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Abstract: Unmanned Aerial Vehicles (UAVs), particularly quadrotors, have become highly versatile platforms for various applications
and missions. In this study, the use of Multi-Agent Reinforcement Learning (MARL) in quadrotor control systems is investigated,
expanding its conventional usage beyond multi-UAV path planning and obstacle avoidance tasks. While traditional single-agent control
techniques face limitations in effectively managing the coupled dynamics associated with attitude control, especially when exposed to
complex scenarios and trajectories, this paper presents a novel method to enhance the adaptability and generalization capabilities of
Reinforcement Learning (RL) low-level control agents in quadrotors. We propose a framework consisting of collaborative MARL to
control the roll, pitch, and yaw of the quadrotor, aiming to stabilize the system and efficiently track various predefined trajectories.
Alongside detailing the overall system architecture of the MARL-based attitude control system, we elucidate the training framework,
collaborative interactions among agents, neural network structures, and implemented reward functions. While experimental validation
is pending, theoretical analyses and simulations illustrate the envisioned benefits of employing MARL for quadrotor control in terms
of stability, responsiveness, and adaptability. Central to our approach is the use of multiple actor-critic algorithms within the proposed
control architecture. Through a comparative study, we evaluate the performance of the advocated technique against a single-agent
RL controller and established linear and nonlinear methodologies, including Proportional-Integral-Derivative (PID) and Backstepping
control, highlighting the advantages of collaborative intelligence in enhancing quadrotor control in complex environments.
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1. Introduction
Owing to their unparalleled agility and versatility in

navigating complex environments, quadrotors have become
indispensable tools across a myriad of applications. Precise
control of a quadrotor’s attitude, encompassing roll, pitch,
and yaw, is essential for achieving stable and responsive
flight operations [1]. However, the complex interactions
between aerodynamic forces, rotor speeds, and the vehicle’s
orientation lead to nonlinear dynamics in quadrotors, com-
plicating the design of efficient and robust control systems.
Furthermore, these systems exhibit underactuation, where
the number of control inputs (rotors) is fewer than the
degrees of freedom (six degrees: three rotational and three
translational), thereby limiting direct control authority over
all axes simultaneously. Significant coupling also exists
between the different axes of motion (roll, pitch, and
yaw), meaning adjustments in one axis can influence the
dynamics of the others. These interdependencies necessitate
controllers to carefully manage cross-axis interactions to
achieve desired flight behaviors effectively. As a result,

researchers have introduced and continue to explore multi-
ple control theories and techniques to tackle these intricate
challenges, aiming to achieve efficient attitude control for
these widely utilized systems.

In the realm of quadrotor control, various methodologies
and techniques have been explored. Linear methods, such as
PID [2], LQR [3], and Model Predictive Control [4], offer
simplicity and ease of implementation but are limited in
their operational scope. To overcome these limitations, more
complex nonlinear controllers have been introduced, includ-
ing Sliding Mode Control [5], Backstepping [6], Adaptive
Control [7], and H∞ Control [8]. The efficacy of traditional
control algorithms often depends on subjective parameter
choices, which rely on a comprehensive understanding of
the model and experimental context. Balancing accuracy,
robustness, and efficiency within a single control function
becomes notably challenging in complex scenarios. Deep
Reinforcement Learning (DRL), enabled by advancements
in computing power and data accessibility, has emerged
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as a powerful approach within control theory. It demon-
strates remarkable advantages across diverse tasks and ap-
plications, often surpassing conventional control methods
by autonomously learning control policies directly from
interaction with the environment, without relying on explicit
models. DRL algorithms can adapt to diverse systems by
continuously updating their policies, allowing them to han-
dle uncertain and dynamic environments where traditional
control methods may struggle.

Building on the success of single-agent RL techniques,
Multi-Agent Reinforcement Learning has emerged as a
promising approach for addressing complex control prob-
lems, leveraging the adaptability and learning capabilities
of intelligent agents. MARL enables multiple agents to
interact and collaborate to achieve common goals, making
it particularly suitable for scenarios involving coordination
and cooperation. By harnessing the power of MARL in
collaborative decision-making processes among UAVs, re-
searchers and control engineers have recently focused on
developing innovative and sophisticated control strategies
that enhance the stability, responsiveness, and adaptability
of quadrotor systems in various areas, including multi-UAV
path planning with collision and obstacle avoidance tasks
[9].

Nevertheless, since single-agent DRL agents learn
through iterative interactions with the environment to
discover and refine effective strategies, in the context
of quadrotor control, where stability, responsiveness, and
safety are paramount, these approaches typically face two
primary challenges: the need for large neural networks
to handle the complex dynamics of these systems, and
extensive training time to converge on optimal policies
in dynamic and unpredictable environments. While single-
agent DRL shows promise in autonomous decision-making
and adaptive control, overcoming these limitations is crucial
for its effective application in time-sensitive or safety-
critical operations. In contrast, Multi-Agent Reinforcement
Learning offers substantial advantages for achieving intri-
cate control objectives by decomposing them into more
manageable subgoals [10]. This collaborative methodology
enhances the learning process by allowing multiple agents
to share information and insights, thereby accelerating the
learning rate, minimizing the size of the neural networks
employed, and improving the overall control performance.

In this study, we introduce an innovative MARL-based
approach for quadrotor attitude control, specifically focus-
ing on multiple baseline actor-critic RL algorithms: Twin
Delayed Deep Deterministic Policy Gradient (TD3), Deep
Deterministic Policy Gradient (DDPG), Soft Actor-Critic
(SAC), and Proximal Policy Optimization (PPO) within a
collaborative multi-agent framework. This approach marks
a departure from traditional control paradigms by leveraging
collaborative intelligence to optimize control strategies and
expand the scope of MARL beyond multi-UAV path plan-
ning and obstacle avoidance, demonstrating its potential to

revolutionize the low-level control systems of quadrotors.
Through theoretical analyses and simulations, the proposed
approach aims to validate the benefits of employing MARL
in UAV systems, paving the way for innovative control
capabilities and robustness.

Compared to existing studies in the literature, this ap-
proach offers the following contributions:

• Investigation of the quadrotor attitude control system
using a MARL-based approach.

• Proposal of neural network architectures that in-
corporate high-order observable states to enhance
collaborative behavior among the agents and ensure
efficiency for the overall control system.

• Design of a straightforward reward strategy that
guides the quadrotor’s attitude through collaborative
reward collection.

• Presentation of a novel collaborative MARL-based
approach that ensures stable and rapid training con-
vergence, along with high-performance properties.

• Performance comparison of the proposed approach
against a single-agent RL controller and two con-
ventional controllers under different scenarios, with
results provided and discussed.

The subsequent sections of this paper first delve into
the related works and the theoretical foundation of MARL,
along with the quadrotor’s dynamic model and control.
We then present the architecture of the multi-agent-based
attitude control system, detailing the employed framework,
neural network structures, and reward functions. Finally,
we present simulation results and performance comparisons
against single-agent RL, as well as linear and nonlinear
benchmark control techniques, including PID and Backstep-
ping control, to validate the effectiveness of the proposed
method in achieving stable and precise quadrotor attitude
control across various scenarios.

2. Background
A. Related Works

In this section, we explore the extensive body of liter-
ature surrounding single-agent RL and MARL. We begin
with relevant papers and studies on data-driven control
approaches for quadrotor systems, followed by recent re-
views and algorithmic advancements in MARL to provide
an insightful overview of the methodologies, insights, and
research trends. Finally, we focus on the application of
MARL in UAV domains, highlighting novel breakthroughs
and promising directions for future exploration.

Data-driven control systems, particularly RL ap-
proaches, have been extensively investigated both indepen-
dently and in conjunction with conventional model-based
techniques for UAVs and quadrotor control. Various RL
algorithms have been employed in this field. For example,
[11] utilized DQN with the Mean Squared Error (MSE) of
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Euclidean distance in the reward function and the Adadelta
optimizer, showing superior performance in quadrotor flight
compared to Q-learning and SARSA. This approach was
tested and validated across different optimizers (RMSProp,
Adadelta, SGD, and Adam) and reward functions. Further-
more, [12] introduced on-policy algorithms for quadrotor
control, focusing on the Proximal Policy Optimization al-
gorithm. The study validated the efficacy of PPO in practical
experiments, demonstrating its capability in tasks such as
maintaining stationary positions and following predefined
paths. Moreover, [13] implemented the Deep Deterministic
Policy Gradient algorithm to address trajectory tracking
for quadrotors in three ways: incorporating instantaneous
path information, anticipating path curves, and optimizing
speed based on path slopes. Other strategies have recently
explored combining RL with traditional control techniques.
For instance, in [14], the authors used the Deep Deter-
ministic Policy Gradient algorithm to optimize state and
control weighting matrices for LQR control of a quadrotor.
This method significantly improved response times and
minimized integral square error compared to four com-
monly used methods, demonstrating potential for broader
application in enhancing control efficiency. Additionally, in
[15], researchers developed a Feedforward Neural Network
(FFNN) to predict a quadrotor’s translational dynamics.
Integrated into a Model Predictive Control framework, this
Neural Network-based Model Predictive Controller (NN-
MPC) reduced the average path-following error by 40%
compared to traditional PID controllers.

To comprehensively cover the current state of research
in MARL, we have selected several reviews highlighting
the methodologies, challenges, and breakthroughs in this
rapidly evolving field. The study in [16] underscores the
significance of MARL in multi-robot systems, emphasizing
collaborative learning. It identifies a scarcity of recent
surveys in the field, discusses challenges, and proposes
future applications for enhancing multi-robot systems. In
[17], the authors explored recent advances in algorithms
employed in MARL, concentrating on five key approaches
for addressing cooperative multi-agent problems. The re-
view offers detailed explanations, discusses challenges, and
highlights connections among various papers. Addition-
ally, the article covers emerging research areas, real-world
applications, and MARL research environments. In [18],
the paper provides an overview divided into three main
parts. It first examines training schemes for multiple agents,
followed by an analysis of agent behavioral patterns in
cooperative, competitive, and blended scenarios. The third
part addresses challenges unique to the multi-agent domain
and reviews methods used to address them. Moreover, in
[19], a thorough analysis of MARL algorithms is provided,
categorizing them based on features and offering a detailed
taxonomy. This review explores application fields, pros and
cons, and compares algorithms in terms of nonstationarity,
scalability, and observability, while discussing common
benchmark environments.

The landscape of Multi-Agent Reinforcement Learning
has witnessed remarkable advancements recently, marked
by the introduction of innovative algorithms designed to
tackle the complexities of cooperative and competitive
multi-agent environments. However, due to the vast array
of MARL algorithms available, only a select few will be
presented here. In [20], the study addresses the challenge
of state uncertainty in practical MARL implementations.
It introduces the Markov Game with State Perturbation
Adversaries (MG-SPA) model and proposes a Robust Multi-
Agent Q-learning (RMAQ) algorithm with convergence
guarantees, along with a Robust Multi-Agent Actor-Critic
(RMAAC) algorithm. The study demonstrates their effi-
cacy in handling high-dimensional state-action spaces and
outperforming existing methods in scenarios with state
uncertainty. In [21], the authors introduced RACE, a hybrid
framework combining Evolutionary Algorithm (EA) and
MARL to address challenges such as collaboration, low-
quality reward signals, and high non-stationarity. RACE
achieved improved convergence, robustness, and signal
quality in various tasks compared to other algorithms. Addi-
tionally, the authors of [22] introduced a distributed zeroth-
order policy optimization method for MARL. This method
enables agents to compute local policy gradients using
only partial state and action data, reducing communication
overhead and improving learning performance. Numerical
experiments demonstrated enhanced sample efficiency com-
pared to existing one-point estimators. In [23], the paper
addresses computational inefficiency in Population-based
MARL (PB-MARL) by proposing a solution that employs
a stateless central task dispatcher and stateful workers.
This approach facilitates parallelism and efficient problem-
solving. The proposed framework, MALib, integrates a task
control model, independent data servers, and a stream-
lined representation of MARL training methods, offering
enhanced computational efficiency.

In the field of UAVs, MARL approaches have been
applied in diverse ways, showcasing their versatility and
effectiveness in addressing a wide range of challenges and
objectives. In [24], the authors present a novel method to
maximize data offloading efficiency from terrestrial Base
Stations (BSs) using multiple UAVs. By jointly optimiz-
ing UAV trajectories and user association indicators under
Quality-of-Service (QoS) constraints, the method aims to
enhance user association with UAVs. Leveraging Multi-
Agent Reinforcement Learning, each UAV operates in-
dependently while fostering cooperative behavior among
them. Extensive simulations validate the effectiveness of the
proposed technique, showing higher performance than both
Q-learning and Particle Swarm Optimization (PSO). In a
similar context, [25] introduces a novel approach to UAV
cellular communication using multi-agent learning tech-
niques. This approach enables multiple UAVs to learn from
each other through communication and interaction with
the environment, providing better coverage compared to
conventional terrestrial Base Station (BS) deployment. Ad-
ditionally, [26] introduces a novel Graph-Attention Multi-
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Agent Trust Region (GA-MATR) reinforcement learning
framework to address the multi-UAV assisted communi-
cation problem. This approach utilizes multiple UAVs to
maximize data offloading efficiency from terrestrial BSs
by jointly optimizing UAV trajectories and user association
indicators under QoS constraints. The method was validated
through simulations, demonstrating superior performance
compared to benchmark techniques.

Another aspect in the UAV domain explored using
MARL is described in [27], where the paper introduces
a UAV-aided Mobile Edge Computing (MEC) framework
employing a multi-agent deep reinforcement learning al-
gorithm, specifically the Multi-Agent Deep Deterministic
Policy Gradient (MADDPG). This framework aims to op-
timize geographical fairness, UAV User Equipment (UE)
load fairness, and overall energy consumption for UEs,
showcasing superior performance compared to traditional
algorithms. In [28], the study investigated dynamic resource
allocation in UAV communication networks using a MARL
framework. This framework optimizes long-term rewards
without inter-UAV information exchange, demonstrating
enhanced performance with balanced exploration and ex-
ploitation parameters. The proposed approach achieved a
favorable balance between performance improvements and
the overhead of exchanging information, contrasting with
scenarios where UAVs exchange complete information.

Several papers incorporating MARL approaches have
recently emerged on the topics of path following and swarm
formations. In [29], the authors introduced a decentral-
ized Multi-Agent Deep Reinforcement Learning (MADRL)
method using maximum reciprocal reward. They leveraged
a Pointwise Mutual Information (PMI) neural network to
capture dependencies among UAVs and proposed the Re-
ciprocal Reward Multi-Agent Actor-Critic (MAAC-R) algo-
rithm for cooperative tracking policies in UAV swarms. The
study demonstrated enhanced cooperation and scalability in
unknown environments compared to baseline algorithms.
In [30], the authors presented a model for cooperative air
combat maneuvers involving multiple UAVs, based on Bidi-
rectional Recurrent Neural Networks (BRNN) and actor-
critic architecture within the MARL framework. The model
effectively achieved cooperative tactical maneuver policies,
providing UAVs with situational advantages and tactical
success in air combat scenarios. Another study, [31], intro-
duced an autonomous tracking system for a UAV swarm to
localize a radio frequency (RF) mobile target. This study
utilized omnidirectional Received Signal Strength (RSS)
sensors and an enhanced MARL technique to optimize real-
time target tracking. The approach demonstrated superior
performance in search time and successful localization
probability compared to standard Q-learning and multi-
agent Q-learning algorithms.

While most studies have predominantly focused on
applying Multi-Agent Reinforcement Learning approaches
in areas such as swarm intelligence, path planning, colli-

sion avoidance, task allocation, communication networks,
and target tracking, there is a notable gap in exploring
MARL’s potential in low-level control systems, particularly
in the domain of quadrotor flight. MARL has primarily
been utilized in high-level control strategies within swarm
and multi-UAV contexts, often overlooking its potential
to revolutionize the control of individual quadrotors. By
extending its traditional usage and exploring the application
of collaborative intelligent agents to enhance quadrotor
attitude control systems, this paper aims to unlock new
possibilities for improving stability, maneuverability, and
responsiveness at the fundamental level of quadrotor flight.

To the best of our knowledge, the approach most similar
to the one presented in this study is introduced in [32],
where the authors proposed a cascade MARL control frame-
work for quadrotors. They decompose the system’s dy-
namics into six one-dimensional subsystems. Their method
employs a small-angle restriction to reduce dependency
among multiple single agents trained independently using
traditional RL algorithms without cooperative interaction,
thereby significantly constraining the quadrotor’s maneuver-
ability. Another study, [10], introduced a MARL framework
for quadrotor low-level control by decomposing the system
dynamics into distinct translational and yawing compo-
nents. They assigned two RL agents to collaborate and
manage each component. Through simulations, this MARL
framework outperformed traditional single-agent methods,
significantly enhancing training efficiency and maintaining
high-quality flight control performance. However, compared
to our work, the authors used only the TD3 algorithm
to validate their approach and did not assess the trained
policies’ generalization across various scenarios involving
complex and dynamic trajectories.

B. Quadrotor Dynamics
The dynamics of the quadrotor UAV model, as illus-

trated in Figure 1, are crucial for understanding its behavior
and control. These dynamics can be effectively described
using the Euler-Lagrangian formulation, which provides a
systematic approach to deriving the equations of motion
governing both the rotational and translational motion of
the quadrotor [33].

Figure 1. Quadrotor body and inertial frames
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The translational motion of a quadrotor along the x, y
and z axes is influenced by the forces generated by its
propellers. Treating the quadrotor as a rigid body, the
equations of motion can be expressed as follows:

ẍ = U1
m (cos(φ)sin(θ)cos(ψ) + sin(φ)sin(ψ))

ÿ = U1
m (cos(φ)sin(θ)sin(ψ) − sin(φ)cos(ψ))

z̈ = U1
m (cos(φ)cos(θ)) − g

(1)

The rotational motion of the quadrotor involves angular
velocities about its body-fixed axes. The moments induced
by the propellers result in rotational acceleration, which can
be described as: 

φ̈ =
−(Jzz−Jyy)

·

θ
·

ψ+U2

Jxx

θ̈ = −(Jzz−Jxx)
·

ϕ
·

ψ+U3
Jyy
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·

ϕ
·

θ+U4

Jzz

(2)

By deriving and solving these equations, one can gain
insights into the quadrotor’s behavior and design control
strategies to achieve desired maneuvers and stability. This
analysis focuses on the following control inputs:

U1 = b(Ω2
1 + Ω

2
2 + Ω

2
3 + Ω

2
4)

U2 = lb(Ω2
4 −Ω

2
2)

U3 = lb(Ω2
3 −Ω

2
1)

U4 = d(Ω2
1 −Ω

2
2 + Ω

2
3 −Ω

2
4)

(3)

The symbols used are as follows: m, g, and l represent
the quadrotor’s mass, gravitational acceleration, and half-
length, respectively. Jxx, Iyy, and Izz denote the inertial
tensor of the symmetric body around the x, y and z axis.
Additionally, d and b are the drag and thrust factors. Ωi
corresponds to the speed of each rotor i and Ui represents
the lift force and moments of roll, pitch, and yaw.

C. Multi-Agent Reinforcement Learning Formulation
Multi-Agent Reinforcement Learning (MARL) expands

upon single-agent reinforcement learning by addressing
scenarios involving multiple autonomous entities interacting
in shared environments. Unlike single-agent RL, MARL
introduces challenges related to non-stationarity and the
combinatorial nature of interactions among agents. Agents
within a multi-agent system must learn policies while
adapting to the dynamic behaviors of others, which adds
complexity to the learning process. This collaborative or
competitive aspect requires advanced algorithms capable of
managing the intricacies and uncertainties inherent in multi-
agent environments.

The MARL approach aims to enhance the collective
reward achieved by a group of agents and can be rep-
resented as a Markov game involving a community of
N agents (Figure 2). Markov Decision Processes (MDPs)
are characterized by sequential decision-making, where

actions impact both the immediate rewards of the agent
and the future states of the environment. The state variable,
s ∈ S , represents the environment’s current state. For each
agent i = {1, ...,N}, the action and observation spaces are
represented respectively by Ai ∈ A = {A1, ..., AN} and
Oi ∈ O = {O1, ...,ON}. At each time step t, given a state
st, agent i receives a local observation oi and subsequently,
interacts with the environment following a random policy
denoted as πϕi , by taking action at ∈ A and receiving an
immediate reward Rt+1, The environment then transitions
from the current state st ∈ S to the next state st+1 ∈ S .
Corresponding to the action and the state, the rewards
attributed to the independent agent i are denoted by ri. The
objective of each agent is to maximize the expected return
Ri =

∑T
t=0 γ

trt
i , where T is the final time step, and γ is a

discount factor.

Figure 2. MARL framework

Similar to the single-agent case, the goal in MARL is to
acquire the optimal stochastic policy or the optimal Q-value.
However, due to the dynamic nature of each agent’s policies
during training, the environment exhibits non-stationarity
from the perspective of any individual agent. In essence,
P(st+1|st, ai, πϕ1 , ..., πϕN ) , P(st+1|st, ai, π

′

ϕ1 , ..., π
′

ϕN ) with any
πϕi , π

′

ϕi , causing the loss of the underlying assumption
of a Markov Decision Process. This implies that each
agent’s experience involves interactions with diverse co-
agent policies, making it challenging to stabilize these
policies for training. Consequently, training such models
often results in fluctuations during the training process,
presenting a significant challenge.

To tackle this challenge, a commonly used strategy is
to employ a fully observable critic. This approach entails
integrating the actions and observations of all agents into
the critic’s perspective, thereby ensuring stability in the en-
vironment even as other agents’ policies change. In simpler
terms, even if πϕi , π

′

ϕi , the probability of transitioning to
a new state remains equal when other agents alter their
policies, enabling the creation of either a single central
critic in fully cooperative scenarios or N critic models
when each agent observes a local reward. In both cases, the
fully observable critic resolves the non-stationarity issue,
providing an effective guidance mechanism for local actors.
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3. MARL Control System
With the foundational background established, we delve

in this section into the intricacies of the quadrotor control
system, explore the innovative approach for quadrotor atti-
tude control, and examine the neural network architectures
and reward functions employed.

A. MARL Attitude Control System
The quadrotor, emblematic of under-actuated systems,

intricately balances its movement across six degrees of
freedom using only four control inputs. While the high-level
controller orchestrates the quadrotor’s position and altitude,
it is the low-level controller that serves as the backbone for
precise maneuvering and stabilization.

At the heart of the low-level controller lies a network
of RL agents trained in a full cooperation configuration to
maintain a steady orientation, ensuring that the quadrotor’s
roll (φ), pitch (θ), and yaw (ψ) angles remain consistent
amidst dynamic environmental conditions by adeptly inter-
preting input commands (U2, U3, U4) to achieve precise
adjustments in the quadrotor’s moments. These adjust-
ments are calibrated to synchronize with the high-level
controller’s directives, allowing for seamless integration be-
tween attitude control and overall navigation, as illustrated
in Figure 3. Applying this approach is pivotal in achieving
stability and precision in flight and overcoming the coupled
dynamics issue of the quadrotor system.

Figure 3. Multi-agent attitude control system

For this critical task that necessitates policies with high-
dimensional and continuous action space capabilities, we
have selected the TD3, DDPG, SAC, and PPO algorithms.
Each of these benchmark RL algorithms brings unique
advantages to the table. TD3 is known for its stability and
performance in continuous control tasks, making it well-
suited for precise attitude control in dynamic environments.
DDPG, on the other hand, offers efficient exploration capa-
bilities, allowing the agents to learn robust policies even
in high-dimensional action spaces. SAC stands out for its
ability to handle continuous action spaces with stochastic
policies, providing flexibility and adaptability in uncertain

conditions. Finally, PPO offers a balance between sample
efficiency and simplicity, making it suitable for online learn-
ing scenarios where computational resources are limited. By
leveraging the strengths of these algorithms in a cooperative
formation, the proposed framework can effectively maintain
a steady orientation under various conditions, ensuring the
stability and reliability of the advocated control system.

B. MATD3 Algorithm
In this section, we will provide a detailed explanation of

the MATD3 attitude controller. While the overall framework
applies to all configurations using the same reward functions
and neural network architectures, including MADDPG,
MASAC, and MAPPO.

In a multi-agent environment, the authors of [34] present
a model-free MARL approach designed to address scenarios
where agent i, during time step t, uses its individual local
observation oi, actions ai, and rewards ri. Their approach
encompasses competitive, cooperative, and mixed coopera-
tive and competitive games. They introduce the Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) algorithm,
where each agent undergoes training with a DDPG algo-
rithm. In this setup, the actor πϕi (oi; ϕi), characterized by
policy weights ϕi, processes local observations. Meanwhile,
the critic Qµ

θi (with θi representing its weights) has access
to the actions, observations, and target policies of all agents
during the learning phase. Subsequently, each agent’s critic
concatenates all state-actions as input and, utilizing the local
reward, calculates the corresponding Q-value. The training
process involves optimizing for each of the N critics the
following loss function:

L(µθi ) = Eot ,a,r,ot+1 [(Qθi (st, at
1, ..., a

t
N ; µθi ) − y)2] (4)

with:

y = rt
i + γQθi (ot, ãt+1

1 , ..., ãt+1
N ; µ̃θi )|̃at+1

j =π̃(ot+1
j

) (5)

where ot represents the observation of all agents, µ̃ is the
target critic, and π̃ is the target policy. Consequently, the
critic of each agent operates within a stationary environ-
ment, requiring access only to local information.

Building upon the strengths of the TD3 algorithm and
the need for effective MARL algorithms, the authors of
[35] introduced the Multi-Agent TD3 (MATD3) algorithm,
which retains the utilization of twin Q-networks to enhance
the deterministic policy in a multi-agent context. MATD3
extends this concept to accommodate the interactions and
dependencies between multiple agents. Each agent, denoted
as agent i, maintains its own actor πϕi (oi; ϕi) with policy
weights ϕi and observes its local environment.

Expanding on these approaches, the collaborative
MARL framework proposed in our work for the quadrotor’s
attitude control is presented in Figure 4. This architecture
aims to enable each agent to understand the collective
dynamics and decisions of the entire group. Each of the
Roll, Pitch, and Yaw critics considers not only its individual
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local observations and actions but also integrates insights
from the target policies, actions, and observations of all
agents in the system. This process generates action-value
functions representing the expected return for each agent.
Using these action-value functions, all agents update their
policies and make independent decisions. This fosters a
cooperative learning process using a Centralized Training,
Decentralized Execution (CTDE) mode. It is worth not-
ing that the Centralized Training, Centralized Execution
(CTCE) mode can also be employed for this particular
MARL application, where the agents are not distributed
entities and communication between them can be easily
guaranteed. However, the size of the agent and specifically
the actor network has to be relatively larger to accommodate
centralized execution. This approach essentially converges
to a single-agent configuration, where one RL agent gener-
ates the three control inputs U2, U3, and U4.

Figure 4. Multi-agent TD3 attitude control system

Algorithm 1 presents the pseudo-code of the MATD3
algorithm tailored to address the quadrotor’s attitude control
system, where:

First, the actor and critic networks for each attitude
agent (Roll, Pitch, and Yaw agents) along with the replay
buffer are initialized. At the start of each episode, a random
noise for action exploration ϵi is generated, and the initial
state is obtained, encompassing the concerned orientations,
orientation rates, and orientation errors with:

o = {ϕ, ϕ̇, ϕerror, θ, θ̇, θerror, ψ, ψ̇, ψerror} (6)

Subsequently, episode iterations proceed, and the agents
select and execute the Roll, Pitch, and Yaw moments
[U2,U3,U4] according to their policies.

Following this, each agent receives a reward rt
i , which

provides feedback on the effectiveness of the selected
moments, and updates its observations ot+1

i . All actions,
rewards, and observations are stored in the replay buffer
R to allow the agents to learn from past experiences.

During the training process, each agent randomly sam-
ples a small subset from the replay buffer to set the target
value of the Q-function to yi, using the minimum Q-value
from the critic networks. Thereafter, the parameters θi

1
and θi

2 of the critic networks are updated for the selected
samples, along with the policy parameters ϕi of the actor
networks, by maximizing the gradient ascent. Following the
update of the critic and actor networks by each agent, the
target network parameters θitarget

n=1,2 and ϕitarget are adjusted to
ensure learning stability by restricting the rate of update for
the target values.

C. Neural Network Structures
To ensure a fair comparison and maintain consistency in

our MARL setup, all the employed agents are designed to be
identical, with critic networks that comprise two pathways.
The first path takes the state as input and incorporates three
feed-forward hidden layers, each consisting of 128, 128,
and 64 neurons, respectively. The output from this pathway
is then merged with the action pathway, which contains a
single hidden layer comprising 64 neurons. This integrated
structure is responsible for generating the Q-value specific
to each agent, as highlighted in Figure 5.

Figure 5. Critic network

As presented in Figure 6, the actor network for each
agent is constructed with four feed-forward hidden layers,
each containing 10 neurons. With the exception of the action
output layer that employs a S igmoid activation function, all
the layers use the Recti f ied Linear Unit (ReLU).

Figure 6. Actor network
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Algorithm 1 MATD3 algorithm for the quadrotor attitude control system

1: for each agent i do
2: Set actor network πϕi and two critic networks Qθi

1
,Qθi

2
with random weights ϕi, θi

1, θ
i
2 respectively;

3: Set target networks ϕitarget ← ϕi , θitarget

1 ← θi
1 , θitarget

2 ← θi
2 ;

4: end for
5: Initialize the replay buffer R;
6: for episode = 1,Max do
7: Generate random noise: εi ∼ clip(N(0, σ̃), aimin , aimax );
8: Acquire original observations o = {oRoll, oPitch, oYaw};
9: for t = 1,maxtimesteps do

10: Select the control input from the action space of each agent: at
i = πϕi (ot

i) + εi;
11: Execute the actions that represent the roll, pitch and yaw moments respectively:
12: a(t) = [at

1, a
t
2, a

t
3] = [U2(t),U3(t),U4(t)]

13: Calculate the rewards rt
i , and observe ot+1

i ;
14: Store transition (ot, at

1, a
t
2, a

t
3, r

t, ot+1) in R;
15: Update the state s ←st+1;
16: for agent i = 1 to 3 do
17: Sample a random mini-batch of N transitions from R;
18: Calculate target critic Q value:
19: yt

i ← rt
i + γmin[ Q

θ
itarget
n

(ot+1
Roll, o

t+1
Pitch, o

t+1
Yaw, ã

t+1
1 , ãt+1

2 , ãt+1
3 )]n=1,2

20: Update critics:
21: θi

1 ← minθi
1

1
N
∑

[yt
i − Qθ

i
1 (ot

Roll, o
t
Pitch, o

t
Yaw, ã

t
1, ã

t
2, ã

t
3)]2

22: θi
2 ← minθi

2

1
N
∑

[yt
i − Qθ

i
2 (ot

Roll, o
t
Pitch, o

t
Yaw, ã

t
1, ã

t
2, ã

t
3)]2

23: If t mod d then
24: Update ϕ using the DPG:
25: ∇ϕi J(ϕi) = 1

N
∑
∇ϕiπϕi (o

t
i)∇ai Qθi (ot

Roll, o
t
Pitch, o

t
Yaw, a

t
1, a

t
2, a

t
3)|at

i=πϕi (ot
i)

26: Update the target networks:
27: θ

itarget
n ← τθi

n + (1 − τ)θitarget
n |n=1,2

28: ϕitarget ← τϕi + (1 − τ)ϕitarget

29: end If
30: end for
31: end for
32: end for

D. Reward Functions
Formulating the reward function is a crucial and unique

element of reinforcement learning. It must be designed
meticulously to provide clear and consistent feedback on
the agent’s actions, ensuring that the optimal policy aligns
with the desired behavior.

After experimenting with different reward functions and
designs, we developed a strategy to guide the quadrotor’s at-
titude through collaborative reward collection. This strategy
considers a global reward for overall control cooperation,
defined as:

rglobal = −α
√

e2
ϕ + e2

θ + e2
ψ (7)

Each agent’s goal is to minimize its corresponding atti-
tude error by taking into account the global reward, the
corresponding attitude tracking error, and its derivative, as
follows:

ri = rglobal − k.sign(ei.
·

ei)|i=ϕ,θ,ψ (8)

With k and α as positive weights, motivating the agents to
minimize both their specific and global tracking errors.

4. Results and Discussion
This section presents and analyzes the outcomes of

the proposed approach. It assesses the efficacy of the
top-performing agents in tracking various trajectories with
different levels of complexity and dynamics. Additionally,
we conduct a comparative evaluation against conventional
single-agent RL, PID, and Backstepping controllers to high-
light the adaptability, stability, and precision of our MARL
approach. The simulation environment used for this study
was built using MATLAB software, and the training process
was executed on a system equipped with an 11th Gen Intel®
Core™ i7-1165G7 processor, operating at 2.80 GHz.

TABLE I. Quadrotor’s physical parameters.

Symbol Description Value
m The quadrotor’s mass 0.8 kg
g The gravitational acceleration 9.81 m · s−2

l The quadrotor’s helf length 0.06 m
Ixx, Iyy, Izz The moment of inertia (0.0097, 0.0097, 0.017) kg ·m2

b The thrust factor 1 N · s2

d The drag factor 0.08 N ·m · s
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For the training setup, the objective is to stabilize a
quadrotor system (with the nominal parameters summarized
in Table I) from any given configuration within physical
limits using Multi-Agent (MA) based controllers. The de-
sired state is defined using reference Euler angles φRe f ,
θRe f , and ψRe f as shown in Figure 3. Three agents, trained

through the approach detailed in section 3, ensure the
quadrotor adheres to the orientation commands set by the
high-level controller and produce accurate control inputs
U1, U2, and U3.

(a)

(b) (c)

Figure 7. (a) Training sessions of the proposed MARL attitude control system, (b) MA-TD3 best agents’ performance for stabilization task (50
random position and orientation initializations), (c) 3D goal tracking from 50 random initializations

The training results summarized in Figure 7.a, shed
light on the convergence and learning capabilities of various
algorithms using the advocated framework. We conducted
a performance comparison of the four algorithms MATD3,
MADDPG, MASAC, and MAPPO, aimed at providing a
comprehensive analysis of different approaches, showcasing
the mean average reward collected by the Roll, Pitch and
Yaw agents over 500 training episodes.

• The MATD3 algorithm emerged as the most efficient
and effective, demonstrating both speed and stability
in training. The resulting policies exhibited rapid
convergence and consistently achieved high rewards
throughout the training sessions. The validation tests
of the obtained policies are shown in Figure 7.b and
Figure 7.c, where the trained controllers successfully
stabilized the system across 50 random position and
orientation initializations.

• MADDPG exhibited a two-phase training behav-
ior, initially achieving stable learning with low col-
lected rewards before eventually exploring the action

space more and approaching the reward levels of
MATD3. While MADDPG’s performance was infe-
rior to MATD3, the delayed convergence suggests po-
tential for improvement with longer training durations
or additional fine-tuning.

• The MASAC demonstrated slower convergence but
ultimately achieved higher rewards by the end of the
training session. This behavior may be attributed to
its emphasis on entropy regularization, which encour-
ages exploration and prevents premature convergence
to suboptimal policies.

• While the other algorithms successfully converged to
collaborative policies, MAPPO struggled to achieve
effective cooperation for handling quadrotor attitude
control. Despite efforts to fine-tune hyperparameters
and exploration strategies, MAPPO’s performance
remained subpar compared to MATD3, MADDPG,
and MASAC. These challenges underscore the im-
portance of selecting the right algorithm, especially
for complex control tasks such as quadrotor systems.
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(a)
(b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. (a) Square trajectory position and orientation tracking, (b) 3D square trajectory, (c) Lemniscate trajectory position and orientation
tracking, (d) 3D lemniscate trajectory, (e) Ellipsoid trajectory position and orientation tracking, (f) 3D ellipsoid trajectory, (g) Acrobatic trajectory

position and orientation tracking, (h) 3D acrobatic trajectory

The efficiency of the MARL-trained agents is assessed
using the Mean Squared Error (MSE) metric, which quan-
tifies the average squared difference between predicted and
actual values across all data points. MSE is particularly
advantageous for evaluating our controller’s performance as

it provides a robust measure of accuracy and consistency in
trajectory tracking. By squaring the errors, MSE emphasizes
larger discrepancies, thereby sensitively detecting deviations
from desired paths across various predefined trajectories.
In Table II, the lowest MSE recorded for each path is
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TABLE II. Mean squared error (MSE) on the paths displayed in Figure 8.

Trajectory Controller X Y Z ψ

Square
MA-TD3 0.000171 0.0003026 0.02772 0.7982 x 10−5

Single TD3 agent 0.001385 0.0007229 0.02772 2.913 x 10−5

PID 0.001313 0.001313 0.02772 2.138 x 10−8

Backstepping 0.0002831 0.0003845 0.07093 4.418 x 10−40

Lemniscate
MA-TD3 0.001046 0.004755 0.0134 2.247 x 10−5

Single TD3 agent 0.01358 0.01409 0.0134 33.59 x 10−5

PID 0.02287 0.2863 0.0134 0.0001551
Backstepping 0.001209 0.004823 0.0343 2.18 x 10−42

Ellipsoid
MA-TD3 0.002068 0.0003255 9.226 x 10−9 1.256 x 10−5

Single TD3 agent 0.02165 0.006435 9.226 x 10−9 0.00444
PID 0.08643 0.07427 9.226 x 10−9 0.0001013

Backstepping 0.002616 0.001351 7.534 x 10−8 1.111 x 10−42

Acrobatic
MA-TD3 0.001194 0.001151 0.0005283 3.038 x 10−6

Single TD3 agent 0.0142 0.00359 0.0005283 0.01863
PID 0.02408 0.0003556 0.0005283 0.0002218

Backstepping 0.001221 0.005915 0.02669 5.986 x 10−42

highlighted in green, indicating superior performance. The
Backstepping controller’s MSE for the Z position differs
due to its integration into the overall control system, while
other approaches operate at the low-level control system.

The validation and comparison process employed in our
study involves navigating diverse paths, including square,
lemniscate, ellipsoid, and acrobatic trajectories (as depicted
in Figure 8), chosen for their varying complexity and
dynamics. Additionally, evaluating our MARL approach
through these trajectories offers insights into its adaptabil-
ity and generalization capabilities, considering the training
phase was limited to stabilizing from random configurations
(refer to Figure 7).

The results demonstrated that the MATD3 controller
consistently outperformed the other methods across all
trajectories, showcasing its superior stability and robustness
in dynamically adjusting policies to varying flight condi-
tions. Its ability to maintain precise tracking, particularly in
challenging trajectories such as lemniscate, ellipsoid, and
acrobatic paths, highlights its advanced responsiveness and
adaptability in complex scenarios.

The Backstepping controller effectively stabilized the
yaw angle and demonstrated robust control in simpler
trajectories such as the square path. However, it showed
limitations in dynamic adaptability compared to MATD3,
suggesting that while reliable, its responsiveness and adapt-
ability in more complex maneuvers may be suboptimal for
scenarios requiring agile and flexible responses.

The PID controller, while straightforward and easy to
implement, required meticulous parameter tuning to achieve
enhanced performance, particularly in more dynamic and

demanding trajectories.

The single TD3 agent showed promising performance in
simpler trajectories aligned with its learning configuration
but faced challenges in generalizing to more diverse and
complex scenarios. This highlights the importance of further
training and refinement to enhance its adaptability and
robustness, addressing stability concerns in varied environ-
ments.

To further emphasize the advantages of collaborative in-
telligence and the proposed MARL framework, particularly
in contrast to single-agent RL approaches, we conducted a
comparative analysis of parameter sizes between the two
configurations:

• The actor neural network utilized in this study com-
prises four hidden layers with 128 neurons each,
resulting in a total of 51,587 parameters for the single
TD3 agent.

• The proposed MARL architecture consists of three
agents, each with 441 parameters.

The MARL system with three agents, each containing
441 parameters, represents a significant 97.44% reduction
in parameter size compared to a single agent with 51,587
parameters, while still achieving superior performance. This
calculation underscores the reduction in parameter com-
plexity achieved by employing multiple simpler agents
within the MARL framework. This reduction not only
enhances computational efficiency but also augments the
system’s robustness, adaptability, and scalability in practical
implementations, particularly in challenging and dynamic
environments such as quadrotor control systems.
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It is worth noting that a significant challenge of the
proposed MARL approach, which is also pertinent to all RL
techniques, is the hyperparameter optimization and tuning
process. This process can be complex and time-consuming,
as identifying the optimal set of hyperparameters is crucial
for achieving optimal performance.

TABLE III. MATD3 hyper-parameters.

Hyper-parameter Value
Time step 0.01

Replay buffer size 106

Actor network’s learning rate 10−4

Critic network’s learning rate 10−3

Discount factor 0.98
Minibatch size 100
Noise variance 0.15

Variance Decay Rate 10−5

5. Conclusion and FutureWork
While recent studies primarily focus on collaborative

control strategies among multiple quadrotors using Multi-
Agent Reinforcement Learning techniques for tasks such
as formation flying, path planning, collision, and obstacle
avoidance, this work introduces a novel MARL approach for
enhanced quadrotor attitude control. By employing MARL
algorithms including MATD3, MADDPG, MASAC, and
MAPPO, we investigate their adaptability and performance
compared to single-agent RL and various linear and non-
linear controllers. Through extensive training and validation
phases, we observed that while all controllers performed
similarly in scenarios resembling the training configura-
tions, the MARL approach demonstrated superior capabil-
ities and robustness when navigating complex trajectories
such as lemniscate and ellipsoid paths. Specifically, MATD3
exhibited rapid and stable learning, outperforming other
MARL algorithms and benchmark methodologies in adapt-
ability and tracking performance on paths featuring high-
speed maneuvers and rapid altitude changes. Furthermore,
the proposed MARL framework demonstrates heightened
efficiency and adaptability, marked by a significant 97.44%
reduction in parameter size compared to single-agent RL.
This underscores the potential efficacy of MARL techniques
in real-world quadrotor applications, particularly where pre-
cise and adaptive control is imperative and computational
resources are constrained.

In future work, we aim to evaluate the performance
of the proposed approach in dynamic and unpredictable
environments to assess its robustness properties. Addressing
the challenge of hyperparameter optimization and tuning,
crucial for achieving optimal performance in RL techniques,
remains a key area for future research. Additionally, we
plan to conduct experiments using the developed control
technique on real-world quadrotor platforms, particularly
on low-cost quadrotors with constrained computational re-
sources such as the Parrot Mambo Mini-drone. This will

validate the effectiveness and performance of our approach
in practical applications.
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M. Re, and S. Spanò, “Multi-agent reinforcement learning: A review
of challenges and applications,” Applied Sciences, vol. 11, no. 11,
p. 4948, 2021.

[20] S. He, S. Han, S. Su, S. Han, S. Zou, and F. Miao, “Robust multi-
agent reinforcement learning with state uncertainty,” arXiv preprint
arXiv:2307.16212, 2023.

[21] P. Li, J. Hao, H. Tang, Y. Zheng, and X. Fu, “Race: improve multi-
agent reinforcement learning with representation asymmetry and
collaborative evolution,” in International Conference on Machine
Learning. PMLR, 2023, pp. 19 490–19 503.

[22] Y. Zhang and M. M. Zavlanos, “Cooperative multi-agent reinforce-
ment learning with partial observations,” IEEE Transactions on
Automatic Control, 2023.

[23] M. Zhou, Z. Wan, H. Wang, M. Wen, R. Wu, Y. Wen, Y. Yang,
Y. Yu, J. Wang, and W. Zhang, “Malib: A parallel framework for
population-based multi-agent reinforcement learning,” Journal of
Machine Learning Research, vol. 24, no. 150, pp. 1–12, 2023.

[24] A. Mondal, D. Mishra, G. Prasad, G. C. Alexandropoulos, A. Alna-
hari, and R. Jantti, “Multi-agent reinforcement learning for offload-
ing cellular communications with cooperating uavs,” arXiv preprint
arXiv:2402.02957, 2024.

[25] R. Sabogu-Sumah, K. A. Opare, J. D. D. Gadze, J. J. Kponyo, A.-
R. Ahmed, E. Fianko et al., “Optimal coverage enhancement for
multiple uavs using multi-agent learning technique,” International

Journal of Computing and Digital Systems, vol. 13, no. 1, pp. 1–1,
2023.

[26] Z. Feng, D. Wu, M. Huang, and C. Yuen, “Graph attention-
based reinforcement learning for trajectory design and resource
assignment in multi-uav assisted communication,” arXiv preprint
arXiv:2401.17880, 2024.

[27] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and L. Hanzo,
“Multi-agent deep reinforcement learning-based trajectory planning
for multi-uav assisted mobile edge computing,” IEEE Transactions
on Cognitive Communications and Networking, vol. 7, no. 1, pp.
73–84, 2020.

[28] J. Cui, Y. Liu, and A. Nallanathan, “Multi-agent reinforcement
learning-based resource allocation for uav networks,” IEEE Trans-
actions on Wireless Communications, vol. 19, no. 2, pp. 729–743,
2019.

[29] Z. Wenhong, L. Jie, L. Zhihong, and S. Lincheng, “Improving multi-
target cooperative tracking guidance for uav swarms using multi-
agent reinforcement learning,” Chinese Journal of Aeronautics,
vol. 35, no. 7, pp. 100–112, 2022.

[30] Z. Jiandong, Y. Qiming, S. Guoqing, L. Yi, and W. Yong, “Uav
cooperative air combat maneuver decision based on multi-agent
reinforcement learning,” Journal of Systems Engineering and Elec-
tronics, vol. 32, no. 6, pp. 1421–1438, 2021.

[31] Y.-J. Chen, D.-K. Chang, and C. Zhang, “Autonomous tracking
using a swarm of uavs: A constrained multi-agent reinforcement
learning approach,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 11, pp. 13 702–13 717, 2020.

[32] H. Han, J. Cheng, Z. Xi, and B. Yao, “Cascade flight control of
quadrotors based on deep reinforcement learning,” IEEE Robotics
and Automation Letters, vol. 7, no. 4, pp. 11 134–11 141, 2022.

[33] R. Benotsmane and J. Vásárhelyi, “Towards optimization of energy
consumption of tello quad-rotor with mpc model implementation,”
Energies, vol. 15, no. 23, p. 9207, 2022.

[34] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mor-
datch, “Multi-agent actor-critic for mixed cooperative-competitive
environments,” Advances in neural information processing systems,
vol. 30, 2017.

[35] F. Zhang, J. Li, and Z. Li, “A td3-based multi-agent deep reinforce-
ment learning method in mixed cooperation-competition environ-
ment,” Neurocomputing, vol. 411, pp. 206–215, 2020.


	Introduction
	Background
	Related Works
	Quadrotor Dynamics 
	Multi-Agent Reinforcement Learning Formulation

	MARL Control System
	MARL Attitude Control System
	MATD3 Algorithm
	Neural Network Structures
	Reward Functions

	Results and Discussion
	Conclusion and Future Work
	References

