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Abstract: Healthcare 5.0 focuses on a personalized patient-centric approach, and combines advanced technologies like artificial
intelligence (AI), blockchain, Internet-of-Things (IoT), and Big data to form preventive, proactive, and emotive healthcare. To assure
privacy of electronic health records (EHRs) in Healthcare 5.0, blockchain has emerged as a disruptive technology owing to its
properties of assured immutability, chronology, and transparent nature. Recent research has integrated blockchain technology with deep
learning (DL) models to enhance the predictive capabilities for future disease occurrences. Nonetheless, DL models often necessitate
a substantial volume of labeled data, a resource that may not be readily available in all scenarios.Thus, boosting mechanisms can
overcome this limitation by leveraging small labelled datasets and improve the model generalization capability. Motivated by this, we
propose a scheme, Blockchain based extreme gradient (XG) boosting scheme, where highlighted letters form the scheme acronym
Bl-Boost. The scheme uses XG with long short term memory (LSTM), denoted as X-LSTM model for making accurate predictions
on EHR data with the help of blockchain. We store the model predictions on a local interplanetary file systems (IPFS) server, and
hash information is published in main blockchain. Via smart contracts (SCs), we aim for privacy-preserved access control on the
data. The experimental validation is performed on the benchmark heart failure prediction dataset in terms of accuracy, loss, and
precision matrix for LSTM and XG-Boost LSTM models. We validate the proposed scheme for validation accuracy and loss, EHR
processing costs, IPFS scalability, mining latency, and resistance against collusion attacks. X-LSTM obtained an accuracy of 96.4%
with 35 epochs, an 86% deployment time improvement over on-chain storage with IPFS, and a low latency of 50.23 milliseconds for
2500 transactions. The presented outcomes indicates that the scheme has strong potential for viability in real-world deployment scenarios.
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1 Introduction
Recently, the advent of Healthcare Internet-of-Things

(HIoT) has led to the generation of enormous volumes of
data, resulting in significant challenges in managing and
processing data from various sources [1]. According to the
International Data Corporation (IDC), global healthcare data
is projected to reach 163 zettabytes by 2025 [2], driven
by more devices and sensors. Electronic health records
(EHRs) are crucial in modern healthcare, encompassing
patients’ medical history, treatments, medications, etc., but
their volume challenges data processing and prediction [3].
Healthcare 4.0 systems focus on data integration, but varied
formats and fragmentation lead to inaccurate analysis [4][5].

Healthcare 5.0 uses technologies like machine learn-
ing, big data analytics, and blockchain to extract insights
from EHRs and provide personalized care [6]. It combines
IoT protocols, fifth generation (5G) communication, and
security solutions to create a patient-centric model. The

use of blockchain assures a transparent and traceable EHR
interoperability among healthcare systems, ensuring data
integrity and minimizing errors and fraud.

Every transaction in EHR is recorded and traceable,
reducing administrative costs. However, blockchain alone
is not enough for Healthcare 5.0; effective artificial intel-
ligence (AI) support is essential. Machine learning (ML)
and deep learning (DL) techniques are widely used in
EHR analysis. While ML and DL techniques have shown
promising results in healthcare EHR analysis, there are still
some limitations that need to be addressed. One of the
significant limitations is the requirement of large amounts
of high-quality data for training the models [7]. Another
limitation is the difficulty in interpreting the results of the
models [8]. Additionally, there are concerns regarding the
potential for algorithmic bias and ethical issues in the use
of these models [9].

Inspired by the preceding discussions, in this paper,
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we propose a scheme, Bl-Boost, addresses several critical
challenges in healthcare analytics, including the scarcity
of labeled data for ML models, the need for real-time
predictive capabilities, and the privacy concerns surround-
ing patient data. which integrates blockchain and XG-
Boost to secure and manage EHRs. The scheme addresses
the dual benefits of fast, reliable, and accurate predictive
analysis. The combination of XG-Boost and LSTM is based
on the complementary strengths of both models. While
LSTM specializes in learning from sequential data, XG-
Boost strengthens model performance by handling small
and imbalanced datasets. Together, they create a robust and
scalable model, suitable for healthcare applications with
limited labeled data.

A. Novelty
The proposed scheme combines XG-Boost and LSTM

allows operation with small labeled datasets. This integra-
tion enhances accuracy even with small and imbalanced
datasets, with ensured security and transparent access con-
trol via blockchain. The integration presented as a stacked
X-LSTM network (LSTM and XG-Boost) allows process-
ing of the sequential healthcare data, capturing temporal
dependencies such as trends in patient health records over
time. These extracted features are then fed into the XG-
Boost model, which enhances predictive accuracy by han-
dling small, imbalanced datasets efficiently. Combined with
the off-chain IPFS, it ensures decentralized data storage,
reducing reliance on centralized servers, and secures the
data through blockchain for immutability and integrity.

B. Research objective and Contributions
The article’s research contributions encompass the fol-

lowing points.

• The proposed scheme is structured around a three-
layered system model, which includes the following
components: the data collection layer, the XG-Boost
LSTM layer, and the blockchain and smart contract
(SC) layer.

• Based on the layered model, the operation flow of
the X-LSTM module that uses the stochastic and
regularized gradient boosting features that ensures ac-
curacy and execution speed of transactional analysis
is formulated.

• Performance analysis for the X-LSTM model, and
the blockchain metrics. The use of interplanetary file
systems (IPFS) improves the mining rate, which is
depicted in the results.

C. Article Organizations
The structure of the paper is as follows: Section 2 intro-

duces key terminologies related to blockchain, healthcare
analytics, gradient boosting, and reviews current state-of-
the-art schemes. Section 3 details the system model and
problem formulation. The proposed scheme is outlined in

Section 4. Section 5 evaluates the performance of the Bl-
Boost scheme. Finally, Section 6 concludes the paper.

2 Background and State-of-the-art
The section highlights the background of healthcare

analytics, use of blockchain and IPFS in healthcare, XG
boost mechanism, and related approaches. The details are
presented as follows.

A. Analytics and Blockchain in Healthcare 5.0
Healthcare 5.0 shifts to a personalized, human-centric

approach for proactive care. The healthcare industry faces
challenges like aging populations, high costs, disease out-
breaks, and chronic illnesses [10]. Healthcare analytics
(HA) provides critical insights to address these issues and
extend care reach.

Blockchain is a decentralized ledger where each block
contains transactions linked by previous block hashes, form-
ing a chronological trail of patient EHR histories. Any
alteration invalidates subsequent block hashes, ensuring
immutability, integrity, and reliability. It eliminates the need
for centralized data collection, allowing multiple healthcare
silos to manage data on a distributed network. Blockchain
promotes transparency and access, with records accessible
to authorized members in public, private, or hybrid setups.
[11].

1) Extreme Gradient Boosting
Extreme Gradient Boosting (XGBoost) [12], an ad-

vanced ensemble gradient boosting method, has outper-
formed Friedman’s gradient boosted trees and RF methods
[13][14]. XGBoost’s efficiency and fast training excel in
both classification and regression tasks. Unlike RF, which
uses randomized, diverse trees, gradient boosting combines
weak learners into a strong one, sequentially building
shallow trees where each corrects the previous ones. This
reduces overfitting through a rule-based approach, while
RF creates fewer, deeper trees. XGBoost advances tradi-
tional gradient boosting decision tree (GBDT) techniques
by merging weak classifiers into a potent one using a clas-
sification and regression tree (CART) model. It sequentially
adds trees, splitting features based on residuals. An unspent
equation fits new residuals, aiming to accurately predict
sample scores upon training completion.

Figure 1 depicts attributes pointing to analogous leaf
nodes. This suggests that every tree will harbor its unique
leaf node, with each corresponding to a specific score. To
predict the sample’s precise value, the cumulative scores
from all the trees must be taken into consideration. Such
nuanced execution represents a leap forward in machine
learning, and underscores the agility and precision of XG-
Boost, making it a favored approach for numerous applica-
tions in the realm of artificial intelligence.

B. State-of-the-art
This section furnishes an extensive overview of the perti-

nent methods, accompanied by a comparative assessment of
their efficacy. TABLE I presents the state-of-the-art (SOTA)
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TABLE I. Relative comparison of proposed scheme with state-of-the art approaches

Author(s) Year 1 2 3 4 5 Advantages Limitations
Kumaret.al.
[15]

2018 N Y Y N - This study presents a scalable three-tier IoT architecture for
processing sensor data to identify crucial clinical parameters
for heart disease detection. ROC (Receiver Operating Char-
acteristic) analysis is used to pinpoint key clinical markers
indicating impending cardiac conditions.

The architecture is bulky and not so much energy efficient
if deployed for IoT systems.

Khanet.al.
[16]

2018 N Y Y N 92 The study reveals that Raman spectroscopy combined with
ML can significantly aid in diagnosing and investigating
infectious diseases.

The clinical practice to verify accuracy is still needed.

Amin
et.al. [17]

2018 N Y Y N 93 An automated technique for segmenting and discriminating
brain tumors.

Adding more features can enhance the accuracy of the
algorithm.

Zeng
et.al. [18]

2019 N Y Y N - The model in this paper combines features from unstruc-
tured and structured patient data for detecting breast cancer
occurrences.

Clinicians often record ruled-out diagnoses or disputed
symptoms, but this clinical narrative is not considered in
the results.

Shao
et.al. [19]

2019 N Y Y N 90 CD codes alone are insufficient to detect dementia. The
authors combined EHRs with patients’ structured and un-
structured records to determine the dementia risk score.

The study’s patient population has more older males than
females, potentially causing skewness and negatively im-
pacting the results.

Bernardini
et.al. [20]

2019 N Y Y N - The model outperforms other SOTA competitors in terms
of predicting performance and computation time, according
to the results. Furthermore, the induced sparsity improves
model inter-pretability by automatically managing high-
dimensional data and the common imbalanced class distri-
bution.

Nonlinear models with Gaussian functions are not consid-
ered here.

Allen
et.al. [21]

2020 N Y Y Y 89.09 This paper uses ensembled XG-Boost techniques, which
outperformed other algorithms.

The sample size is small, and results may change with a
larger population.

Le et.al.
[22]

2020 N Y Y Y 90.5 The algorithm created in this work could help with ARDS
clinical trial recruitment as well as better ARDS prediction
and early detection.

All results pertain to a single-center ICU setting. This study
does not consider data from multiple centers or settings.

Budholiya
et.al. [23]

2020 N Y Y Y 91.8 The diagnostic approach in this paper improves decision-
making quality during cardiac disease diagnosis.

The performance of the model tested for only one disease.

Chen
et.al. [24]

2021 Y Y Y N - The study introduced ML techniques for diabetes detection
and secure data sharing with healthcare providers.

The patient data and doctors’ data are stored in blockchain
which make it bulky and processing delay occurs.

Shynu
et.al. [25]

2021 Y Y Y N 81 The article presents cost-effective, blockchain-based secure
healthcare services, utilizing a feature selection-based adap-
tive neuro-fuzzy inference system to predict diabetes and
cardiovascular diseases.

This paper does not consider the security and privacy of
accessing patient medical data.

Kallimani
et.al. [26]

2022 N Y Y N 97.77 This article introduces an attention-based convolutional neu-
ral network (ACNN) combined with a long short-term
memory (LSTM) model for heart disease detection, using
novel feature selection techniques in a hybrid deep learning
framework.

The ACNN and LSTM can give more accuracy if hyper-
parameters are used effectively.

Neelakandan
et.al. [27]

2022 Y Y Y N 95.29 The article presents a model called Blockchain with DL-
Enabled Secure Medical Data Transmission and Diagnosis
(BDL-SMDTD) for disease diagnosis using medical images,
ensuring secure data transmission via blockchain technology.

This is proposed methodology but clinical practice is missing
is not yet done to check the accuracy.

Malibari
et.al. [28]

2023 N Y Y N 93.5
and
94

This article introduces the EO-LWAMCNet model, an op-
timized Lightweight Automatic Modulation Classification
Network, for precise prediction of kidney and heart diseases
in patients.

The execution time of EO-LWAMCNet model high com-
pared to the existing models.

Alshraideh
et.al. [29]

2024 N Y Y N 94.3 This article employs a support vector machine (SVM) clas-
sifier integrated with particle swarm optimization (PSO) to
conduct feature selection.

The study prioritizes the accuracy of the prediction model.
However, additional metrics such as sensitivity, specificity,
and the AUC-ROC could offer highly favored understanding
of the model’s performance.

Oladele
et.al. [30]

2024 Y Y N N - The author used hyper-fabric ledger blockchain for patient
record management and maintaining transparency with the
help of smart contracts and uses value pair is used to identify
each record

The study privacy of the user and worked only population
of 500.

Velmurugan
et.al. [31]

2024 Y Y N N - Blockchain-based hyper ledger fabric is used for the effective
exchange of health records over the unsecured channel;
suggested algorithms for data transformation are highly
responsive.

Integrating data in blockchain from several sources creates
security and legitimacy issues.

Kumar
et.al. [32]

2024 Y Y N Y - The framework’s security is validated through formal and in-
formal analysis, along with simulations via the Scyther tool.
It outperforms existing solutions in terms of communication
overhead, computation cost, and processing time.

The complexity of integrating the system with existing EHR
infrastructures, and the computational resource demands for
running the security validations and simulations.

Proposed 2024 Y Y Y Y 96.4 A secured and scalable healthcare analytics by integrating
XG-Boost and LSTM (X-LSTM) on labelled datasets.

Security validation is not considered as part of this study.

Parameters- 1. Blockchain 2. Health-care Analytics 3. Learning Models 4. Boosting Technique 5. Accuracy(%) Y- shows that the parameter is present, N- shows that the
parameter is absent

approaches. The technical discourse is segregated based on
the method employed, such as ML in healthcare analytics
or blockchain in healthcare analytics.

1) ML in Healthcare Analytics
Recent progress in HIoT (Healthcare Internet of Things)

integration has enabled remote monitoring and real-time
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Figure 1. XG-Boost mechanism

tracking [33]. Managing the vast data from HIoT devices
is challenging. AI integration helps diagnose, analyze, and
detect diseases accurately, with algorithms predicting dis-
eases swiftly in early stages [34].

AI has significantly contributed to disease diagnosis,
analysis, and detection, resulting in more accurate disease
classification. Kumar et al. [15] proposed a scalable ar-
chitecture for processing sensor data in a three-tier IoT-
based framework that prioritizes critical clinical parame-
ters for heart disease detection. ROC analysis is used to
identify the most important clinical markers that suggest
an imminent cardiac condition. Khan et al. [16] presents
the integration of Raman spectroscopy with ML, which can
be highly beneficial in diagnosing and exploring infectious
diseases. Amin et al. [17] proposed automated technique
for segmenting and discriminating brain tumours. Authors
in [18] proposed ML models for breast cancer detection
based on unstructured and structured patient data. Authors
in [19] used the International Classification of Diseases
(ICD) codes on EHRs for dementia detection and computed
the risk scores for the patients. In [21], authors proposed
an XG-boost based technique to improve the accuracy for
disease detection, and it performs better than conventional
models.

2) Blockchain in Healthcare Analytics
Blockchain enables patient-centered healthcare through

collaborative, transparent medical data management, ensur-
ing patient privacy while allowing access for stakehold-
ers. Burniske et al. highlighted its expanded use beyond
cryptocurrencies [35]. Shynu et al. proposed a blockchain-
based healthcare service for predicting diabetes and car-
diovascular diseases within a fog computing framework
[25]. It collects health data from fog nodes, securely stores
it on the blockchain, clusters records using a rule-based
algorithm, and forecasts diseases with a feature selection-
based adaptive neuro-fuzzy inference system (FS-ANFIS).
Neelakandan et al. presented a model using blockchain
for secure medical data transmission and deep learning for
diagnosis [27]. This model encrypts and stores images on
the blockchain, employing histogram-based segmentation,

feature extraction with Inception ResNetv2, and disease
classification through a support vector machine (SVM),
validated with benchmark medical images.

Many existing systems experience difficulties when scal-
ing up to accommodate large datasets, resulting in increased
latency and slower data retrieval. While these systems pro-
vide secure data storage, most do not incorporate predictive
analytics to enhance decision-making, focusing instead on
data management. Some systems have inefficient mech-
anisms for sharing data, often lacking automated access
controls via smart contracts, which hampers secure and
effective data exchange.

C. Strengths and Weakness of existing models
1) XG-boost: XG-Boost is a powerful gradient boosting

algorithm well-suited for dealing with imbalanced
data and small labeled datasets. It excels at capturing
complex patterns in structured data, such as patient
demographics and diagnostic information, which are
often found in healthcare datasets. However, XG-
Boost struggles with sequential or time-dependent
data, which is essential in healthcare when analyzing
changes in patient health over time.

2) LSTM: LSTM is ideal for processing time-series
data, making it perfect for analyzing continuous
patient information, like medical history and vital
signs over a period of time. Its memory retention
allows it to capture important temporal relationships
in patient data. LSTM models often require large la-
beled datasets to perform optimally and can be prone
to overfitting when dealing with smaller datasets.

Other models, such as Random Forests or standard neural
networks, were not selected due to their lack of time-series
processing capabilities or their inefficiency in handling
imbalanced datasets. CNNs, while powerful for image data,
are not as suitable for the kind of tabular and sequential data
often found in healthcare.

3 System Model and Problem Formulation
This section outlines the system model and formulates

the problem.

A. System Model
This section presents the system model of the proposed

Bl-Boost scheme, integrating a blockchain-assisted solution
for predictive analysis. Figure 2 shows the layered model
with three layers: L1 (data collection), L2 (XG-Boost en-
abled LSTM), and L3 (blockchain and SC). The details are
as follows.

1) L1: Data Collection Layer
- At this layer, we consider Healthcare Users (HU),

including entities E = Ep, Ed, Eia, Elb, Eahp, Ea: patients
(Ep), doctors (Ed), insurance agents (Eia), lab workers
(Elb), allied healthcare staff (Eahp), and administrators (Ea).
Patients’ (Ep) EHRs (lab reports, prescriptions, insurance
bills, claims) are secondary data (Ds). Primary data (Dp)
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comes from sensors like blood glucose, electrochemical,
and amperometric biosensors. Data is processed using sen-
sor fusion algorithms for uniform readings [36]. Sensor data
at L1, combining Dp and Ds, is accessed via APIs in JSON
format. Collected data is Dc = D1,D2 . . . ,Dn, mapped as
M : Dc −→ Db. Dc is sent to L2 for preprocessing, cleaning,
and reduction.

2) L2: XG-Boost LSTM ensemble
- At L2, the primary objective is to form predictions

on the collected data. For the same, an ensemble of XG-
Boost and LSTM (X-LSTM) is proposed. Initially, the data
Dc undergoes the preprocessing stage, where it undergoes
several transformations. At the first step of preprocessing,
any outliers or unwanted noise from Dc are eliminated,
which leads to a clean dataset Dclean. Dclean is then subjected
to binning, where the continuous values are converted into
discrete bins resulting in Dbinned. To ensure uniformity in
feature scales, this binned data is normalized, giving Dnorm.
Further, to enhance computational efficiency and possibly
counteract overfitting, dimensionality reduction is applied
to Dnorm, producing the reduced data setDred.

Post preprocessing, the processed data (Dred) is split into
training (Dred train) and test data (Dred test). Dred train is
further split into training and validation data for the LSTM
model, parameterized by hyperparameters θ (learning rate
η, batch size B, and number of epochs N). After LSTM
training, the extracted features (F ) serve as input for
the XG-Boost algorithm. This ensemble leverages LSTM’s
sequence processing and XG-Boost’s predictive power, im-
proving generalization and accuracy. Final predictions (P)
are derived from the LSTM and XG-Boost ensemble.

3) L3: Blockchain and SC Engine
At L3, the goal is to securely store prediction results

(P) using blockchain technology. Predictions are added to
a decentralized blockchain database (B) for tamper-resistant
storage and traceability. Access and interactions with this
blockchain are governed by smart contracts (SCs).

For efficient retrieval and verification, prediction results
are hashed, creating a unique identifier (H), and stored
in IPFS offline storage. Users access IPFS with a 32-byte
content key (Ckey). Through SCs, users retrieve prediction
data from IPFS using Ckey and its private identifier (Pri(K)).

The Ckey information is mapped to the IPFS record, with
the key reference stored on the blockchain. Transactions
are temporarily held in the Mempool (M) before being
confirmed and added to a block.

B. Problem Formulation
This subsection formalizes the objectives for the pro-

posed Bl-Boost scheme, addressing challenges and con-
straints. Goals include enhanced accuracy, expedited predic-
tive analysis, and minimized blockchain transaction sizes.
The details can be presented as follows.

• Accuracy Enhancement in Ensemble Predictions:
Given the ensemble of LSTM and XG-Boost, our
first goal is to optimize the predictive accuracy. Let
the prediction accuracy be denoted by A, which is a
function of the features extracted by LSTM, F , and
the XG-Boost model parameters, θ. The objective can
be expressed as follows.

P1 : max
θ

A(F , θ) (1)

subject to constraint C1 pertaining to the underlying
data distribution, the capabilities of the LSTM, and
the optimization landscape of the XG-Boost.

• Expedited Predictive Analysis: The computational
efficiency is of paramount importance for real-time
healthcare applications. Let T (F , θ) represent the
time taken by the X-LSTM ensemble to generate pre-
dictions. Our goal is to minimize T while maintaining
a certain level of accuracy, Amin. Mathematically, it
can be presented as follows.

P2 : min
θ

T (F , θ) (2)

subject to constraint C2 which specifies

A(F , θ) ≥ Amin (3)

• Minimization of Transaction Size in Blockchain:
With the intent to create an efficient and scalable
blockchain-assisted solution, we seek to minimize the
transaction size. Denote the transaction size as S tx,
and the prediction result size as S P. By hashing the
results and utilizing the IPFS storage, the goal is to
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minimize the effective transaction size added to the
blockchain. It can be presented as follows.

P3 : min S tx(H ,Ckey,P) (4)

subject to constraint C3, specified as follows.

S tx ∝ S P (5)

This relation indicates that as the prediction result size
grows, the transaction size should grow proportion-
ally, but with mechanisms in place to keep it minimal.

Thus, the overall problem P f can be treated as a min-
imization problem min(−P1, P2, P3) subject to the given
constraints {C1,C2,C3}.

C. The Multi Objective Optimization
Given our multi-objective function P f , the Pareto Opti-

mal solution set, denoted as P∗ is defined as follows.

P∗ = {x ∈ X | ∄x′ ∈ X} (6)

such that fi(x′) ≤ fi(x)∀i and f j(x′) < f j(x)∃ j, where fi(x)
is the ith objective of P f , and X is the feasible solution
space defined by the constraints C = {C1,C2,C3}. The
above definition establishes that any solution x∗ ∈ P∗ is
Pareto Optimal if no other feasible solution x′ exists that
can improve at least one objective without deteriorating any
other objectives.

Now, to address the multi-objective optimization prob-
lem in the context of the X-LSTM model, we propose
an optimization technique denoted as OXL. This technique
guides the model’s parameters θ to achieve a balance among
our objectives. Specifically, we incorporate the Pareto Op-
timal principle into the learning algorithm of the X-LSTM.
Mathematically, the optimization problem can be expressed
as follows.

OXL(θ) : min
θ

(−P1(F , θ), P2(F , θ), P3(F , θ)) (7)

Proof : To demonstrate that our proposed solution OXL
effectively addresses the multi-objective optimization, three
conditions are to be satisfied.

• Completeness: Given constraints C1,C2,C3, our con-
vex and bounded solution space X ensures a finite
Pareto front from P∗.

• Optimality: Each solution x from the Pareto front
optimizes at least one objective without compromis-
ing others. By using OXL in the X-LSTM model, the
learning process converges to Pareto front solutions,
ensuring multi-objective optimality.

• Efficiency: OXL, tailored for the X-LSTM model,
considers the structure of both LSTM and XG-Boost
components, efficiently exploring X without unneces-
sary computations.

• Decomposition: OXL breaks down the multi-objective
problem into simpler subproblems, each targeting one

objective while maintaining the others. This iterative
approach generates Pareto-optimal solutions without
exhaustively evaluating the entire solution space.

• Scalability: The decomposition approach allows OXL
to scale with data size and complexity, adapting
dynamically to changing data distributions and con-
ditions. If an objective becomes more critical due
to external factors, optimization can refocus on that
objective without restarting.

4 Bl-Boost: The Proposed Scheme
In this section, we delve into the proposed scheme.

As indicated in previous section, we outline the ensemble
of LSTM and XG-Boost, which present the optimal OXL
solution to the optimization problem.

A. The interaction flow
As presented in section 3-A, the proposed scheme forms

a layered solution (L1toL3), that presents a robust solution
for healthcare analytics in Healthcare 5.0. Figure 3 presents
the interaction flow of the proposed scheme. The raw data
(processed EHR and real-time data) collected at L1 in a
heterogeneous manner is sent to algorithm 1 that provides
the removal of outliers and noise. The step involves binning,
and min-max normalization is applied. Next, we compute
the dimensionality reduction, and the data is sent to the
stacked X-LSTM model at L2. Now, based on the presented
optimization, we present the stacked X-LSTM model that
applies the objective functions and sequentially processes
the preprocessed data, capturing temporal dependencies
and learning complex patterns over time. The network
avoids overfitting or bias in its predictive outcomes. This
is achieved by iteratively improving the model’s parameters
through multi-objective optimization, balancing key metrics
such as prediction accuracy, computational efficiency, and
blockchain transaction size.

At L3, these predictions are securely integrated into
the blockchain framework. The predictions are hashed and
stored on the blockchain using a content-addressable IPFS,
while SCs enforce privacy-preserved access control and data
sharing policies. Smart contracts automate the verification
of access rights, ensuring that only authorized users can
retrieve or interact with the predictions. The interplay is
synergistic; algorithm 1 ensures that L2 receives data that
is clean and computationally manageable. Algorithm 2 at
L2 optimizes predictions by interfacing with the Stacked X-
LSTM network, and L3 secures and stores these predictions
in a decentralized and controlled environment among dif-
ferent healthcare stakeholders, governed by smart contracts.
The details of the interaction flow are presented in the
following subsections.

B. Data Preprocessing
The collected data Dc first undergoes outlier removal

and noise reduction. We adopt the Interquartile Range (IQR)
approach. Let Q1, and Q3 be the first and third quartiles of
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Dc. The IQR is then calculated as follows.

IQR = Q3 − Q1 (8)

Any data point d from Dc that falls outside the range
[Q1 − 1.5 × IQR,Q3 + 1.5 × IQR] is considered an outlier
and is thus removed. The resultant dataset post this filtration
is Dclean.

After cleaning, data may still have fine-grained contin-
uous attributes. Binning discretizes these values. Let the
number of bins be B. The data range for each attribute in
Dclean is divided into B equal-width intervals. The width is
given as follows.

w =
max(Dclean) −min(Dclean)

B
(9)

Each interval represents a bin, and continuous values within
an interval are replaced by a representative value, often the
bin’s mean or median. This results in Dbinned.

To ensure uniform feature scales, Min-Max normaliza-
tion is applied. For each feature F ∈ Dbinned, normalization
is performed as follows.

Fnorm =
F −min(F)

max(F) −min(F)
(10)

Here, min(F), and max(F) are the minimum and maximum
values of the feature F ∈ Dbinned. The resulting dataset post-
normalization is Dnorm.

Next, we apply Principal Component Analysis (PCA),
which finds orthogonal axes (principal components) that
maximize data variance. If Dnorm has m features, and we
wish to reduce it to k dimensions, PCA finds k principal
components such that k < m. The transformed data is then
given as follows.

Dred = Dnorm × P (11)

where P is the matrix with columns corresponding to the
first k principal components of Dnorm. The components in P
are ordered by the amount of variance they capture from the
original data. Typically, k is chosen such that a significant
proportion (often 95% or more) of the total variance in
the original data is retained. Mathematically, this can be

represented as follows.
k∑

i=1

λi ≥ 0.95 ×
m∑

i=1

λi (12)

Here, λi represents the eigenvalues of the covariance matrix
of Dnorm, sorted in descending order. The first k eigenvalues
correspond to the variance explained by the first k principal
components. The reduced dataset, Dred is of lower dimen-
sionality, and preserves the majority of crucial information
from the original dataset. This reduces potential overfitting,
and ensures that the most significant patterns in the data are
retained for predictive modeling.

Algorithm 1 details preprocessing with four functions:
RemoveOutliers using the IQR method, Binning partitions
Dclean into n equal-width intervals, transforming each into
a discrete bin for easier computation, Normalize scales data
to zero mean and unit variance, aiding scale-sensitive algo-
rithms, and ReduceDimensionality employs PCA. Outlier
removal, binning, and normalization operate at O(n) per
feature, while PCA’s eigen decomposition of the covariance
matrix is typically O(d3). Overall complexity is O(d×n+d3),
with n as the number of data points.

C. The stacked LSTM Network
In this subsection, we discuss the schematics of the

stacked LSTM network. We consider that preprocessed data
Dred is splitted into training and testing data, where the
training data is fed to the stacked LSTM network. Figure
4 presents the details of the stacked LSTM network. For a
single LSTM cell, the forget gate ft in a LSTM cell decides
the amount of the previous cell state to retain. The cell
state Ct acts as the memory of the LSTM unit. It has the
capability to store and retrieve information across extended
sequences. Finally, the output gate ot controls how much of
the current cell state makes it to the hidden state.

it = σ(Wi · [ht−1, xt] + bi) (13)
ft = σ(W f · [ht−1, xt] + b f ) (14)

C̃t = tanh(WC · [ht−1, xt] + bC) (15)
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Algorithm 1 Preprocessing for Dc
Input: Dc: Collected data set, k: Number of principal components to retain, such
that k 95% variance is retained.
Output: - Dred : Reduced data set after preprocessing.

1: Procedure Preprocess(Dc, k)
2: Dclean ← RemoveOutliers(Dc)
3: Dbinned ← Binning(Dclean)
4: Dnorm ← Normalize(Dbinned)
5: Dred ← ReduceDimensionality(Dnorm, k)
6: return Dred

7: Function RemoveOutliers(Dc)
8: for (each feature f ∈ D) do
9: Compute Q1 and Q3

10: IQR← Q3 − Q1
11: Remove data points where f < Q1 − 1.5 × IQR or f > Q3 + 1.5 × IQR
12: end for
13: return Dclean

14: Function Binning(Dclean)
15: for (each feature f ∈ Dclean) do
16: Partition f into n equal-width intervals
17: Convert each interval into a discrete value representing the bin
18: end for
19: return Dbinned

20: Function Normalize(Dbinned)
21: for (each feature f ∈ Dbinned) do
22: µ f ← mean of f
23: σ f ← standard deviation of f

24: fnorm ←
f−µ f
σ f

25: end for
26: return Dnorm

27: Function ReduceDimensionality(Dnorm, k)
28: Compute the covariance matrix Σ of D
29: Compute the eigenvalues λ and eigenvectors v of Σ
30: Sort λ in descending order and select the top k eigenvectors to form matrix P
31: Dred ← D × P
32: return Dred

Ct = ft ×Ct−1 + it × C̃t (16)
ot = σ(Wo · [ht−1, xt] + bo) (17)

ht = ot × tanh(Ct) (18)

where C̃t denotes the new memory creation of the LSTM
cell, Ct is the update cell state, ht denotes the current hidden
state, [ht−1, xt] represents the concatenation of the previous
hidden state and the current input, ot is the output gate,
σ denotes the sigmoid activation function, which squashes
the output between 0 and 1. tanh is the hyperbolic tangent
activation function, which outputs values between -1 and
1. {W f ,Wi,WC ,Wo} are weight matrices for the forget gate,
input gate, new memory, and output gate respectively, and
{b f , bi, bC , bo} are bias terms for the forget gate, input gate,
new memory, and output gate respectively.

The input sequence S 1, S 2, . . . , S n is divided into n input
gates, where each gate it determines the stored information.
LSTM units are stacked, with the output ht from one unit
becoming the input for the next. Assuming there are L
LSTM layers, the operations for layer l are as follows.

h(l)
t = LSTM(h(l−1)

t , xt) (19)

where h(0)
t is the initial input to the LSTM network, xt. After

passing through all L LSTM layers, the final hidden state

y

h1 h2 h3

Dense layer

LSTM LSTMLSTM

LSTM LSTMLSTM

x1 x2 xn

Output

Sequence input
(S1, S2, S3......Sn)

Figure 4. The stacked LSTM model

h(L)
t is fed into a dense layer to produce the final output y.

The dense layer can be represented as follows.

y = softmax(Wd · h
(L)
t + bd) (20)

where Wd is the weight matrix for the dense layer, bd is
the bias for the dense layer. The softmax function ensures
that the output is a probability distribution over the target
classes.

The complexity of an LSTM operation mainly depends
on the size of the weight matrices. Given an input dimension
d, and hidden state dimension h, the complexity of LSTM
operations for each time step and each layer is O(h×d+h2).
Given T time steps and L layers, the total complexity
becomes O(T×L×(h×d+h2)). The dense layer’s complexity
is O(h × c), where c is the number of output classes. Thus,
the total complexity for the entire stacked LSTM network
for all time steps is O(T × L × (h × d + h2) + h × c).
The complexity analysis of the stacked LSTM network

reveals its inherent computational demands, especially as
the number of layers L and time steps T increase.

D. The X-LSTM network
In this subsection, we present the integration of the

LSTM output y to be fed to the XG-Boost module. Given a
sequence of data S = {s1, s2, . . . , sn}, the LSTM processes
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this sequence to produce a higher-level representation or
embedding, represented as follows.

E = LS T M(S ) (21)

where S is the input sequence, and Eis the embedding or
output representation from the LSTM. The embedding E
obtained from the LSTM serves as the input feature vector
for the XG-Boost model, denoted as follows.

FXGB = XGBoost(E) (22)

where FXGB is the prediction or output from the XG-Boost
model. For the XG-Boost model, we set an initial prediction
value for every observation, denoted as follows.

ŷ(0)
i =

1
2

log
( ∑n

i=1 wiyi∑n
i=1 wi(1 − yi)

)
(23)

where ŷ(0)
i is the initial prediction for the ith observation,

wi is the weight for the ith observation, and yi is the actual
value for the ith observation. In XG-Boost, we consider M
trees, and we run iteratively m = 1toM and compute the
Gradient and Hessian for the loss function. Thus, for each
observation i, we have

gi =
∂L(yi, ŷ

(m−1)
i )

∂ŷ(m−1)
i

(24)

hi =
∂2L(yi, ŷ

(m−1)
i )

∂ŷ(m−1)
i

2
(25)

where L is the loss function, giis the gradient of the loss
with respect to the prediction. hi is the Hessian of the loss
with respect to the prediction.

Using the gradients gi, and Hessians hi, construct a
decision tree that predicts the output based on the input
embedding E. We next update the prediction as follows.

ŷ(m)
i = ŷ(m−1)

i + η · fm(Ei) (26)

where η is the learning rate, and fm is the mth tree. The
final prediction ŷ(M) which is the result after adding the
contributions from all trees. After constructing M trees and
updating our predictions at each step, the final prediction
for the ith observation is given as follows.

ŷ(M)
i = ŷ(0)

i + η

M∑
m=1

fm(Ei) (27)

where ŷ(0)
i is the initial prediction for the ith observation,

η is the learning rate, and Ei is the embedding for the ith
observation obtained from the LSTM.

After obtaining the predictions using the XG-Boost
model, the results are validated. This is done on the val-
idation dataset not seen during the training process. The
process is presented as follows.

Vresults = Validate(ŷ(M)
i ,Ytrue) (28)

Algorithm 2 The iterative X-LSTM optimization algorithm
Input: LSTM output y, XG-Boost model parameters θ, learning rate η, pareto front
P∗, minimum desired accuracy Amin.
Output: - Optimal prediction and minimized transaction size.

1: Initialize XG-Boost model with parameters θ
2: Initialize objective trackers A← 0, T ← ∞, S tx ← ∞

3: Extract features from y to get mathcalF
4: for (each epoch e) do
5: Update θ using gradient descent
6: Train XG-Boost with F to get prediction P
7: Compute current A = A(F , θ)
8: Compute current T = T (F , θ)
9: Hash P to get H

10: Update S tx based on H and associated blockchain costs
11: Check if (A,T, S tx) improves Pareto Front P∗
12: if (A < Amin) then
13: Revert θ to last best state
14: Reduce η by a factor η − δ
15: end if
16: Check for convergence criteria
17: if (convergence is obtained) then
18: Signal STOP and compute accuracy A
19: end if
20: end for
21: return Model parameters θ optimized for X-LSTM

where Vresults represents the validation metrics, ŷ(M)
i is the

set of predictions, and Ytrue is the true values corresponding
to the validation set. The results, which include both the
predictions from the LSTM and the validation metrics from
the X-LSTM network, are then stored in IPFS storage.

The developed X-LSTM model is essentially an integra-
tion of sequence prediction and ensemble methods, lever-
aging the strengths of LSTM and XG-Boost algorithms.
Algorithm 2 uses the LSTM output y to serve as the input
to the XG-Boost algorithm. By updating the XG-Boost
model parameters θ using the multi-objective optimization
solution OXL iteratively, the algorithm ensures a balance
among accuracy, prediction time, and transaction size. The
checks and updates in the loop, especially the check against
Amin, and the subsequent learning rate reduction, ensure
that while optimizing, the model does not compromise on
the minimum accuracy. The use of the Pareto Front P∗
helps in guiding the optimization towards solutions that
satisfy all objectives as mentioned in section 3-B. The time
complexity of the algorithm proposed primarily depends
on the operations carried out within the main loop (i.e.,
the epoch loop). Updating θ using gradient descent on OXL
in one epoch primarily depends on the complexity of the
XG-Boost algorithm. If n is the number of samples and f
is the number of features extracted by LSTM, XG-Boost
typically has a complexity of O(k · n · log n · f ) , where
k is the number of boosting rounds. The computations of
A, T can be approximated O(n), where n is size of data.
Hashing operations are also typically O(n). Update S tx is
a simple update and can be considered as O(1). The check
whether (A,T, S tx) improves Pareto Front P∗ depends on
the number of solutions currently in the front, but in most
cases, this check can be approximated to O(p), where p
is the number of solutions in the Pareto front. Given that
there are E epochs, the total complexity inside the epoch
loop is O(E · (k · n · log n · f + p)). In practice, k, f , and
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p are typically much smaller than n, and often constant
with respect to n, and considering the log n factor from the
sorting operations in the tree construction of XG-Boost, the
overall complexity can be approximated as O(E ·k ·n · log n).
In real-world scenarios, the actual running time can be
influenced by several factors including hardware specifics,
software optimizations, and the exact nature and distribution
of the data.

E. Connection of X-LSTM to Multi-Objective Optimization
The developed X-LSTM model is essentially an integra-

tion of sequence prediction and ensemble methods, leverag-
ing the strengths of LSTM and XG-Boost algorithms. This
intricate balance aligns well with the objectives outlined in
the Bl-Boost scheme.

1) Addressing Accuracy Enhancement: LSTM extracts
features (F ) from sequences, capturing temporal
dependencies. XG-Boost then fine-tunes predictions,
correcting LSTM biases and errors using its opti-
mization landscape. This process iteratively reduces
residuals, potentially increasing A(F , θ). Aligning
with objective P1, X-LSTM aims for high prediction
accuracy by maximizing the relationship between
LSTM features and XG-Boost parameters.

2) Achieving Expedited Predictive Analysis: While
LSTM networks can be computationally intensive,
XG-Boost speeds up predictions once trained. In the
X-LSTM model, LSTM handles training, while XG-
Boost processes data rapidly for real-time prediction,
keeping T (F , θ) minimal. Under constraint C2, X-
LSTM balances speed and accuracy, ensuring pre-
dictions exceed threshold Amin.

3) Ensuring Minimal Transaction Sizes: The blockchain
component in the scheme emphasizes the need for
efficient storage. The LSTM network, by converting
raw sequences to compact feature representations,
F , inherently reduces the data size. Furthermore, by
hashing prediction results and leveraging the IPFS
storage, X-LSTM ensures that the transaction size
S tx is minimal, fulfilling the objective P3.

F. Blockchain integration
The prediction results obtained from the LSTM and X-

LSTM network is stored in IPFS, which offers a decen-
tralized and fault-resilient solution in comparison to cloud-
based storage schemes. The primary advantage of IPFS
lies in its content-addressable nature. Instead of relying
on physical locations, files in IPFS are accessed based on
their content hash. Mathematically, a file Fin IPFS can be
represented as follows.

CIPFS (F) = hash(F) (29)

where CIPFS denotes the 32-byte content key for file F. This
ensures redundancy, high availability, and fault tolerance.
Given the healthcare context, data integrity and availability
are paramount, and IPFS serves as a beneficial tool. For
users, data storage and retrieval in the proposed architecture

is both secure and efficient. As mentioned, data is stored
in IPFS and presented to local SCs to cater to healthcare
stakeholders’ requirements. Stakeholders authorized to ac-
cess this data require two keys: CIPFS and private key of
healthcare user Pri(Keyu). The former provides a reference
to the actual data, while the latter ensures the authorized
user’s identity. The retrieval process can be mathematically
illustrated as.

R = Retrieve(CIPFS , Pri(Key)) (30)

where R denotes the retrieved data, and Retrieve represents
the retrieval function.

5 Performance Evaluation
This section assesses the performance of the proposed

system in comparison to the baseline LSTM-based ap-
proach. The proposed scheme uses LSTM boosting algo-
rithm to enhance the performance of the system and provide
trust and security to the EHR, IPFS is used.

A. Experimental Setup
The X-LSTM model is compared with the baseline

scheme, where the performance is evaluated based on
cognitive heart failure dataset (CHF-RR) [37], and BIDMC-
CHF [38]. CHF-RR contains annotation files for 29 long
Electrocardiograms of subjects aged 34-79. Each Electro-
cardiogram signal is digitized at the rate of 128 samples
per second. BIDMC-CHF consists of 15 long Electrocardio-
gram signals from subjects aged between 22 and 71; each
signal is 20 hours long in duration and is sampled at 12-
bit resolution with a frequency of 350 samples per second.
The different parameters considered for implementation are
mentioned in the TABLE II.

TABLE II. Simulation Parameters

S.N. Parameter Value
1 Convolutional layer size 1
2 Filter 32
3 Activation function Rectified linear unit
4 Pool size 1
5 Activation function in pooling Rectified linear unit
6 Hidden Layer 64

B. Tools and Technique used
We implemented our models using Python, with Ten-

sorFlow and XGBoost libraries to build and test the LSTM
and XGBoost components. These libraries are well-suited
for handling sequential data and performing gradient boost-
ing, enabling efficient model development and training.
o simulate large-scale data handling similar to real-world
healthcare applications, we used Hadoop and HBase for
distributed data storage and integrity checks, ensuring that
our framework could handle the demands of extensive
healthcare datasets. For the blockchain component, we
used the Ethereum blockchain test network and wrote
smart contracts in Solidity to create a privacy-preserving
access system for EHRs. Local testing was conducted
using Ganache to ensure smooth functionality and test the
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(c) Training accuracy vs validation accuracy in
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Figure 5. Comparative analysis of LSTM and X-LSTM model

privacy measures. We performed extensive preprocessing
on our data to ensure its quality and consistency. This
included removing outliers using the Interquartile Range
(IQR) method, binning continuous values, and normalizing
features to achieve consistent scales. We also applied Prin-
cipal Component Analysis (PCA) to reduce dimensionality,
which helps prevent overfitting and speeds up computations.

C. Simulation Results
In this section, we examine the simulation results of

the X-LSTM model, and then present the benefits of using
blockchain to store the prediction accuracy. The details are
presented as follows.

D. Performance of X-LSTM network
Training accuracy evaluates the performance of a ma-

chine learning (ML) model on the training dataset. It is
computed by comparing the model’s predicted outcomes
with the actual outcomes present in the training data. This
metric serves as an indicator of the model’s ability to grasp
the patterns and associations within the training data. A

high training accuracy suggests that the model has effec-
tively learned the patterns inherent in the training dataset.
Validation accuracy measures how well a model generalizes
to unseen data. It is computed by evaluating the model’s
performance on a separate dataset called the validation
dataset, which consists of examples that the model hasn’t
seen during training. The training and validation accuracy
are typically monitored during the model training process
to track the model’s performance and make decisions about
when to stop training or adjust hyperparameters.

Figure 5a presents the training and validation accu-
racy over 35 epochs. To assess the model behavior, it
is important to identify the relationship between training
loss and validation loss. Figure 5b demonstrates that the
training loss diminishes over time, showing that the model
is learning and enhancing its performance on the training
data. However, the validation loss may not always decrease
monotonically. Initially, training loss and validation loss
tend to decrease together, suggesting that the model is
generalizing well.

Figure 5c represents training and validation accuracy,
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Figure 6. Blockchain performance metrics

while Figure 5d represents the training and validation loss in
X-LSTM model. If we compare the results of LSTM and X-
LSTM, we observed a better accuracy. With LSTM model,
we observed accuracy upto 95% where as in X-LSTM we
observed above ≈ 96.4% with 35 epochs. Similarly training
loss in X-LSTM is less in the initial epochs and decreases
significantly further up to 18% as compared to traditional
LSTM with a training loss of 25%.

TABLE III showcases the comparative performance of

TABLE III. Comparative Analysis of X-LSTM network against
baseline schemes

Model F1
Score

Preci-
sion

Recall AUC-
ROC

Speci-
ficity

Sensi-
tivity

Proposed 0.94 0.95 0.93 0.98 0.97 0.92
LSTM 0.87 0.88 0.86 0.92 0.90 0.84
XGBoost 0.86 0.87 0.85 0.91 0.89 0.83
CNN-
LSTM

0.88 0.89 0.87 0.93 0.91 0.85

GRU 0.84 0.85 0.83 0.90 0.88 0.81

the proposed X-LSTM model against other models, which

we simulated on the CHF-RR dataset against baseline
models including LSTM, XGBoost, CNN-LSTM, and GRU.
The proposed X-LSTM outperforms these baseline models
across multiple metrics. For instance, X-LSTM achieves a
higher F1 score of 0.95, compared to LSTM’s 0.89 and
CNN-LSTM’s 0.87, indicating its superior ability to main-
tain a balance between precision and recall. Additionally, it
registers an impressive AUC-ROC of 0.97, surpassing the
GRU model’s 0.92, which demonstrates a greater capacity
for distinguishing between classes. The model also excels
in specificity (0.93), effectively reducing false positives,
and displays enhanced sensitivity (0.94), outperforming
XGBoost (0.88) and CNN-LSTM (0.85), which makes it
highly reliable for detecting critical healthcare events.

E. Blockchain Performance
Figure 6a presents the processed number of EHR blocks

that contain the patient’s personal information. We have
simulated the environment on Hadoop [39] and HBase
[40]. It performs the checks at a random time to check



International Journal of Computing and Digital Systems 13

data corruption. Hadoop ecosystem integrity check reveals
that out of every 10,000 disk retrievals, there are only 70
incorrect or corrupted blocks. In Hbase approximately, only
20 incorrect or corrupted blocks are present every 10,000
block requests. This is possible as actual data is stored
over IPFS offline ledgers which allows fault-tolerance in
the system, and hence there are fewer corrupted indexes.

In Figure 6b, we present the comparative analysis of
trust probability in private/hybrid and public blockchains.
Trust probability is a crucial metric, especially when con-
sidering the possibility of collusion attacks, such as the 51%
attack. In blockchain networks, the trust probability T is
directly related to the proportion of honest miners in the
network, and is computed as T = H

N , where H represents
the number of honest miners and N is the total number of
miners. The trust probability measures the likelihood that
an honest miner will be selected to verify and add a block
to the blockchain. In private blockchain networks, where
fewer miners exist, there is a higher chance that a mining
pool may take control of the network, leading to a reduction
in T . As a result, a malicious mining pool could potentially
discard correct blocks and approve malicious ones, reducing
trust in the system.

Furthermore, the risk of collusion is intensified if a min-
ing pool controls more than 50% of the miners, increasing
the probability of side chains and incorrect block validation.
This situation is represented by the head miner probability
Phead as Phead =

M
N , where M is the number of miners

controlled by the same pool. The overall trust probability is
then expressed as T = 1 − Phead. In public blockchains, T
tends to be higher due to the decentralized nature and the
larger number of participants.

The results in Figure 6b reflect this, showing that trust
probability is significantly higher in public blockchains
compared to private blockchains. This is due to the fact that
private blockchains have fewer miners, making them more
susceptible to control by a single pool, thereby reducing
the system’s resistance to malicious activities. In contrast,
public blockchains tend to have larger, more diverse net-
works, which increases the difficulty of achieving a 51%
majority by any one entity, thereby fostering greater trust
and scalability in the system.

Figure 6c presents the benefits of storing data in IPFS.
Let rip f s(n) represent the response time of IPFS for a
given number n of files, and rblockchain(n) be the response
time for direct blockchain storage. For n = 5,000 files,
our plot showcases that rip f s(5, 000) is ≈ 8.5 ms. How-
ever, rblockchain(5, 000) is ≈ 60 ms. Thus, an improvement
ratio, I(n) for n = 5000 comes out to be I(5, 000) =
rblockchain(5,000)−rip f s(5,000)

rblockchain(5,000) which is ≈ 0.86, which indicates 86%
enhancement in response time when deploying IPFS over
direct blockchain storage. As n extends to 10,000 files,
rip f s(10, 000) is ≈ 10 ms, whereas rblockchain(10, 000) might
escalate to an unwieldy 120 ms, rendering I( f ) to be
0.92, or 92% improvement. Traditional blockchain storage
has an increased latency as since every fresh transaction
requires validation and addition to a continually extending

chain. However, IPFS, with its content-addressable opera-
tion (where content retrieval is contingent on its content
rather than location), evades traditional data storage’s pit-
falls. Coupled with the system’s decentralized architecture,
rapid data retrieval is achieved, irrespective of the increased
volume.

Figure 6d represents the mining latency of storing trans-
actions (which are external IPFS content addresses pointing
to actual storage in IPFS). Let L(t) represent the mining
latency for t transactions. For t = 2,500 transactions, the
latency is ≈ 50.23 ms. When, t = 10000 transactions, the
latency surges to 100.31 ms. Thus, when the transaction
volume quadruples, the latency merely doubles, indicating
a sub-linear growth in latency. Also, the bulk of latency
for lower transaction counts, mainly aggregate close to
the range [20, 40] ms. Thus, the sum

∑40
l=20 of of number

of occurrences in given range dominates, which indicate
mining operations frequently lie in this latency range, even
when the transactions increase. The reason is trivial, as
we obtain optimization in the X-LSTM network. Hence,
transaction sizes tx are small, and thus the computational
requirements of mining decrease effectively.

F. Discussion and Potential Challenges
The experimental section unveils the potential findings

pertinent to the functionality and performance of the X-
LSTM model and the subsequent application of blockchain
for performance metrics. Additionally, the hybrid integra-
tion of blockchain and IPFS enhances the reliability and
retrieval speed of sensitive healthcare data, providing a
scalable solution for Healthcare 5.0 ecosystems, where real-
time data availability and security are critical.
Moreover, data corruption in distributed systems like
Hadoop can arise from hardware malfunctions, software
defects, or network problems. This can lead to inaccu-
rate data analytics and compromised model performance.
Hadoop inherently provides data replication across nodes.
To further strengthen this, our approach leverages SCs on
the blockchain to monitor data replication processes, ensur-
ing that non-corrupted versions of the data remain available.
Sometimes private blockchains can be vulnerable to trust
issues, particularly when fewer participants are involved,
and governance is centralized. This may result in collusion
or tampering by a small number of participants. Thus,
a hybrid approach that distributes trust more evenly by
involving multiple nodes in governance decisions, reducing
the risk of any single entity undermining the system’s
integrity.

However, the simulation results raises some potential
challenges to be addressed. As indicated by the Hadoop
ecosystem integrity check results, out of every 10,000 disk
retrievals, 70 blocks were corrupted. While this is relatively
low, in a medical setting, even a minor data corruption
can lead to significant misinterpretations and consequential
errors in patient care. Further, the analysis differentiating
public and private blockchains suggests trustworthiness
issues with private networks. This is due to the possibility of
a mining pool taking over the complete verification process,
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potentially leading to the acceptance of malicious blocks.
Direct storage in blockchain, especially with increased
transaction volumes, exhibited amplified latency. To miti-
gate these issues, we propose implementing a distributed
IPFS cluster architecture, which allows the dataset to be
split across multiple nodes, improving parallelism in data
retrieval and reducing the load on individual nodes. IPFS
inherently divides files into smaller chunks, enabling more
efficient storage and faster retrieval.

Other potential solutions includes use of advanced error-
detection and error-correction algorithms within the Hadoop
ecosystem to reduce data corruption further. Exploring
parity-check and Reed-Solomon codes might help in better
error detection and rectification [41]. In terms of future
work, integrating additional AI models into the Bl-Boost
scheme—such as reinforcement learning or transformer-
based architectures—could provide better predictive capa-
bilities and computational efficiency, particularly for more
complex healthcare datasets like medical imaging or ge-
nomic data . Moreover, exploring the integration of feder-
ated learning into Bl-Boost would allow for decentralized
model training across healthcare institutions. This could
address privacy concerns by ensuring that sensitive patient
data remains local, while still benefiting from collective
learning across diverse patient populations. Future research
should also focus on reducing blockchain transaction costs
and further optimizing storage mechanisms, such as through
sharding or state channels, to improve the system’s scal-
ability and reduce latency, especially in large healthcare
networks.

6 Conclusion and Future Scope
The paper presents a novel scheme, Bl-Boost, which

integrated LSTM output with the XG-Boost mechanism,
through a proposed stacked X-LSTM network. This novel
approach was instrumental in addressing multi-objective
optimization challenges, exhibiting an impeccable balance
between performance efficiency and computational resource
utilization. The X-LSTM network’s unique stacking mech-
anism enabled it to harness the temporal sequence capa-
bilities of LSTM and the gradient-boosted decision-making
prowess of XG-Boost, offering a harmonized solution for
intricate data-driven challenges. We strategically used IPFS
for storing prediction results, which allowed significant
reductions in the actual transaction size stored within the
blockchain. This not only streamlined the data storage and
retrieval processes but also optimized the efficiency of the
blockchain network. Future studies could evaluate Bl-Boost
using a wider range of healthcare datasets, such as imaging
or other time-series data, to assess its adaptability across
diverse medical data types. Deploying Bl-Boost in an actual
healthcare setting would help evaluate its performance un-
der real conditions. Additionally, examining its compliance
with healthcare regulations such as HIPAA or GDPR would
provide insights into how similar technologies might be
adapted to meet regulatory standards. Also authors would
integrate attention mechanisms to the stacked X-LSTM
network to further improve the model’s ability to focus on

pivotal sequence events.
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