels.
Below the (COPOD, IForest, CBLOF) algorithms are an
examples of unsupervised ML that was applied in this work.

A. Copula-Based Outlier Detection (COPOD)
It was introduced by Zheng Li [23], who characterized

it as being motivated by copulas for modeling multivariate
distributions. Copulas are mathematical functions that allow
the COPOD model to distinguish marginal distributions
from a random data. This offers COPOD the ability to be
employed in high-dimensional datasets [24]. The method
creates an empirical copula to estimate the tail probability
of each data point and identify its ”extreme” level.COPOD
advantages are [23]:

• COPOD has no hyperparameters, is based on Empir-
ical Cumulative Distribution Functions (ECDFs), and
does not employ random learning or training. This
eliminates the difficulty of selecting hyperparameters
and potential biases.

• It can discover anomalies that impact the joint distri-
bution of a set of variables, allowing it to work with
multidimensional data and provide adaptable mod-
els of interactions among variables. It outperforms
Principal Component Analysis (PCA), which is less
successful at recognizing multidimensional anomalies
since it depends on dimensionality reduction as well
as data reconstruction.

• It may be more appropriate for data with many
types of behaviors and distributions as it outperforms
Density-based spatial clustering of applications with
noise (DBSCAN) and K-Means, which might need
more regular data and precise distributions to detect
anomalies successfully. The working steps are [25]:

1) The dataset is collected, and then preprocessed to
deal with missing and abnormal values.

2) The variables in the dataset are treated as having
a uniform distribution using marginal distribution
functions. Use the copula function like (Gaussian,
Clayton etc.) to represent the dependence structure
between the converted variables.

3) The parameters of the chosen copula function are
determined using maximum probability estimation or
other fitting approaches.

4) The copula function constructs synthetic data points
that reflect the dependence structure of the original
dataset.
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TABLE I. Summarization of Related Work

Papers Year Methods Dataset Best Results

[10] 2022 DT, RF, Extra Tree, LR, AdaBoost, CNN, LSTM,
Gated Recurrent unit and improved ANN

https://www.kaggle.com/datasets/
adityakadiwal/water-potability

96% forecasting water quality
99% water Consumption

[11] 2022 SVM, LR, RF, DT, XGBoost CATBoost, and
(MLP)

https://kaggle.com/anbarivan/
indian-water-quality-data

Cat boost 95%
100% Meta decision tree,

Meta MLP, Meta CATBoost

[12] 2020 M5P, RF, RT, REPT (reduced error pruning
tree), BA (bagging)-M5P, BA-RT, BA-RF, CVPS
(CV parameter selection)-M5P, RFC-RT, BA-
REPT, CVPS-RT, CVPS-REPT, RFC-RF, RFC-
M5P, RFC-REPT

Private 94% BA-RT

[13] 2023 XGBoost, Decision Tree, LGBM, MLP, ETC
Classifier, ANN, GBC, RF, SVM

https://www.kaggle.com/datasets/
mssmartypants/water-quality

Classification 96% RF
97% LGBM

Regression 95.5% LGBM and DT
[14] 2019 LR, linear discriminant analysis, SVM, ANN, re-

current neural network (RNN), deep neural net-
work (DNN), LSTM

Private 36% SVM

[15] 2019 Multiple Linear Regression, Ridge Regression,
Polynomial Regression, Lasso Regression, Elastic
Net Regression, RF, SVM, Gaussian Naı̈ve Bayes,
MLP, LR, Stochastic gradient descent, K Nearest
Neighbor, DT, Bagging Classifier

http://www.pcrwr.gov.pk/
Classification ( MLP) 85% accuracy

Regression Gradient Boosting 7.2011 MSE
polynomial regression 12.7307 MSE

[16] 2021 ANN, SVM, bagged tree (BT) models, RF, multi-
nomial logistic regression (MLR)

Indian dataset pollution
https://www.kaggle.com/code/

anbarivan/indian-water-quality-data
MLR 100%

[17] 2021 Adaptive Neural Fuzzy Inference System (AN-
FIS), feed-forward neural networks (FFNN), K-
nearest neighbors

Indian water quality
data (kaggle.com)

ANFIS 92.39%accuracy
FFNN 100% accuracy
KNN 80.63% accuracy

[18] 2021 Multi linear regression (MLR), ANN, SVM, M5P
tree, Random subspace( RSS), RF, Additive re-
gression (AR), and Locally weighted linear regres-
sion (LWLR)

Private MLR 100%

[19] 2022 LR,SVC, DT, RF,KNN,Stochastic Gradient De-
cent Classifier (SGDC), and XGBoost, MLP-9

https://www.kaggle.com/datasets
/adityakadiwal/water-potability MLP-9 99% accuracy

5) Data points that deviate significantly from the ex-
pected adoption structure are considered outliers.

6) Statistical analysis is utilized to describe the features
of outliers and the causes for their anomaly.

B. Isolation Forest (IForest)
In 2008, Zhou Zhihua produced unsupervised IForest

algorithm. It is an efficient and ensemble learning method
that identifies outliers throughout the full sample space
[26]. This method provides a good level of accuracy and
execution efficiency. It may identify anomalous data by
isolating data points that are sparse and dispersed from high
density clusters. Following are some advantages of IForest
[27]:

• It employs a large number of short-depth trees to
extract outliers. This makes it very fast when dealing
with large datasets, unlike other methods like k-
means or DBSCAN, which may require extensive
computations.

• It can recognize outliers without knowing how many
them exist in the data, making it more adaptable than
many other algorithms.

• Its utilization of quick and easy decision trees allows

it to be readily extended to several applications and
enormous datasets. The principle of its work is [28]:

1) A subset of the training data is chosen randomly.
2) iteratively creates binary trees, each branch of which

is called an isolation tree (itree).
3) Each time, the feature and partition value(p) are se-

lected at random, with the condition that the partition
value (p) is within the feature value range. If feature
¡ p, then put it in the left tree otherwise put in the
right tree.

4) The stopping condition for the algorithm is to reach
the deepest node in the tree or isolate a single feature
in the leaf node.

5) The final form is to reach an isolated forest of
features.

6) Find the average path length h(d) for each feature in
the isolation forest, where d is the dataset. Equation
1 is showed that.

c(n) = 2H(n − 1) −
(

2(n − 1)
n

)
(1)

Where C(n) denoted of the average of h(d)
and n is the number of leaves, H(t) is the harmonic
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number that calculated using ln(t) + (Euler’s
constant= 0.5772156649), and the anomaly score
can be computed by equation 2:

s(d, n) = 2
−E(h(d))

c(n) (2)

Where E(h(d)) is the average of all h(d).

7) If the value of S(x, n) is near to one, it indicates that
the data is more probable to be anomalous; If S(x,
n) is near to zero, it indicates normal data.

C. Cluster-based Local Outlier Factor (CBLOF)
CBLOF was suggested by He, Xu, and Deng [29].

It describes anomalies as a result of local distances to
neighboring clusters and the overall size of the specific
clusters where the data point belongs.
It first divides data points into large and small clusters.
Data points within a small cluster close to a nearby larger
cluster are recognized as outliers. The local outliers could
not represent a single point, instead being a tiny group
of separated points. CBLOF considers both the distance
between a data point and the closest cluster as well as the
size of the cluster to which a data point belongs.CBLOF
has several advantages [30]:

• It works well to identify outliers in data that tends
to naturally cluster. It separates the data into clusters
and classifies outliers according to how much they
deviate from the cluster center or how well they fit
into smaller clusters.

• CBLOF can manage heterogeneous datasets with
clusters of varying sizes and shapes, making it helpful
in real-world applications where data is often non-
uniform.

• The outcomes generated by CBLOF are relatively
simple to read, as one can understand why a specific
point is an outlier due to its relationship to its cluster
and the number of points in it. This is a significant
benefit over other algorithms, whose findings can be
difficult to interpret. The steps of CBLOF procedure
are [31]:

1) A data point is given to exactly one cluster using
K-means, which is a good clustering algorithm.

2) Clusters are ranked from large to small based on
their size, and over time, data counts are calculated.
The ”large” clusters keep up to 90% of the data,
while the ”small” clusters keep the remaining 10%.

3) Finds a data point’s distance towards the centroid and
outlier score using two rules.Firstly,the distance be-
tween data points in a large cluster is measured from
the cluster’s centroid. The distance is multiplied by
the number of data points in the cluster to determine
the outlier score.The second rule,if a data point is in

the smallest cluster, the distance is calculated using
the centroid of the next large cluster. The calculation
of the outlier score involves multiplying the distance
by the amount of data present in the small cluster
containing the corresponding data point.

5. Camel Herd Algorithm (CHA)
It is an optimal intelligent algorithm that relies on the

collective behavior of camels’ herd in the desert to solve
complex problems. Its goal is to reach various solutions by
exploring multiple paths and starting from different points.
It also avoids falling into local optimum and reaching the
global one. Camels form vast herds that can number up
to a thousand. Each herd is headed by a leader whose
purpose is to look for wetlands, water, and food using the
humidity factor. They are recognized by their capacity to
feel humidity from a distance[32].
The important parameters in this algorithm are the number
of herds and the number of leaders in the herds, where each
herd has a leader who guides it to find the optimal solution,
in addition to the total number of camels in the herds and
the humidity rate, which is randomly set at the beginning
for each herd [33].
The basic idea behind how it operates is that, the herd
is spread out in the space problem. The leader begins
his task at a random starting point and spreads the rest
of the camels to find neighbors with high humidity using
the fitness function. The best neighbors are saved, and the
procedure is repeated until the best solution is found. The
camel herd procedure is revealed in Figure 1 [34]

Algorithm1: Pseudocode of Camel Herd Algorithm 

Input: No. of camel (M), no. of herds (H), max_Humidity (maxH)  

Output: best short path  

Begin 

For i = 1 to Hi  Do 

    //Choose leader (LHi )from the herd by using selection approach 

End for 

Repeat 

            For i := 1 to Hi  Do 

            b := 1 

            Initialize (Humidity) 

            For j := 1 to length (LHi) 

                    For each solution Do 

                             Establish random neighbors (RN) of  LHi // RN denote no. of 

camel except  leader 

                   For z := 1 to RN Do 

                            (best neighbors) BNZ= BNZ  * 1\ Humidity 

                             BNZ= LHi - BNZ \  dis (LHi ,BNZ  ) 

                  End for 

                  LHi [j] [b+1] =  LHi [j] [b] + BNZ 

                  End for 

              Update Humidity 

              End for 

         End for 

Until achieve goal or maximum Humidity 

End  

Figure 1. Pseudo code of (CHA)

6. Description and Analysis of the Dataset
In this work, two datasets from the Kaggle website were

used[35],[36]respectively. The first data set has 8000 items



6 Hanan Anas Aldabagh, et al.

and 21 features. Its features are real numbers except target
class which is integer. The second dataset has 1048575
items and 21 important features.
Table II and Table III have an overview of the dataset’s
features for two dataset.

TABLE II. Features of the First dataset

No. Feature Explanation Range per Liter

1 aluminum Water is dangerous if higher than 2.8 0–5.05
2 ammonia Water is dangerous if higher than 32.5 0.08–29.8
3 arsenic Water is dangerous if higher than 0.01 0–1.05
4 barium Water is dangerous if higher than 2 0–4.94
5 cadmium Water is dangerous if higher than 0.005 0–0.13
6 chloramine Water is dangerous if higher than 4 0–8.68
7 chromium Water is dangerous if higher than 0.1 0–0.9
8 copper Water is dangerous if higher than 1.3 0–2
9 flouride Water is dangerous if higher than 1.5 0–1.5

10 bacteria Water is dangerous if higher than 0 0–1
11 viruses Water is dangerous if higher than 0 0–1
12 Lead Water is dangerous if higher than 0.015 0–0.2
13 nitrates Water is dangerous if higher than 10 0–19.8
14 nitrites Water is dangerous if higher than 1 0–2.93
15 mercury Water is dangerous if higher than 0.002 0- 0.1
16 perchlorate Water is dangerous if higher than 56 0 – 60
17 radium Water is dangerous if higher than 5 0–7.99
18 selenium Water is dangerous if higher than 0.5 0 – 0.1
19 silver Water is dangerous if higher than 0.1 0–0.5
20 uranium Water is dangerous if higher than 0.3 0–0.9
21 is safe Target Class not safe=0 , safe=1

TABLE III. Features of the Second dataset

No. Feature Maximum Concentration
Limits

1 Turbidity 5 (10)**
2 pH 6.5-8.5*
3 Color 5 (15)**
4 Odor Would not be objectionable
5 Total Dissolved Solids 1000
6 Conductivity 1500
7 Iron 0.3 (3)**
8 Manganese 0.2
9 Fluoride 0.5-1.5*
10 Lead 0.01
11 Chloride 250
12 Sulphate 250
13 Nitrate 50
14 Copper 1
15 Zinc 3
16 Chlorine 0.1-0.2*

Note:* These standards indicate the maximum and minimum limits.

** Figures in parenthesis are upper range of the standards recommended.

This study aimed to clarify the distribution of 20 and 21
features in first and second dataset respectively that utilized
in water quality prediction. Figures 2 and 3 depict the

various distributions of features after cleaning and deleting
missing data.

Figure 2. Distribution of water including chemicals in the First
dataset

Figure 3. Distribution of water including chemicals in the second
dataset

In addition, Table IV and Table V display a range
of statistical values for input features in the two dataset.

Also,it illustrated that the count of parameters in the
first dataset is equal (7996.000000) but in the second was
(46070.000000). In the first dataset minimum value was
(-0.08000), which belongs to ammonia. perchlorate also
achieved the maximum value and height standard deviation
of (60.010000) and (17.688827) respectively. In the second
data set, it was noted that the water temperature element had
the minimum value with (-15.297819). However, Conduc-
tivity had the maximum value and height standard deviation
with (1562.278417) and (187.240101) respectively.

7. Correlation Analysis (CA)
A correlation matrix is a table showing the correlation

coefficients for numerous features. Every cell in the table
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TABLE IV. Statistical Metrics on First Dataset

Material count mean Standard deviation min 25% 50% 75% max

aluminium 7996.000000 0.666396 1.265323 0.0000 0.040000 0.070000 0.280000 5.050000
ammonia 7996.000000 14.278212 8.878930 -0.08000 6.577500 14.130000 22.132500 29.840000
arsenic 7996.000000 0.181477 0.252832 0.00000 0.030000 0.050000 0.100000 1.050000
barium 7996.000000 1.567928 1.216227 0.00000 0.560000 1.190000 2.482500 4.940000

cadmium 7996.000000 0.042803 0.036049 0.0000 0.008000 0.040000 0.070000 0.130000
chloramine 7996.000000 2.177589 2.567210 0.000000 0.100000 0.530000 4.240000 8.680000
chromium 7996.000000 0.247300 0.270663 0.000000 0.050000 0.000000 0.440000 0.900000

copper 7996.000000 0.805940 0.653595 0.000000 0.090000 0.750000 1.390000 2.000000
flouride 7996.000000 0 0.771648 0.435423 0.000000 0.407500 0.770000 1.160000 1.500000
bacteria 7996.000000 0.319714 0.329497 0.000000 0.000000 0.220000 0.610000 1.000000
viruses 7996.000000 0 0.328706 0.378113 0.000000 0.002000 0.008000 0.700000 1.000000

lead 7996.000000 0.099431 0.058169 0.000000 0.048000 0.102000 0.151000 0.200000
nitrates 7996.000000 9.819250 5.541977 0.000000 5.000000 9.930000 14.610000 19.830000
nitrites 7996.000000 1.329846 0.573271 0.000000 1.000000 1.420000 1.760000 2.930000

mercury 7996.000000 0.005193 0.002967 0.000000 0.003000 0.005000 0.008000 0.010000
perchlorate 7996.000000 16.465266 17.688827 0.000000 2.170000 7.745000 29.487500 60.010000

radium 7996.000000 2.920106 2.322805 0.000000 0.820000 2.410000 4.670000 7.990000
selenium 7996.000000 0.049684 0.028773 0.000000 0.020000 0.050000 0.070000 0.100000

silver 7996.000000 0.147811 0.143569 0.000000 0.040000 0.080000 0.240000 0.500000
Uranium 7996.000000 0.044672 0.026906 0.000000 0.020000 0.050000 0.070000 0.090000

TABLE V. Statistical Metrics on Second Dataset

Material count mean Standard deviation min 25% 50% 75% max

pH 46070.000000 7.429783 0.899168 2.720970 6.859859 7.431281 8.013138 12.508936
Iron 46070.000000 0.163643 0.504624 0.000000 0.000074 0.006964 0.094816 15.748603

Nitrate 46070.000000 6.455556 3.277018 0.600649 4.240407 5.891040 7.961255 60.373341
Chloride 46070.000000 191.162543 73.212160 43.115394 141.197959 180.053353 225.681904 821.340029

Lead 46070.000000 0.002480 0.040075 0.000000 0.000000 0.000000 0.000000 2.577206
Zinc 46070.000000 1.591325 1.509082 0.000047 0.498047 1.168112 2.252260 17.456025

Turbidity 46070.000000 0.630641 0.992825 0.000000 0.065759 0.283541 0.767409 12.860362
Fluoride 46070.000000 1.024760 0.824096 0.000639 0.435440 0.842447 1.405219 9.595659
Copper 46070.000000 0.574632 0.608193 0.000002 0.167000 0.407499 0.773385 6.935948
Odor 46070.000000 1.873636 1.039409 0.011032 1.008938 1.864526 2.691711 4.140538

Sulfate 46070.000000 150.295230 73.055630 18.485174 98.993197 136.187879 187.047766 1021.964684
Conductivity 46070.000000 421.515282 187.240101 24.259860 284.770387 394.881144 527.529420 1562.278417

Chlorine 46070.000000 3.305040 0.721968 1.108282 2.803668 3.252339 3.741812 7.891530
Manganese 46070.000000 0.147796 0.501985 0.000000 0.000021 0.002950 0.043187 12.116501

Total Dissolved Solids 46070.000000 274.250508 159.969885 0.013855 136.094238 273.262287 408.969775 579.759551
Water Temperature 46070.000000 18.900567 10.504284 1.543869 11.766502 16.543181 23.325443 143.155393

Air Temperature 46070.000000 60.246895 17.100232 -15.297819 48.805324 60.312304 71.572667 137.632506
Air Temperature 46070.000000 60.246895 17.100232 -15.297819 48.805324 60.312304 71.572667 137.632506

represents a correlation between two value pairs [37]. The
correlation matrix for two datasets with the output and each
other is shown in Figure 4 and Figure 5.

Figure 4. Correlation Matrix of First Dataset

Figure 5. Correlation Matrix of Second Dataset

For example, the Figure 4 reveals that viruses has
a positive correlation with bacteria (0.62), implying that
increases in viruses cause increases in bacteria and vice
versa. Silver has a positive correlation with the elements
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chloramine and chromium (0.52) and (0.51), respectively,
but it has a negative correlation with the element lead
(-0.057), implying that as silver grows, lead slightly de-
creases.
On the other side, it was discovered that silver has a
moderate correlation with perchlorate (0.50), implying that
as silver levels rise, perchlorate will increase moderately.

8. ResearchMethodology and Approach
A. Research Requirement

1) Environmental Requirement.
• windows OS.
• Anaconda includes Jupyter notebook tools for

the Python programming language.
2) Functional Requirement.

A group of libraries was used in the Python language to
implement the desired goals, which are sk-learn, pandas,
NumPy, matplotlib, lgbm, niapy and seaborn.

B. Proposed Methodology
The proposed methodology of the water quality predic-

tion model consists of five phases: Preprocessing phase,
Unsupervised ML phase, Tuning phase, Prediction using
supervised ML phase and finally Performance evaluation
phase. The framework of the proposed methodology can be
simply described in Figure 6.

1) Pre-processing Phase Pre-processing is essential for
improving the quality of data analysis. It refers to
the act of acquiring and manipulating numerous
data components in order to produce usable and
relevant information. Pre-processing phase included
Data cleaning, Data normalization, Data splitting,
and lastly resampling training data.
• Data Cleaning Cleaning data was performed

by deleting records that contained incomplete
data.

• Data Normalization Normalization is a
technique for standardizing attribute values
in a dataset by placing data in a predefined
range between 0 and 1 without affecting the
underlying distribution. It ensures that the
data keeps its original shape when scaled to
a defined range. Equation (3) calculated the
feature’s normalization on a scale of 0 to 1
[38].

fscaled =
f − fmin

fmax − fmin
(3)

Where fmax represents the feature’s maximum
value and fmin refers the minimum value. This
is done by using MinMaxScaler function (f
scaled).

• Data Splitting The data was divided into two
groups, with 70% going to training and 30%
going to the testing technique.

• Resampling Training Dataset Unbalanced
datasets have unequal categories, one with
more samples than the other. Classifiers may
perform effectively in the majority class but
poorly on the minority due to their greater
effect. Unbalanced datasets often need to be
resampled to achieve a more even distribution
of class states [39],[40].
SMOTE sampling, an adaptive oversampling
approach, has been applied to process the raw
dataset for guaranteeing high accuracy of the
training data. The SMOTE approach efficiently
motivates the minority class to become
broader. Oversampling the minority class is a
technique for dealing with unbalanced datasets.
Duplicating samples in the minority class is
the simplest solution, but these examples add
no new information to the model [41].

2) Unsupervised ML Phase At this phase, three models
of unsupervised ML were used, and each model uti-
lized features without labels (outcome). The function
of models was to discover anomaly score for each
data point(outlier), which is added and fused with
original dataset as an additional feature for using in
the prediction algorithm by LGBM.
Finally, a jointly hybrid model was proposed called
(HLGBM+Fusion CIC) that combines LGBM and
unsupervised ML(COPOD, IForest, CBLOF) after
fusing their outliers. The hybrid model jointed the
outcomes of fusion unsupervised algorithms (CO-
POD, IForest, and CBLOF) with original dataset and
passed as input for the LGBM algorithm to achieve
multi-model learning and highly representative pre-
diction [42].

3) Tuning Hyperparameter Phase Choosing the correct
hyperparameters has a significant impact on the
effectiveness of the prediction model, and also allows
for a more optimal solution with a better level of
accuracy, but it is a difficult matter to achieve. So,
swarm intelligent algorithms have demonstrated their
capacity to perform such jobs.
The camel herd algorithm was applied for tuning
the hyperparameters of LGBM algorithm on two
datasets, and the Table VI and Table VII showed
the best one.

TABLE VI. Hyper-Parameter Models(First Dataset)

Models Hyperparameters

LGBM num leaves=141, n estimators=196

LGBM + COPOD num leaves=46, n estimators=352

LGBM + IForest num leaves=44, n estimators=333

LGBM + CBLOF num leaves=81, n estimators=242

HLGBM+Fusion CIC num leaves=46, n estimators=352
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Figure 6. Methodology Framework

TABLE VII. Hyper-Parameter Models(Second Dataset)

Models Hyperparameters

LGBM num leaves=228, n estimators=294
LGBM + COPOD num leaves=244, n estimators=328
LGBM + IForest num leaves=216, n estimators=301
LGBM + CBLOF num leaves=239, n estimators=239
HLGBM+Fusion CIC num leaves=113, n estimators=391

In the above two tables, the hyper-parameters
(n leaves) and (n estimator) control the number
of leaves in a single tree and the number of trees
in the model, respectively. These hyper-parameters
are crucial for preventing overfitting and underfit-
ting, as well as achieving high accuracy and per-
formance. Increasing their value causes overfitting
and complicates the model’s structure, while de-
creasing their value,underfitting occurs, which is the
model’s inability to discriminate data throughout the
training and testing phases.So, in this work Camel
Herd Algorithm was used to create balanced values
with great precision and simplicity, while preventing
overfitting and underfitting .

4) Prediction using Supervised ML Phase At this stage,
the water quality prediction process is carried out
after pre-processing the dataset and tuning the hy-
perparameters of the LGBM algorithm.

5) Performance Evaluation After designing the model,
its performance was evaluated using multiple
metrics, including ROC AUC, precision, recall, f1
score, and accuracy. AUC-ROC is a classification
metric that measures how effectively a classifier can
distinguish between classes at different thresholds.
AUC-ROC illustrates the trade-off within specificity

and sensitivity in tests that produce numerical
results rather than a binary positive or negative
outcome. The AUC-ROC (decision thresholds)
determines the optimum cut-off for both sensitivity
and specificity. Accuracy represents categorization
task performance and counts the number of
accurately estimated examples across all data
samples. Furthermore, Recall is an appropriate
statistic for identifying model faults as well as
how accurately the model recognizes actual ”safe”
and ”non safe” occurrences. Precision refers to
the percentage of positively (either ”safe” or ”non
safe”) identifies that have been correct. Precision
measures quality, whereas recall measures quantity.
F1 score is a statistic that aims to find a balance
between precision and recall. These metrics are
defined in 4,5,6,7 equations as follows :

Accuracy =
T P + T N

T P + T N + FP + FN
(4)

Precision =
T P

T P + FP
(5)

Recall =
T P

T P + FN
(6)

F1score = 2 ∗
Precision ∗ Recall
Precision + Recall

(7)

TP, FP, TN, and FN represent True Positive, False
Positive, True Negative, and False Negative, respec-
tively. They range from zero to one and used to
determine the ML model that performs better to



10 Hanan Anas Aldabagh, et al.

identify ”safe” and ”nonsafe” instances [43],[44].

C. Result and Discussion
The results of LGBM model were evaluated before and

after the SMOTE process for two datasets, as shown in
Table VIII and Table IX.

TABLE VIII. Evaluation Metrics of LGBM Model(first dataset)

Evaluation metrics Before SMOTE After SMOTE

AUC 0.909 0.984
Precision 0.909 0.983

Recall 0.830 0.986
F1-score 0.867 0.985
Accuracy 0.971 0.984

TABLE IX. Evaluation Metrics of LGBM Model(Second Dataset)

Evaluation metrics Before SMOTE After SMOTE

AUC 0.862 0.908
Precision 0.656 0.869

Recall 0.868 0.965
F1-score 0.747 0.915
Accuracy 0.860 0.909

The previous tables show that the results of applying
LGBM model on two datasets after SMOTE are better than
before applying SMOTE, because balanced data ensures
that the LGBM model is not biased or overfitted.
Moreover, for comparison with the traditional methods,
Table X and Table XI show that LGBM algorithm outper-
formed them,like: SVM, NB (Naive Bayes), KNN, DT,and
LR in terms of performance evaluation results and algorithm
execution time for two datasets.
It was also observed that DT algorithm is the best among
traditional algorithms due to its closeness to LGBM algo-
rithm because the latter is based on DT algorithm. LGBM
algorithm combines Gradient-Based Sampling (GOSS) and
Exclusive Feature Pooling (EFB) where this combination
gives high efficiency, accuracy and regression in data clas-
sification and reduces the cost of loss because it is based
on dividing the tree into leaves and not on the depth level
used in previous boosting algorithms.

TABLE X. comparison between LGBM with traditional ML(First
Dataset)

Evaluation
metrics

LGBM SVM NB KNN DT LR

AUC 0.984 0.794 0.791 0.856 0.953 0.787

Precision 0.983 0.808 0.799 0.788 0.953 0.822

Recall 0.986 0.777 0.782 0.981 0.953 0.737

F1-score 0.985 0.792 0.791 0.874 0.953 0.777

Accuracy 0.983 0.794 0.791 0.857 0.953 0.787

Time 2.390625 2.96875 0.0 0.0 0.15625 0.015625

TABLE XI. comparison between LGBM with traditional ML(Second
Dataset)

Evaluation
metrics

LGBM SVM NB KNN DT LR

AUC 0.908 0.675 0.700 0.763 0.860 0.748

Precision 0.869 0.787 0.845 0.727 0.861 0.766

Recall 0.965 0.486 0.494 0.856 0.863 0.721

F1-score 0.915 0.600 0.623 0.7864 0.862 0.743

Accuracy 0.909 0.673 0.697 0.764 0.860 0.747

Time 2.1718 84.5781 0.0312 6.875 2.2968 0.0625

Figure 7 displays confusion matrix for the LGBM model
before and after SMOTE, and Figure 8 shows the height of
AUC curve after oversampling in comparison with before
for the first dataset.

Figure 7. Confusion Matrix of LGBM Model(First Dataset)

Figure 8. AUC of LGBM Model(First Dataset)

Figure 9 shows confusion matrix for the LGBM model
before and after SMOTE, whereas Figure 10 shows the
height of the AUC curve after SMOTE for the second
dataset.

Figure 9. Confusion Matrix of LGBM Model(Second Dataset)
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Figure 10. AUC of LGBM Model(Second Dataset)

After applying SMOTE algorithm on the original train-
ing dataset, tuning hyper parameters of LGBM algorithm
was performed using Gamel herd algorithm. Next, LGBM
algorithm was hybridized with the outliers generated by
COPOD algorithm.
Similarly, the same procedure was repeated independently
once on the IForest algorithm and once on the CBLOF
algorithm. Finally, the results of three unsupervised algo-
rithms (COPOD, IForest, and CBLOF) were fused as input
to LGBM algorithm.
Table XII and Table XIII represent the performance
evaluation results and execution time for all previ-
ous models, which show that ( LGBM+IForest) model
overcome (LGBM+COPOD) model and which show
that (LGBM+CBLOF) model overcome (LGBM+IForest)
model.
Finally proposed model (HLGBM+Fusion CIC) superior on
the three previous models (COPOD, IForest, CBLOF).

TABLE XII. Performance Evaluation and Execution Time (First
Dataset)

Evaluation
metrics

LGBM
Before
tuning

LGBM
After
tuning

After
Tuning
Hybrid
(LGBM+
COPOD)

Hybrid
(LGBM+
IForest)

Hybrid
(LGBM+
CBLOF)

HLGBM
+Fusion
CIC

AUC 0.984 0.986 0.987 0.989 0.990 0.992
Precision 0.983 0.986 0.987 0.990 0.989 0.990
Recall 0.986 0.986 0.988 0.990 0.991 0.993
F1-score 0.985 0.986 0.987 0.989 0.990 0.992
Accuracy 0.984 0.986 0.987 0.989 0.990 0.992
Time(Sec.) 2.390 7.687 11.890 12.921 10.359 8.265

TABLE XIII. Performance Evaluation and Execution Time (Second
Dataset).

Evaluation
metrics

LGBM
Before
tuning

LGBM
After
tuning

After
Tuning
Hybrid
(LGBM+
COPOD)

Hybrid
(LGBM+
IForest)

Hybrid
(LGBM+
CBLOF)

HLGBM
+Fusion
CIC

AUC 0.908 0.910 0.911 0.917 0.913 0.922
Precision 0.869 0.873 0.874 0.883 0.875 0.894
Recall 0.965 0.964 0.966 0.965 0.969 0.961
F1-score 0.915 0.917 0.917 0.922 0.920 0.927
Accuracy 0.909 0.911 0.912 0.918 0.914 0.923
Time(Sec.) 2.765 34.203 40.640 37.687 45.406 27.734

Figures 11,12,13 depict the results of the confusion
matrix for all applied models on the first dataset.
Figures 14,15,16 show the results of the confusion matrix
for all applied models on the second dataset, demonstrating
that the proposed model (HLGBM+Fusion CIC) overcomes
the other models.

Figure 11. (a) Confusion Matrix of (a) LGBM After Tuning, and (b)
LGBM + COPOD Model (First Dataset)

Figure 12. Confusion Matrix of (a) LGBM After Tuning + IForest,
and (b) LGBM + COPOD Model(Second Dataset)

Figure 13. confusion matrix of (HLGBM+Fusion CIC) Model (First
Dataset)
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Figure 14. confusion matrix of (a) LGBM After tuning, and (b)
LGBM After tuning + COPOD Model (Second Dataset)

Figure 15. confusion matrix of (a) LGBM After tuning + IForest,
and (b) LGBM After tuning + COPOD Model (Second Dataset)

Figure 16. confusion matrix of (a) LGBM After tuning + IForest,
and (b) LGBM After tuning + COPOD Model (Second Dataset)

The results of proposed model (HLGBM+Fusion CIC)
were compared to the highest result mentioned in a related
work conducted by Furqan Rustam et [10]. Table XIV
shows that the result obtained from the proposed model was
better compared for the previous study mentioned above.

TABLE XIV. Comparison with Related Work[10]

Paper Accuracy Precision Recall F1
score

Furqan Rustam et. [10] 0.96 0.91 0.87 0.89
HLGBM+Fusion CIC 0.99 0.99 0.99 0.99

9. Conclusion
Precise monitoring of changes in water quality is crucial

for delivering drinking water. Conventional techniques like
computing water quality index (WQI) can be time inten-
sive and prone to mistakes. The global issues of water
scarcity and pollution underscore the need to automate
water suitability assessments. AI presents opportunities, for
enhancing the analysis and forecasting of water quality.AI
approaches can cut down expenses, help ensure adherence
to water quality regulations and establishing monitoring
systems is essential, for sustainable friendly water resource
management.
This study focused on predicting the quality of water
whether it is suitable for use or not. In order to achieve
this, an evaluation and comparison of different models of
supervised and unsupervised ML models was applied. The
LGBM technique was compared before and after applying
the SMOTE process. In addition, a comparison was made
for hybrid models between supervised learning and unsuper-
vised learning (COPOD, IForest, and CBLOF) after using
SMOTE process and using swarm optimization to develop
the model and get the best prediction outcomes.
The results show that the model (HLGBM+Fusion CIC)
after SMOTE process ,adjusting the training dataset and
jointing with fused unsupervised algorithms (COPOD, IFor-
est, and CBLOF) and hybridizing it with LGMB algorithm
outperforms other models, as an accuracy is 99% on first
dataset and 92% on second dataset. Furthermore, these
results have important implications for learning how to
develop a new model that combines the features (outliers)
of unsupervised ML with training dataset and then passed to
supervised ML to achieve multi-model learning and highly
representative prediction, including whether it is suitable
for human consumption, agricultural irrigation, or other
industrial or environmental applications.
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