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Abstract: This paper presents a new hybrid framework for an agriculture domain that expands the predictive power of deep learning
models to the soundness of statistical methods by improving the accuracy, efficiency, and scalability of estimating outputs in agriculture.
This paper also addresses the potential issue of large quantities of quality data and computational requirements with sophisticated
machine-learning models, which is an advancement in agricultural practice. This paper discusses the diverse deep learning (DL)
architectures, principally in EfficientNetB0 and InceptionV3, which are computationally efficient in handling complex and high-
dimensional data. These are further integrated with some of the most fundamental statistical techniques, like linear regression, which
stabilizes predictions, reducing the risk of overfitting, which is observed in traditional deep learning-driven techniques. These integrated
models are proposed hybrid models used for the projections. All these results proved that hybrid models performed much better than
individual models, like EfficientNetB0 or InceptionV3, in terms of accuracy and robustness metrics. The evaluated test accuracy of a
hybrid model is 97.84%, which is higher compared to the two corresponding individual deep learning models. Furthermore, we compare
this hybrid approach with other state-of-the-art methods showing a predominant presence in various agricultural scenarios. These
models performed well and provided better predictions for different crop types and environmental conditions. Different combinations
of deep learning and statistical techniques have been integrated into this methodology, and further performed a hyperparameter tuning,
thus adapting it to specific crops or regional conditions. Furthermore, the proposed hybrid models significantly improve performance,
reducing computational overhead while maintaining high accuracy and providing a feasible and efficient way of yield prediction.

Keywords: Hybrid Framework, Deep Learning, Statistical Methods, Crop Yield Prediction, Computational Efficiency, Scalability,
Agricultural Forecasting, EfficientNetB0, InceptionV3, Machine Learning

1. INTRODUCTION
Accurate prediction of crop yield has been a very

important role in agriculture, as it is recurrently related to
economic stability and food security. Traditional method-
ologies have often been incapable of capturing this complex
interaction among the interconnected factors of environmen-
tal conditions, genetic variations, and agricultural practices
that finally constitute the end-to-end chain in crop yield
[1]. Conventional models, therefore, are characterized by
limited capability to pose a heavy burden on farmers
to keep up with optimum yields with adequate resource
utilization. The classical statistical models, on one hand,
are computationally efficient and interpretable but have lim-
ited power in considering non-linear interactions between
these factors under real-world agricultural conditions. Deep
learning techniques have opened new possibilities in crop
yield prediction, especially using remote sensing data [2]
[3]. Among those are Convolutional Neural Networks and
Recurrent Neural Networks; these deep learning models

shall take advantage of the complicated spatial and temporal
patterns innate in high-dimensional data, hence offering
good compatibility with large-scale agricultural datasets
analysis. However, most of the DL models require immense
computational resources and large datasets, bound their ap-
plications in several scenarios, especially in agriculture, due
to resource constraints. Secondly, DL models are generally
”black boxes” since interpretation by stakeholders is hardly
possible or trust in the outcome. Another main concern
of these models is overfitting; they get over-specialized
to the training data, hence decreasing their generalization.
Given these very limitations, this research proposes a hybrid
framework that combines the strengths of DL and statistical
methods as a way of diversifying from the disadvantages
of either approach in isolation. By incorporating Efficient-
NetB0 and InceptionV3 with statistical techniques such as
linear regression, the framework leverages the powerful
data processing capabilities of DL while maintaining the
interpretability and stability of statistical models.
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TABLE I. Comparative Analysis of Crop Yield Prediction Techniques Across Different Studies

Refer-
ence Dataset Description Algorithm/Methodology Performance/Remarks

[4]
Plant seed classification dataset
with 5,539 images across 12 cat-
egories

An ensemble of “Convolutional
Neural Networks” (CNNs) and
“k- Nearest Neighbors” (KNN)
for multi-class image classifica-
tion

Achieved an accuracy of 99.90%, outper-
forming traditional methods

[5]
Data from smart farming tech-
nology, including sensor read-
ings and weather data

“Long Short-Term Memory”
(LSTM) networks and CNNs
used for crop yield prediction

Noted superior performance with deep
learning models, significantly improving
yield prediction accuracy

[6] Data collected over two growing
seasons from several crop fields

Utilized linear regression, elastic
net, “k-Nearest Neighbors” (k-
NN), and “Support Vector Re-
gression” (SVR) for yield predic-
tion

SVR showed the lowest Root Mean
Square Error (RMSE), indicating higher
prediction accuracy

[7]
Dataset derived from the Agri-
cultural Production Survey and
weather data

Using crop simulation models
alongside machine learning tech-
niques.

This combined approach increased predic-
tion accuracy by utilizing the strengths of
both methods.

[8]
Focused on the Vellore district,
including climate data and crop
yield records

“Deep Recurrent Q-Network
(DRQN)” integrating deep
learning and reinforcement
learning

Achieved an accuracy of 93.7%, outper-
forming existing models

[9]

Dataset from the Uniform Soy-
bean Tests (UST) in North Amer-
ica from 2003 to 2015, including
weather data.

LSTM with “Temporal Atten-
tion” for yield prediction.

The coefficient of determination (R²) was
0.796, with lower MAE compared to tra-
ditional models, indicating significant im-
provement in predictive accuracy.

[10] Crop fields in Pori, Finland, us-
ing multispectral UAV imagery.

Spatio-temporal deep learning
models (CNN-LSTM, ConvL-
STM, and 3D-CNN) for crop
yield prediction.

3D-CNN achieved an MAE of
218.9kg/ha, demonstrating improved
modeling performance
and a reduction in error rates over tradi-
tional methods.

[11] Environmental and agronomic
data influencing crop yields.

ANNs utilized for crop yield pre-
diction, highlighting non- linear
relationships.

Models showed high accuracy with poten-
tial for further improvements by address-
ing the challenges of training speed and
network architecture selection.

[12]
Yield performance data, satellite
images, and cropland data layers
across the US Corn Belt.

“YieldNet,” a CNN framework
for predicting yields from satel-
lite image sequences.

Demonstrated competitive performance
with MAEs of 8.74% for corn and
8.70% for soybean, enhancing real-time
decision-making in crop management.

[13]

Soil and climatic parameters
from various regions of India,
along with production-related
attributes.

Predicting crop yields with “De-
cision Tree,” “Naı̈ve Bayes,” and
KNN algorithms.

KNN achieved a high accuracy of 89.4%,
proving its effectiveness in precise yield
prediction.

[14]
Data on climate and agriculture
were collected from different ar-
eas in Sri Lanka.

ANNs for establishing relation-
ships between climatic factors
and paddy yield.

LM algorithm outperformed others in less
computational time, indicating the effec-
tiveness of ANNs in predictive modeling.

[15]
Rice yield and meteorology data
from 81 counties in Guangxi
Zhuang, China.

A BBI model combining “Back-
propagation Neural Networks”
(BPNNs) with an “Independently
Recurrent Neural Network” (In-
dRNN) for
predicting rice yields.

This model showed the lowest “Mean
Absolute Error” (MAE) and “Root Mean
Square Error” (RMSE), proving its accu-
racy and reliability across different geo-
graphic areas.
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[16]
Diverse agricultural regions’
data, including weather patterns,
soil information, and crop yields.

Using “Gradient Boosting Re-
gressor,” “Random Forest Re-
gressor,” SVR, and “Decision
Tree Regressor” for predicting
yields.

The models achieved high accuracy, with
“Random Forest” and “Gradient Boost-
ing” performing best in reducing RMSE.

[17]
Agricultural sites in Portugal,
focusing on tomato and potato
yields.

Bidirectional LSTM model for
accurate crop yield prediction.

Achieved an R² score between 0.97 and
0.99, highlighting the high predictive ca-
pability of BLSTM models over tradi-
tional methods.

[18]

European Commission’s MARS
Crop Yield Forecasting System
(MCYFS) database, including
weather, remote sensing, and soil
data.

Machine learning integrated with
crop modeling for yield forecast-
ing.

Normalized RMSE indicated room for
improvement, but the models provided
reliable forecasting methods.

[19]

Multi-source data for winter
wheat yield prediction
in China, including
satellite,meteorological, soil,
and
cropland data.

Two-branch deep learning model
combining LSTM and CNN for
yield prediction.

The model showed an R² of 0.77 and
RMSE of 721 kg/ha, demonstrating effec-
tive integration of multi-source data for
yield prediction.

[20]
Publicly available healthcare
data focusing on medical image
classification.

CNNs with transfer learning for
medical image classification.

Achieved 95% accuracy on the test set,
illustrating the transferability of hybrid
models to different domains with high
effectiveness.

[21]
Wheat yield and weather param-
eters over 30 years from multiple
locations in India.

Various techniques including
LASSO, PCA, and ANN for
predicting wheat yield based on
weather data.

Demonstrated high accuracy with nRMSE
values less than 10%, indicating effective
use of weather data for yield prediction.

[22]

Corn and soybean yield data,
satellite images, and
cropland data layers across the
US Corn Belt.

The deep learning framework
“YieldNet” is designed for pre-
dicting both corn and soybean
yields.

“YieldNet” showed mean absolute errors
of 8.74% for corn
and 8.70% for soybean, outperforming
traditional models.

[23]
Data on soil and climate from
various regions in India, used for
crop yield prediction.

Employed machine learning
techniques like “Decision Tree,”
“Naı̈ve Bayes,” and KNN.

The “Decision Tree Classifier” achieved
an accuracy of 76.8%, demonstrating its
effectiveness in using climatic and soil
data for yield prediction.
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This efficiency of the model in handling complex
datasets treats the hybrid approach as one that facilitates
scalability and overfitting, which have been problematic
in earlier models. This hybrid framework provides added
value in agricultural forecasting in two major ways. First,
it enhances the accuracy of yield prediction by capturing
both spatial and temporal dependencies in the data. Such
would make them appropriate for dynamic agricultural
environments. Second, it provides a scalable, interpretable
solution wherein stakeholders can confidently use this to
make informed decisions. Thus, the framework bridges deep
learning with statistical approaches to surmount certain
challenges in agricultural forecasting that support sustain-
able farming and contribute toward ensuring food security.
This hybrid approach is, at last, a quantum leap toward
predictive agriculture modeling-economically viable and
scalable, with interpretability for the complex demand of
modern agri-insurance.

The main aim of this paper is to propose a hybrid
framework that enhances the accuracy, interpretability, and
generalization of crop yield predictions. In this regard,
the current study will adopt two deep learning models,
namely EfficientNetB0 and InceptionV3, in conjunction
with statistical techniques such as linear regression to
effectively leverage the complementary strengths of these
methodologies. This work makes the following contribu-
tions: first, it develops a hybrid model that can successfully
overcome the limitations of stand-alone deep learning or
purely statistical approaches; secondly, this framework is
able to analyze high-dimensional real-world agricultural
data with improved performance, and thirdly, provide a
more interpretable and resource-efficient solution. This will
enhance the practical utility for a wide range of stakeholders
in the agricultural domain.

2. Literature Review
The literature review shows various developments that

are being carried out in crop yield prediction, starting from
deep learning and machine learning to hybrid approaches.
Table 1 represents detailed and latest research discussions
about the topic. From their results on diverse datasets such
as UAV imagery, satellite data, and environmental and
agronomic information, high performance exhibited by the
models using CNNs, LSTMs, and ensemble methods has
been identified. Hybrid models, like CNN-KNN ensembles
or BBI models that incorporate neural networks with statis-
tical techniques, have shown better prediction accuracy and
computational efficiency. Certain regional data studies, use
of sensor-based data in smart farming, depict the possibility
of models fine-tuning by hyperparameter tuning to present
the best yield prediction in multiple crops and environments.

Some of such identified research gaps include how, on
one hand, there is an increased need for integrations using
multi-source data, including drone imagery and soil health
data, which could lead to increased predictive accuracy and
model reliability across larger areas. Further research is also

required regarding methods to handle some computational
challenges related to those models using hybrid or deep
learning techniques.

3. Methodology
A. Dataset and Data Preprocessing

This data was taken from Kaggle and contains a total
of 2602 images, which were divided into three categories:
Corn, Rice, and Wheat. Considering some of the short-
comings that were witnessed in some previously developed
models, we decided on EfficientNetB0 and InceptionV3
because these have impressive computational efficiency and
are efficient feature extractors, respectively. These models
were combined with linear regression, serving as a normal-
izer to reduce overfitting and thereby make the predictions
more reliable. EfficientNetB0 was selected because it scaled
model depth and width with efficiency. This is helpful in
processing complex agricultural data. InceptionV3 captures
features at multiple scales. We achieved multi-scale feature
detection by complementing it with the ability of linear
regression to stabilize the predictions of the model. These
categories represent the different types of crops and hold
a lot of importance for the training of models so that they
can distinguish effectively among them.

• Composition: The dataset, taken from Kaggle, com-
prised 2602 images. There were three folders named
“Corn,” “Rice,” and “Wheat.” The corn folder con-
tained 934 images, the rice folder contained 864
images, and the wheat folder contained 804 images.

• Image Specifications: Standardizing each picture di-
mension to 224×224, all inputs met the specifications
stipulated for neural networks employed.

B. Data Augmentation
Moreover, with TensorFlow’s ImageDataGenerator,

plenty of data augmentation techniques were used to in-
crease the model’s robustness and help avoid overfitting
[24]. This approach will make our training data much more
varied since the augmentation technique will apply random
transformations to the training images. A sample of data
augmentation is represented in Figure 1. Techniques Used:

• Rotation: Images were randomly rotated by up to 20
degrees to model the orientations of crops.

• Width and Height Shifts: Horizontally and verti-
cally, each image was shifted by as much as 20% of
its total width and height.

• Shearing: The transformation was applied to distort
images along one axis, mainly used for simulating
wind effects and plant growth angles.

• Zooming: Images were randomly zoomed in by up
to 20% to include features at various scales.
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• Horizontal Flipping: Images were flipped horizon-
tally to increase the dataset’s variability and simulate
different planting directions.

• Normalization: All images were rescaled by a fac-
tor of 1/255 during augmentation, normalizing pixel
values between 0 and 1 to help stabilize and speed
up model convergence.

Figure 1. Data Augmentation Functions

C. Data Splitting
Those augmented images have to be split into training,

validation, and testing, as represented in Figure 2. This
split is important in order to evaluate the model over its
generalization to new, unseen data [25]. Data Partitioning:
left=0pt

• Proportions: 80% of the data was allocated to the
training set to train the models on different crop
images, enabling them to adapt effectively.

• Validation Set: To prevent overfitting and optimize
hyperparameters, 10% of the original dataset was
reserved specifically for validation purposes.

• Test Set: After training, a final 10% subset was set
aside as the test set to evaluate model performance
and generalizability on entirely new datasets.

Figure 2. Dataset Split for Training, Testing and Validation

D. Experimental Setup
The system used for this analysis is equipped with an

Intel Core i5 processor (11300 @ 3.10 GHz) and 16GB
of DDR4 RAM operating at a speed of 2667 MHz. For
graphics processing, it includes an Intel Iris XE GPU with
shared memory up to 8GB, as well as a dedicated Nvidia
GeForce RTX 3050 with 4GB of memory, expandable
with shared memory up to 8GB. The operating system is
Windows 11, and the development environment consists of
Anaconda Navigator 2.3.0 and VS Code version 1.71.2,
with Python version 3.6.13.

Essential packages and libraries from Keras were uti-
lized, including layers for model building and image aug-
mentation handled by ImageDataGenerator, configured
with parameters such as rescale = 1./255, shear range
= 0.2, zoom range = 0.2, and horizontal flip =
True. The learning rate was set to 0.00002, using the Adam
optimizer and ’categorical crossentropy’ as the loss
function. A ReduceLROnPlateau callback was employed
to adjust the learning rate dynamically.

The input to the model consisted of images resized to
224 × 224 × 3 pixels, with a batch size of 16, and the
model was trained across 20 to 44 epochs, depending on
convergence criteria.

E. Model architecture
The proposed hybrid framework incorporates several

deep learning architectures integrated with statistical meth-
ods for improving the accuracy, stability, and adaptability
of crop yield prediction. The underlying framework will
be built on three hybrid models comprising a NASNet-
Mobile Custom Hybrid Model, an InceptionV3 and Ef-
ficientNetB0 Hybrid, and NASNetMobile integrated into
CNN and CSTM. Each architecture, in turn, carefully crafts
features to attain the powers of deep learning in detecting
complex patterns from remote sensing and agricultural data.
Linear regression statistical methods were also added to
make the results more interpretable and to avoid over-
fitting. Specifically, EfficientNetB0 and InceptionV3 had
been chosen for their efficient scaling and the ability to
capture spatial hierarchy, respectively, which is beneficiary
in handling high-resolution imagery of crops across large
areas of agricultural land. NASNetMobile was selected
for efficiency and suitability in real-time, resource-limited
scenarios. By integrating linear regression after feature
extraction, each hybrid model stabilizes predictions by
capturing the underlying linear trends while reducing high
variance; hence, the models will be robust and generalizable
across datasets. Hyperparameter tuning was conducted to
optimize each model in specific agricultural contexts, tuning
learning rate, dropout rate, and optimizer in turn via grid
search and random search. This allows the framework to
be well adapted to different crops and different localities
because it is shown clearly in the case studies how the
framework adjusts from maize in semi-arid areas to rice in
humid climates. Hence, the hybrid model is implemented
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with deep learning power to process complex data in a very
stable and interpretable way, like statistical methods, thus
making the solution adaptive and highly accurate for crop
yield forecasting across different agricultural environments.
All used models are transfer learning model and their basic
information for model implementation and evaluations are
fetched from our previous implementations [26], [27].

i. NASNetMobile Custom Hybrid Model:
The NASNetMobile model, known for its efficiency

and adaptability, served as the base for one of the hybrid
architectures.

• Base Model Configuration:
1) Architecture: NASNetMobile was chosen for

its pre-trained capabilities on ImageNet, pro-
viding a robust starting point for feature ex-
traction.

2) Modifications: The top classification
layers of NASNetMobile were removed
(include top=False) to allow the addition
of custom layers tailored to crop classification.

• Custom Layers:
1) Global Average Pooling: A
GlobalAveragePooling2D layer was added
to reduce the spatial dimensions to a single
vector per channel.

2) Dense Layers: Used for high-level reasoning
with 1024 units, activated by relu.

3) Dropouts: A Dropout layer with a rate of 0.5
was added to prevent overfitting.

4) Output Layer: The final Dense layer was de-
signed for multi-class classification with soft-
max activation, providing a probability distri-
bution across five crop classes.

ii. InceptionV3 and EfficientNetB0 Hybrid Model:
This ensemble model leverages the unique strengths of

InceptionV3 and EfficientNetB0.

• Base Model Configuration:
1) InceptionV3: Known for capturing multi-scale

information through inception modules.
2) EfficientNetB0: Optimizes convolutional oper-

ations by efficiently scaling depth, width, and
resolution.

3) Concatenation: Results of both models were
concatenated to create a comprehensive feature
map with diversified information.

• Final Layers: Similar to the NASNetMobile hybrid,
this model also featured Global Average Pooling,
dense layers, dropout, and a softmax output layer
customized for crop classification.

iii. NASNetMobile with CNN and CSTM Hybrid:
This model integrates CNN architectures with CSTM

(Custom Spatio-Temporal Mechanisms) to address spatial

and temporal aspects of crop imagery.

• Integration of CNN and CSTM:
1) Base Model: NASNetMobile provided spatial

feature extraction.
2) CSTM Integration: Custom layers processed

temporal sequences, suitable for time-series
crop data.

• Model Configuration: The structure follows a simi-
lar setup as previous models, adapted specifically for
temporal data integration.

Training Process
• Compilation of Model

1) Optimizer: Adam optimizer with learning rate
set to 1 × 10−4.

2) Loss Function: Categorical cross-entropy, ap-
propriate for multi-class classification.

• Training
1) Epochs: Training was conducted over multiple

epochs, each representing a full pass through
the dataset.

2) Callbacks:
◦ ReduceLROnPlateau: Reduces learning

rate when validation loss plateaus.
◦ Early Stopping: Stops training if valida-

tion loss does not decrease for a specified
number of epochs.

• Batch Processing
1) Efficiency: Batches of 32 images optimized

memory use and gradient approximation.
2) Validation and Testing: Utilized to monitor

model performance.

• Validation Strategy
1) Purpose: Validation dataset was used for fine-

tuning parameters and monitoring each epoch
for learning rate or early stopping adjustments.

2) Validation Metrics:
◦ Accuracy: Percentage of correct predic-

tions.
◦ Loss: Indicator of prediction accuracy.

• Testing
◦ Objective: Evaluate model generalizability on

unseen data.
◦ Performance Evaluation: Includes precision,

recall, F1-score, and accuracy.

• Performance Comparison
◦ Comparative Analysis: Comparison of accu-

racy, precision, recall, F1-scores, and ROC AUC
to determine the balance between computational
efficiency and performance.
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◦ Visualization: Losses and accuracies were plot-
ted over training epochs to assess model learn-
ing dynamics.

F. Comparative Analysis
The results shown in Table II are the performance eval-

uations of hybrid models: NASNetMobile Custom Hybrid
Model, InceptionV3 and EfficientNetB0 Hybrid, and NAS-
NetMobile with CNN and LSTM, which were compared
on different metrics such as accuracy, precision, recall,
F1-score, and AUC. Among these, NASNetMobile with
CNN and LSTM had the maximum accuracy of 98.36%
with a well-balanced F1-score of 97%, indicative of a
good classifier while handling tough data. InceptionV3 and
EfficientNetB0 Hybrid came second, reflecting an accuracy
of 97.84% with both precision and recall being equally high
at 98%. This reflects its adaptability against a variety of crop
types and environmental settings. Although NASNetMobile
Custom Hybrid had marginally lower accuracy at 96.45%, it
was computationally very efficient and can be useful in sce-
narios requiring faster processing. The performance of the
hybrid models was higher in these series compared to the
individual deep learning models and traditional statistical
methods, as deep learning models often overfit or require
extensive data, while statistical methods alone could not
capture non-linear dependencies, which are crucial for yield
prediction. The hybrid approach effectively copes with these
challenges by combining deep learning’s feature extrac-
tion capabilities with the interpretative power of statistical
models, resulting in better generalization, precision, and
stability.

G. Visualization and Discussion of Results
For clarity of the learning dynamics, curves of loss and

accuracy have been plotted for every hybrid model across
the training epochs. In this NASNetMobile with CNN and
LSTM model, there is a guarantee of stable convergence
in loss and accuracy, with small fluctuation, to signify
that the learning is stable with proper generalization and
not any significant overfitting. In contrast, the train and
validation loss for later epochs had slight differences for
the InceptionV3 and EfficientNetB0 Hybrid; this could be
an indication of slight overfitting since the model may be
sensitive to minute environmental features. Therefore, the
NASNetMobile Custom Hybrid Model reached low values
of loss early due to computational efficiency, as it was
performing comparatively less complex feature extraction.
Success in these hybrid models for the capture of spatial
dependencies, i.e., crop health patterns, and temporal de-
pendencies like changes in yield based on a season, will
make sure that robust adaptability across crop types and
geographies is further legitimized into useful applications
related to agriculture. Notwithstanding this, some of the
remaining issues revolve around computational resources
needed for complex models such as InceptionV3 and Effi-
cientNetB0, which may limit the scalability in low-resource
environments. Second, while the hybrid models were more
interpretable than models based only on deep learning,

integrated mappings between neural network and statisti-
cal parts’ impacts remain intuitively incomprehensible and
require further investigation. These findings illustrate a
possibility that hybrid models radically improve agricultural
forecasting by better performance and stability of crop yield
predictions across widespread farming scenarios.

4. Results
In this part, the findings of the analysis of three unique

hybrid deep-learning models created to classify crops are
discussed. These models were pretty advanced, using re-
fined neural network setups to get better at classifying
crop types while also making sure they used computational
resources wisely. The performance metrics calculated from
results obtained from validation and testing phases provided
a detailed comparison of the models’ effectiveness.

i. Custom Hybrid NASNetMobile Model:
It performed very well on crop image classification

using the pre-trained architecture NASNetMobile, config-
ured with customized layers specifically for this task. The
experiments we are conducting are based on datasets from
different types of crops, including corn, wheat, and rice,
among others. We tested our model using metrics such as
RMSE, accuracy, and MAE, ensuring that the computations
are fast by training on high-performance GPUs. This re-
duction yields an RMSE that is 15% lower than that with
standalone models. The outputs are represented in Figures
3 to 8.

Performance Metrics:

• Accuracy: High test accuracy, up to 96.45%.

• Precision averaged 97% for classified crop type, in-
dicating a high true positive prediction rate.

• Recall: It also averages at 96%, showing the model
has well-over-identified the majority of all relevant
cases.

• F1-Score: It was 96%—the harmonic mean of preci-
sion and recall, signifying a balance of performance
between precision and recall.

ii. Hybrid Model of InceptionV3 and EfficientNetB0:
The proposed model is an aggregation of the best

features of InceptionV3 and EfficientNetB0, ensuring better
classification, especially in applications with varying com-
plex features of crop images. The outputs are represented
in Figures 9 to 15.

Outcome Metrics:

• Accuracy: The model achieved a test dataset accuracy
of 97.84%, making this model top the charts in that
metric.

• Precision, Recall, and F1-Score: They are consistently
very high at 98%, meaning the model can predict the
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TABLE II. Accuracy and Other Details of Hybrid Models Trained

Model Description Accuracy Precision Recall F1-Score

NASNetMobile Custom Hybrid Model 96.45% 97% 96% 96%
InceptionV3 & EfficientNetB0 Hybrid 97.84% 98% 98% 98%
NASNetMobile with CNN & CSTM 98.36% 97% 97% 97%

Figure 3. Confusion Matrix for the Custom NasnetMobile Hybrid
Model

Figure 4. Training and Validation Accuracy Graph for the Custom
NasnetMobile Hybrid Model

instance accurately and very reliably among different
crop types.

iii. NASNetMobile with CNN and CSTM Hybrid Model:
This model was developed by the integration of CNN

with the CSTM mechanisms to improve the spatial and
temporal processing of data, something that worked quite
effectively for this application. The outputs are represented
in Figures 16 to 21.

Performance Indicators:

• Best Performance: This model was the best in per-
formance, with an accuracy rate of 98.36%.

• Precision, Recall and F1-Score: The three classifi-

Figure 5. Training and Validation Loss Graph for the Custom
NasnetMobile Hybrid Model

Figure 6. Precision-Recall Curve for the Custom NasnetMobile
Hybrid Model

cation metrics achieved 97% each, reflecting good
overall performance with consistent recognition of
crop types.

5. Discussion
This section presents the inferences drawn, strengths,

and limitations of the research, focusing on the applica-
tion of hybrid deep learning models in crop classification
tasks. The comparative analysis of three distinct models—
NASNetMobile Hybrid, InceptionV3, and EfficientNetB0
Hybrid—offers deep insights into the capabilities of hybrid
architectures in agricultural applications.

i. Efficacy of Hybrid Models:
In fact, the result of the evaluation can show that

hybrid deep learning models have very great promise in
performing recognition activities on crop images under even
complicated scenarios, including diverse types of crops and
variations in the environment. The high value of precision,
recall, and F1 score for all the three models confirms
that the hybrid approach is reliable and can indeed be
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Figure 7. Receiver Operating Characteristic (ROC) Graph for the
Custom NasnetMobile Hybrid Model

Figure 8. Classification Report for the Custom NasnetMobile Hybrid
Model

applied in real-world farming applications. The pre-trained
NASNetMobile architecture allowed this specific model to
refine general features to particular crops’ classification
needs by merely fine-tuning the already pre-trained weights.
On the other hand, because of complementary strengths
between the depth of the relevant feature extracted by Incep-
tionV3 architecture and computational efficiency provided
by EfficientNetB0 model, the InceptionV3 & EfficientNetB0
Hybrid model did an incredible job in capturing minute
image features. Arguably, this would enable the model to
have better precision and recall and, in that respect, make
it more robust in identifying multi-class crop types while
reducing the risks of overfitting. Equipped with CNN and
CSTM layers, NASNetMobile best captured spatial and
temporal features from the dataset, amidst extending to a
good deal of applications dealing with crop growth pattern
time-series analysis. These strengths are contrasted by a
very noticeable research gap in generalizing these models
across wider agricultural settings, which is not entertained
in view of the fact that current findings are limited to the
dataset used in this present study.

ii. Practical Implications
Results have shown the enormous possibilities of hybrid

models that might help in precision agriculture, enabling
more accurate and timely decisions on crop management,
disease prevention, and yield forecasting. However, fur-
ther research is needed in enhancing generalization due
to diversity and volume limitations in the datasets. Still,
further enhancing the robustness of this model in crop
and environmental parameters, including change of light
conditions, seasonality, and other meteorological factors,
could bring much difference to the classification accuracy in

Figure 9. Confusion Matrix for the InceptionV3 and EfficientNetB0
Hybrid Model

Figure 10. Model Accuracy and Model Loss Graphs for the Incep-
tionV3 and EfficientNetB0 Hybrid Model

real-world applications. On having greater and more diverse
datasets, these hybrid models can significantly enhance
automatic crop monitoring systems for efficient and data-
driven decisions regarding crop health and growth. Their
scalability for real-time applications also suggests general
applicability in automated field-level monitoring systems
as part of a sustainable solution to maintain agricultural
productivity. Critical directions for further development
pertain to challenges to scale this framework to handle
larger datasets and across a wider range of agricultural
contexts.

The findings from this study underscore the transfor-
mative potential of hybrid models in advancing precision
agriculture and addressing longstanding challenges in crop
monitoring and yield prediction. By combining the feature
extraction strengths of deep learning architectures with
the interpretability and stability of statistical methods, the
proposed hybrid framework not only delivers high predic-
tive accuracy but also aligns with the practical needs of
resource-constrained agricultural settings. This dual advan-
tage positions the model as a viable tool for enhancing
decision-making processes, from optimizing resource uti-
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Figure 11. Training and Validation Accuracy Graph for the Incep-
tionV3 and EfficientNetB0 Hybrid Model

Figure 12. Training and Validation Loss Graph for the InceptionV3
and EfficientNetB0 Hybrid Model

lization to mitigating risks associated with environmental
variability. Furthermore, the ability to adapt these models
for real-time applications opens up pathways for integrating
them into IoT-based agricultural systems, fostering a more
sustainable and data-driven approach to farming. However,
the implications extend beyond technological innovation,
emphasizing the need for collaborative efforts between re-
searchers, agricultural experts, and policymakers to address
challenges related to data availability, generalization across
diverse agro-climatic zones, and user adoption of AI-driven
tools in agriculture. These insights illuminate the broader
significance of this research in shaping the future of smart
agriculture.

iii. Limitations and Challenges:
Despite these promising results, there are still some

limitations. The most important one refers to the need for
an increase in the diversity and quantity of data. Although
the dataset on which this study is based is diverse, it
cannot represent all crop varieties, growth conditions, and
environmental variations within all agricultural contexts
across the world. More importantly, to make these models
useful, these datasets should be scaled up by including
several images of crops from different geographies and
climatic conditions. After all, the environmental variability
in light conditions, weathering effects, and seasonal changes
were also not considered while training the models, which
may be influencing the performances of these models during
generalization in natural conditions [28]. These factors must
be oriented to the mentioned aspects in the future as an

Figure 13. Precision-Recall Curve for the InceptionV3 and Efficient-
NetB0 Hybrid Model

Figure 14. Receiver Operating Characteristic (ROC) Graph for the
InceptionV3 and EfficientNetB0 Hybrid Model

effort towards the refinement of robustness and accuracy
in models under variably different agricultural conditions
[29] . This will help in meeting these challenges as a
means of extending models’ applicability and reliability
under variables of farming.

6. Conclusion
The proposed paper presents a hybrid deep learning

model using the combination of EfficientNetB0, Incep-
tionV3 with linear regression, enhancing scalability and
efficiency and further enhancing the accuracy in the crop
yield prediction process. Hybrid models integrate traditional
statistical methods with deep learning techniques to resolve
challenges in handling big data and further provide stable
and high-accuracy performance; hence, the proposed hybrid
framework is highly useful in agriculture-based forecast-
ing. The main contributions involve a robust prediction
framework that enhances the accuracy and computational
efficiency, thus fitting real-world agricultural applications at
large scales. This research scope has a very high practical
relevance to farmers, agricultural policymakers, and tech-
nology developers. This hybrid framework will easily adapt
to various agricultural environments, giving proper yield
forecasts that help in the efficient use of resources, optimiza-
tion of crop management, and decision-making support in
agricultural planning. Such a methodology would contribute
toward sustainable farming and could improve food security
by making better crop health and yield predictions. Future
work, building upon the present contributions, will incorpo-
rate additional data sources, including drone imagery and
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Figure 15. Classification Report for the InceptionV3 and Efficient-
NetB0 Hybrid Model

Figure 16. Confusion Matrix for the NASNetMobile with CNN and
CSTM Hybrid Model

soil health data, to further advance predictive performance,
while considering advanced learning techniques such as
semi-supervised learning that would alleviate data limi-
tations. Applications of the hybrid model for immediate
use in real-world agricultural systems can therefore foster
data-driven approaches toward resource management and
improvement in agricultural productivity.
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