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Abstract: The success of agriculture depends on effective crop selection, which influences yield, profitability, and risk management
for farmers. Although machine learning tools are increasingly used for crop recommendations, many current models operate as opaque
”black boxes”, causing farmers to hesitate due to a lack of transparency. This study introduces an interpretable crop selection model
that leverages the AdaBoost classifier, using soil and climate data to predict crop suitability. To ensure transparency and foster trust, we
incorporate SHapley Additive Explanations (SHAP) to break down the model’s decision-making process. SHAP plots visually illustrate
how each input such as nitrogen, phosphorus, potassium, pH, temperature, humidity, and rainfall contributes to crop predictions. These
visual aids offer farmers practical, actionable insights, helping them understand the rationale behind the system’s recommendations. Our
model was evaluated on a dataset of 22 crops, achieving outstanding accuracy (99.77%) with a rapid prediction time of 0.5 seconds
per query. Transparency is provided not only through SHAP visualizations but also through clear, user-friendly interfaces that display
feature contributions in an accessible manner. This combination of high predictive performance and easy-to-interpret explanations
empowers farmers to make informed, confident decisions, leading to improved crop yields and greater profitability.

Keywords: Interpretable Crop Selection, AdaBoost Classifier, SHAP Explanations, Sustainable Agriculture, Decision Support
System

1. INTRODUCTION
Agriculture is the backbone of global sustenance and

economic stability, influencing everything from food secu-
rity to livelihoods [1], [2]. Recent advancements in smart
agriculture are reshaping traditional farming practices by
incorporating technologies such as Artificial Intelligence
(AI), the Internet of Things (IoT), and machine learning
(ML). These technologies facilitate precise crop manage-
ment, yield forecasting, and optimal resource allocation [3],
[4].

Amid this technological revolution, crop selection re-
mains a pivotal challenge. The right crop choices can
increase profitability and sustainable practices, while poor
selections result in financial losses and environmental risks.
Though helpful, traditional methods for crop selection
are often limited by inefficiency, while AI-driven systems
promise to revolutionize decision-making. However, a per-
sistent issue hinders the widespread adoption of these tech-
nologies: the lack of interpretability. Farmers are hesitant to
trust systems that provide recommendations without clear
explanations, regardless of their accuracy.

Interpretability refers to the ease with which a human
user can understand the reasons behind a model’s pre-
dictions or decisions. In agriculture, this means providing

farmers with clear and comprehensible insights into why
a particular crop is recommended for cultivation. Trans-
parency, on the other hand, refers to the openness of
the model’s decision-making process, allowing users to
see how inputs (e.g., soil and climate data) contribute to
the model’s final recommendation. While both concepts
are related, transparency focuses on revealing the internal
workings of the model, while interpretability focuses on
making those workings easily understandable. Without such
concepts, even highly accurate systems face barriers to real-
world adoption, as farmers need more than just accurate
predictions.

Several studies have advanced the field of AI-based crop
selection. For instance, an Automated Crop Recommenda-
tion Model (ACRM) using Convolutional Neural Networks
(CNNs) has achieved high accuracy rates for wheat (98.2%),
maize (98.7%), and rice (98.1%) in Egypt [5]. The model
uses climate data to provide strategic crop recommenda-
tions. Despite the ACRM success in predictive performance,
CNNs are often perceived as ”black boxes” due to their
complexity, limiting user trust and understanding.

Similarly, a Random Forest-based crop selection system
for arid regions has achieved an impressive accuracy of
99.45%, outperforming algorithms like SVM, KNN, and
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Naı̈ve Bayes [6]. While Random Forest provides some
level of transparency through feature importance, it remains
insufficient for explaining detailed decision pathways. With-
out enhanced interpretability, even highly accurate systems
face barriers to real-world adoption, as farmers need more
than just accurate predictions.

Some studies have explored more transparent methods.
For instance, the system proposed in [7] integrates soil,
weather, and profitability data using logistic regression and
ARIMA for weather forecasting, providing a 94.24% accu-
racy in crop recommendations. Although logistic regression
offers greater transparency compared to complex models,
the study fell short of leveraging modern Explainable
AI (XAI) techniques that could further enhance decision-
making clarity, particularly in scenarios where clear justifi-
cations for recommendations are vital for adoption.

Furthermore, the integration of IoT data into a Random
Forest-based model showed promising adaptability with a
99% accuracy rate for real-time crop recommendations [8].
While the integration of IoT data adds real-time adaptability,
the absence of detailed interpretability in real-time systems
again limits their practicality in agricultural settings. An-
other ensemble-based approach combining Decision Trees,
KNN, and Random Forest achieved a notable 99.4% accu-
racy, but the complexity of the ensemble system undermines
its transparency, making it difficult for farmers to trust the
outputs [9].

In a related study, crop prediction using a machine
learning approach combined with IoT data was investigated,
focusing on a dataset of 2,200 instances covering 22 differ-
ent crops [10]. This study utilized models like multilayer
perceptron, JRip, and Decision Table classifiers in WEKA
to predict high-yield crops, with the multilayer perceptron
achieving a maximum accuracy of 98.23%. While the
model’s accuracy is high, the use of complex neural network
structures introduces interpretability challenges, particularly
for end-users such as farmers.

Moreover, another study proposed an ensemble-based
crop recommendation system that utilized Random For-
est (RF), Support Vector Machine (SVM), and K-Nearest
Neighbor (KNN), combined through a Voting Classifier
[11]. Using environmental data such as nitrogen, phospho-
rus, potassium, and rainfall, the model achieved a high
accuracy of 99.31%. Although effective, the system lacks a
focus on interpretability.

Finally, study [12] introduced a crop selection model
that integrates Long Short-Term Memory (LSTM) for
weather prediction and Random Forest for crop selection,
applied to a dataset from Telangana, India. LSTM achieved
solid performance with an RMSE of 5.02% for tempera-
ture and 8.24% for rainfall, while Random Forest showed
an accuracy of 97.23% in crop selection. However, this
sophisticated model also lacks interpretability, a recurring
challenge in AI for agriculture.

According to these studies, high accuracy is often pri-
oritized at the expense of interpretability, a critical factor
for building user trust. Studies have demonstrated the ef-
fectiveness of algorithms such as Random Forest, Voting
Classifiers, and Deep Reinforcement Learning (DRL) in
delivering high predictive accuracy. For instance, the Voting
Classifier achieved 99.31% accuracy in crop recommenda-
tions, and Random Forest reached 97.23%, outperforming
other models. Additionally, DRL models excel in adapt-
ability and precision, particularly in real-time decision-
making contexts. This lack of interpretability has practical
consequences: if farmers cannot grasp how or why decisions
are made by these AI systems, they may hesitate to adopt
them, despite their high accuracy.

Such a gap between predictive accuracy and model inter-
pretability represents a key shortcoming in existing research
and practice. Despite advances in AI, most models function
as opaque systems that fail to offer the interpretability
necessary for real-world decision-making in agriculture.
The absence of clear explanations for recommendations can
discourage farmers from using AI-based systems, no matter
how accurate they may be.

To face such limitations, our study proposes an inter-
pretable crop selection system that balances high accu-
racy with transparency. We utilize the AdaBoost classifier,
renowned for its capability to combine weak learners and
focus on misclassified instances, thereby ensuring robust
performance across diverse environmental conditions. More
importantly, we incorporate SHapley Additive Explanations
(SHAP) to provide clear, feature-level explanations for crop
recommendations. By detailing the contribution of features
like nitrogen, phosphorus, potassium, pH, temperature, hu-
midity, and rainfall, our system provides an understanding
of decision-making processes, fostering greater trust among
farmers.

By combining accuracy with interpretability, our ap-
proach addresses the dual challenges of performance and
transparency, empowering farmers to make informed, data-
driven decisions with confidence. This work contributes to
the field by providing a comprehensive system that meets
the practical needs of end users while advancing the current
research landscape on explainable AI in agriculture.

The paper is structured as follows: Section 2 delves into
the materials and methods employed in our study, detailing
the used data and outlining the specific implementation of
machine-learning techniques. Section 3 presents the results,
showcasing the system’s performance and key findings. As
well as, it depicts a comprehensive discussion of the ob-
tained results, exploring their implications and limitations.
Finally, Section 4 concludes the paper by summarizing the
key contributions and outlining future research directions.

2. Materials andMethods
Our study proposes an interpretable AdaBoost classifier-

based crop selection system aimed at achieving accurate
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Figure 1. The general architecture of the proposed system.

selection while providing farmers with clear explanations
of the decision-making process. The proposed approach,
outlined in Figure 1, consists of two main stages: offline and
online. The offline stage involves constructing the proposed
model, which includes data preprocessing, feature selection,
data augmentation, and training the AdaBoost classifier.
The online stage leverages the trained AdaBoost model
to provide farmers with real-time selection. Additionally,
SHAP is used to analyze the trained model, identifying how
specific climate and soil factors contribute to the selected
crop for each prediction. Thus, farmers will be provided
with clear and understandable explanations.

A. Data Sources and Exploratory Analysis
This study utilized a publicly available dataset retrieved

from Kaggle [13]. The dataset consists of 2,200 observa-
tions, with 100 observations for each of the 22 crops con-
sidered in the analysis. Each observation includes critical
parameters that are vital for effective crop selection, such as
nitrogen (N), phosphorus (P), potassium (K), temperature,
humidity, pH, and rainfall. These parameters are key for
determining crop suitability based on environmental and soil
conditions.

However, it is important to note certain limitations of
such a dataset. While it includes a variety of crops and
environmental data, it may not fully represent all possible
growing conditions. For example, the dataset does not
account for other potentially important factors, such as soil
type, crop diseases, or local pest pressures.

1) Univariate Analysis
Univariate analysis, as described by [14], examines

the characteristics and distribution of individual variables
within a dataset. By analyzing each variable separately,
we gain insights into its central tendency (average value),

spread (variability), and shape (distribution of values).
Figure 2 presents violin plots for key variables, visually
demonstrating the data distribution, including skewness and
spread.

Descriptive statistics provide a summary of the data
distribution, including:

• Quantile statistics: Minimum, maximum, and me-
dian values provide basic information about the data
spread.

• Descriptive statistics: Skewness, kurtosis, and stan-
dard deviation offer deeper insights:
◦ Skewness: Measures the asymmetry of a distri-

bution, indicating whether it leans to one side
(positive) or the other (negative).

◦ Kurtosis: Describes the shape of the distribu-
tion tails, indicating if they are peaked (more
extreme values), flat (fewer extreme values), or
similar to a normal distribution.

◦ Standard deviation: Measures the spread of
data points around the mean, indicating how
variable the data is.

Table I summarizes the quantile and descriptive statistics
for each variable.

• Median values: Analyzing median values alongside
minimum and maximum values helps understanding
the central tendency and potential concentration of
data points. For example, high median values close
to minimum values for N, P, and K suggest a higher
concentration of low values in these variables.

• Data dispersion: High standard deviation values for
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Figure 2. Violin plots illustrating the distribution of key variables in the dataset.

TABLE I. Descriptive statistics.

Features Min Max Median Standard Deviation Mean Skewness Kurtosis

N (mg/kg) 0 140 37 36.9 50.55 0.5 -1.05
P (mg/kg) 5 145 51 33.05 53.36 1.01 0.85
K (mg/kg) 5 205 32 50.6 48.14 2.4 4.4

Temperature (°C) 8.8 43.7 25.6 5.06 25.61 0.18 1.2
Humidity (%) 14.3 100 80.5 22.3 71.48 -1 0.3

pH 3.5 9.94 6.43 0.774 6.46 0.3 1.6
Rainfall (mm) 20 299 95 55 103.46 0.96 0.6

N, P, K, humidity, and rainfall indicate greater data
spread, while low values for temperature and pH
suggest that their data points are clustered closer to
the mean.

• Data symmetry: Positive skewness values for N, P,
K, and rainfall indicate right-skewed distributions.
The negative skewness for humidity indicates a left-
skewed distribution. The temperature and pH have
near-zero skewness, suggesting nearly symmetrical
distributions.

• Distribution shape: Kurtosis values close to 0 in-
dicate normal distributions, while values between 0
and 3 suggest heavy tails close to normal. A negative
kurtosis (N) indicates a short tail, while high values
(> 3) for K indicate a more peaked distribution.

Understanding the data distribution is crucial for iden-
tifying potential relationships and patterns within the data.
For example, the normal distributions of pH and tempera-
ture suggest their values are relatively independent of other
variables. Conversely, the skewed and dispersed distribu-
tions of other features might be linked to the diversity of
crops and potential outliers present in the data.

2) Bivariate Analysis
Bivariate analysis, as described by [14], explores the

relationships between two variables within a dataset. It
evaluates their correlation, which can be positive (variables
increase together), negative (one increases while the other
decreases), or zero (no linear relationship). Correlation
coefficients quantify the strength and direction of this re-
lationship.
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Figure 3. Correlation coefficients among variables.

Figure 3 presents a correlation matrix that visually
depicts the correlation coefficients between each pair of
variables. The results indicate a strong positive correlation
(0.74) between phosphorus (P) and potassium (K). This
suggests that higher levels of P in the soil are often
accompanied by higher levels of K, and vice versa. This
finding might be attributed to factors such as the application
of fertilizers containing both nutrients or the natural co-
occurrence of these elements in certain soil types.

Other pairs in the matrix exhibit weaker or negligible
correlations, suggesting less pronounced or absent linear
relationships between those variables. These findings can
inform further investigations into the factors influencing
crop growth and guide the development of targeted crop
selection strategies.

B. Data Preprocessing
The initial phase of our data preprocessing involves

mitigating missing data using median imputation [15]. This
method replaces missing values with the median value of
the corresponding feature, effectively filling the gaps in the
dataset.

Next, we address outliers by employing the z-score
technique [16] to identify and manage data points that
significantly deviate from the norm. Outlier management
techniques can involve removing outliers or transforming
them to reduce their influence on the analysis.

Following outlier management, we perform numerical
data normalization using a MinMax scaler [17]. This en-

sures that all numerical features are on a standardized
scale, typically between 0 and 1. Normalization improves
model convergence during training and often leads to better
performance.

Finally, we address categorical data, representing differ-
ent crop types. We use label encoding [18] to transform
them into numerical representations. This conversion facil-
itates the seamless integration of categorical features into
machine learning models for tasks such as prediction and
classification.

C. Data Augmentation
While our dataset contains 2,200 observations represent-

ing 22 different crop types, each class contains only 100
data points. This can hinder the effectiveness of machine
learning model training. To address this challenge, we
implemented data augmentation, a technique that artificially
expands the dataset size while preserving its inherent char-
acteristics.

Our augmentation strategy focused on increasing the
number of data points per class from 100 to 300. This
ensures a balanced representation of each crop type within
the dataset. Importantly, the augmentation process targeted
individual classes to avoid introducing biases or distorting
the overall data distribution. The following equation math-
ematically represents the augmentation process:

Raugmented = Noriginal + (Rtarget − Roriginal) ×C (1)



6 M’hamed Mancer, et al.

where:
Raugmented: Total number of rows in the augmented dataset
(6600 rows)
Noriginal: Original number of rows in the dataset before
augmentation (2200 rows)
Rtarget: Desired number of rows per class after augmentation
(300 rows)
Roriginal: Number of rows per class in the original dataset
before augmentation (100 rows)
C: Number of unique classes or crops (22 classes).

D. AdaBoost for Crop Selection
Crop selection tasks in agriculture often involve complex

datasets with numerous features representing climate, soil
characteristics, and other factors. AdaBoost, a powerful
ensemble learning algorithm, has demonstrated success in
handling such challenging classification tasks, making it
well-suited for our purposes [19], [20].

Our AdaBoost-based model leverages climate and soil
characteristics data to select suitable crops. The algorithm
builds a ”strong” classifier by iteratively combining multiple
”weak” classifiers. Each iteration focuses on data points
misclassified by previous iterations, assigning them higher
weights to guide the learning process. This approach leads
to a robust and accurate model for crop selection.

Let’s denote the dataset as D = (X,Y), where X
represents the N features and Y represents the target crop
labels. AdaBoost iteratively updates the weights wi assigned
to each data point (xi, yi) based on the model’s error at each
iteration t. Here, Gt(x) is the weak classifier at iteration t.
The final AdaBoost model is a weighted combination of
these weak learners:

F(x) =
T∑

t=1

αtGt(x) (2)

where F(x) is the final ”strong” classifier, αt is the
contribution weight of the weak classifier Gt(x), and T is
the total number of iterations.

This AdaBoost-based approach offers several advan-
tages. First, it effectively addresses high-dimensional data
with potentially nonlinear relationships. This is because
AdaBoost utilizes multiple weak learners, each capable of
capturing different aspects of the data, ultimately leading
to a more robust and flexible model. Second, AdaBoost
assembles multiple weak learners into a stronger and more
accurate classifier. By combining the predictions of individ-
ual learners, AdaBoost reduces the overall error rate and
improves the model’s ability to generalize to unseen data.

E. Implementation and Optimization
We developed the model using Python 3.7 in the Google

Colab environment. To achieve optimal performance, we
employed an iterative trial-and-error approach to fine-tune

various training options and model parameters. The con-
figuration of the chosen AdaBoost classifier includes the
following key parameters:

• n estimators = 50: The number of weak learners
contributing to the final prediction, allowing for a
robust ensemble.

• base estimator = RandomForestClassifier: The
tree-based model selected as the base learner, lever-
aging its strength in handling complex datasets.

• Learning rate = 0.001: This parameter controls the
influence of individual weak learners on the ensem-
ble’s overall output, balancing the trade-off between
model complexity and performance.

• random state = 0: This ensures the reproducibility
of results across different runs, allowing for consistent
evaluation and comparison.

To ensure the robustness of our model, the dataset was
split into a training set (80%) and a test set (20%). The
AdaBoost model was trained on the training data, while the
test set was utilized to evaluate the model’s performance.
Accuracy was measured on the test set to assess the model’s
ability to generalize to unseen data. We employed additional
metrics such as precision, recall, and F1-score to provide a
comprehensive evaluation of how well the model identifies
suitable crops while minimizing the selection of unsuitable
ones.

F. Interpretable Crop Selection with SHAP
Understanding the factors influencing crop selection is

crucial for both interpretability and building trust in the
model. To achieve that, we leverage SHapley Additive
ExPlanations (SHAP) [21], a powerful technique for ex-
plaining individual predictions made by complex models
such as our AdaBoost classifier. SHAP helps us identify
the key drivers behind each selection for a specific crop.

In the case of AdaBoost, which is an ensemble of
weak learners, SHAP values are computed by analyzing the
contribution of each feature across the ensemble. AdaBoost
assigns different weights to each weak learner, and SHAP
integrates these weighted contributions to explain the final
prediction. SHAP helps us understanding how the ensemble
model collectively arrives at a decision by assigning a
SHAP value to each feature, representing its contribution
to the predicted crop class.

SHAP values are computed by comparing the original
model’s prediction to predictions made on feature subsets,
akin to a cooperative game where each feature ”explains”
a portion of the prediction (Algorithm 1).
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Algorithm 1 Interpretable Crop Selection with SHAP

Require: Machine learning model f (AdaBoost), dataset
X, number of classes K (22 crops)

1: for k ← 1 to K do
2: explainerk ← Initialize SHAP explainer for class k
3: shap valuesk ← Compute SHAP values for X and

class k using Eq. (7)
4: Combine the shap valuesk with the existing

SHAP values (the specific method depends on li-
brary/framework)

5: end for
6: for k ← 1 to K do
7: Feature importancek ← Compute feature impor-

tance for class k using individual class SHAP values
8: end for
9: return f eature importancek ▷ Return interpretable

feature importance for each crop

For our model f predicting one of 22 crop classes for
a specific instance x, SHAP values are calculated using:

SHAP( f , xi, k) = ϕk ×
∑

S⊆F\{xi}

[
fk(xS ∪ {xi}) − fk(xS )

]
(3)

where:

• xi is an individual feature.

• k represents the specific crop class (1 to 22).

• S is a subset of features in the model ( f ) excluding
xi.

• fk denotes the model’s prediction for class k.

• f (xS ∪ {xi}) and f (xS ) are the model’s predictions
on instances containing only features in S with and
without xi, respectively.

• ϕk is the normalizing factor specific to class k, calcu-
lated similarly to the single-class case:

ϕk =
1
|F|!

∑
S⊆F

[ fk(xS ) − fk(∅)] (4)

SHAP values provide insights into the influence of
features on the predicted crop class. Here, how to interpret
them:

• Higher positive SHAP values: These features push
the prediction toward a specific crop class. In other
words, instances with higher values for these features
are more likely to be predicted as that specific crop.

• Lower negative values: These features push the
prediction away from that class. Conversely, instances

with higher values for these features are less likely to
be predicted as that specific crop.

• The magnitude of the SHAP value: This reflects
the relative importance of the feature in influencing
the selection. Larger absolute values (positive or neg-
ative) indicate a stronger influence on the predicted
crop class compared to features with smaller SHAP
values.

By analyzing SHAP values, we obtained valuable in-
sights into the factors driving crop selection. This allows
us to:

• Understand the rationale behind each prediction.

• Identify critical features influencing crop suitability
under different scenarios.

• Assess the model’s fairness and potential biases based
on feature contributions.

• Improve model interpretability and build trust in the
selection of stakeholders.

3. Results and Discussion
This section presents the findings of our study, evalu-

ating the proposed model’s performance for crop selection.
Moreover, we applied XAI methods such as SHAP to the
analysis output.

A. Evaluation of AdaBoost Performance
We evaluated the proposed model for crop selection,

focusing on both its efficiency and predictive ability. We
used key metrics such as accuracy, precision, recall, and F1
score to assess how well the model could make accurate
predictions.

Figure 4 depicts the AdaBoost Classifier’s accuracy and
error rate trends during training and testing. The error
rate steadily decreases from 0.06 to 0.003, indicating ef-
ficient learning. This improvement extends to the testing
error, decreased from 0.054 to 0.004, demonstrating strong
generalizability to unseen data. Conversely, both training
and testing accuracy increase from 0.95 and 0.945 to
nearly 0.998 and 0.999, respectively, signifying effective
misclassification minimization and high accuracy without
overfitting.

We evaluated the effectiveness of the AdaBoost classifier
for crop selection by comparing it to several other models
(SVM, DT, KNN, XGBoost, LightGBM, and Bagging).
Table II and Figure 5 present this comparison.

AdaBoost achieved the highest accuracy (99.77%), sur-
passing other models by up to 0.46%, such as Bagging
(99.54%) and XGBoost (99.31%). The Precision, Recall,
and F1-score metrics all achieve perfect scores of 100%,
indicating AdaBoost’s ability to identify positive instances
while accurately minimizing false positives.
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Figure 4. AdaBoost Classifier: Accuracy and Error Rate Trends.

TABLE II. Comparative Analysis of Performance Metrics Across Various Models.

Models Correctly
instances

Incorrectly
instances Accuracy (%) Precision (%) Recall (%) F1 score (%) Fit time (s)

SVM 1308 12 99.09 99 99 99 0.07
KNN 1299 21 98.41 99 98 98 0.003
DT 1299 21 98.41 98 98 98 0.037

Bagging 1314 6 99.54 100 100 100 9.7
XGB 1311 9 99.31 99 99 99 12.3
LGB 1305 15 98.86 99 99 99 4.5

AdaBoost 1317 3 99.77 100 100 100 0.57

AdaBoost had the lowest number of misclassified in-
stances (3) compared to the other models (Table II).
Moreover, AdaBoost exhibits commendable computational
efficiency, boasting a fit time of 0.57 seconds (Table II),
making it highly practical for crop selection applications.

The confusion matrix (Figure 6) provides an overview of
the model’s classification performance across all 22 crops.
For the majority of crops, the model demonstrates near-
perfect classification. However, there are a few notable
exceptions where the model struggles slightly.

• Rice vs. Jute: There is a minor misclassification
between these two crops, with one instance of ”Rice”
being misclassified as ”Jute.” This suggests a potential
overlap in feature space or similarities in environmen-
tal factors that affect the two crops, leading the model
to occasionally confuse them.

• Blackgram vs. Mothbeans: Another instance of
misclassification is seen between ”Blackgram” and
”Mothbeans.” This can likely be attributed to sim-
ilarities in the crops’ growing conditions, as they

share common environmental parameters, such as soil
nutrient requirements or climate preferences.

Overall, the AdaBoost classifier maintains strong per-
formance across all crops, with minimal misclassifications.
The false positive rate (FPR) is effectively 0 for most crops,
indicating the model’s reliability in avoiding the incorrect
classification of non-suitable crops as suitable.

These results settle AdaBoost as a strong candidate for
real-world crop selection, especially in Tationally limited
settings, due to its exceptional accuracy and efficiency

B. SHAP Values: Interpretable Crop Selection
Understanding which features in our proposed model

contribute most to its predictions is crucial. Adaboost fea-
ture importance utilizes a permutation technique to assess
the impact of individual features. However, it can be suscep-
tible to biases. When features are highly correlated (e.g., “P”
and “K” with a correlation of 0.74), their importance might
be overestimated or underestimated, leading to potentially
misleading results. Additionally, it does not capture the
direction and magnitude of a feature’s influence, meaning



International Journal of Computing and Digital Systems 9

Figure 5. Comparative Analysis of Performance Metrics Across Various Models.

Figure 6. Confusion matrix visualization for AdaBoost classifier.

it cannot distinguish between features with positive or
negative contributions.

SHAP values address these limitations by employing
a game theory approach to calculate a feature’s specific
contribution to a prediction. This allows SHAP to:

• Account for dependencies between features, provid-
ing a more accurate picture of individual importance.

• Capture the direction and magnitude of influence,
revealing whether a feature has a positive or negative
impact on the prediction and its relative strength.
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Figure 7. Feature Importance Analysis using Permutation Technique.

Figure 7 and Figure 8 visually represent the differences
between the methods. We observe discrepancies in the
ranking of features, highlighting the potential biases of
feature importance. For example, the strong correlation
between ”P” and ”K” might inflate their importance in the
feature importance plot.

SHAP values allow us to interpret the contribution of
each feature to the model’s predictions. For instance, as
shown in Figure 8, ”humidity” emerges as the most influen-
tial feature across the dataset, followed closely by ”nitrogen
(N)” and ”potassium (K).” These features directly affect the
model’s predictions for crop suitability. However, the impact
of features varies significantly between different crops. For
example, ”rainfall” plays a crucial role in predicting the
suitability of crops like rice and pigeon peas, while it has
minimal impact on crops such as kidney beans. Likewise,
”humidity” has a stronger influence on mungbean peas but
is less significant for watermelon.

To provide a more concrete example, we conducted
SHAP analysis on four selected crops: rice, maize, chick-
pea, and banana. Figure 9 and Figure 10 present SHAP

summary plots for these crops, illustrating how the impor-
tance of features differs between them. This analysis high-
lights the interpretability benefits of SHAP, as it helps us
understanding which factors drive the model’s decisions for
each crop. Through these visual examples, we demonstrate
the varying influence of environmental features, reinforcing
the transparency of our model’s predictions.

Crop Specific Interpretations:

• Rice: Rainfall is the most important factor for rice
selection, with a strong positive SHAP value. This
translates to areas receiving more rainfall being more
suitable for rice cultivation due to their water inten-
sive nature. Conversely, low rainfall regions might be
discouraged by the model due to insufficient water
availability, potentially leading to poor crop growth
and yield. However nitrogen also has a positive
influence, it plays a less significant influence than
rainfall. Adequate nitrogen levels are still crucial for
rice growth, and soils lacking nitrogen might not be
suitable for rice planting. Humidity exhibits a positive
influence, suggesting that humid environments gener-



International Journal of Computing and Digital Systems 11

Figure 8. Feature Importance Analysis using SHAP.

ally favor rice growth. However, high humidity can
become detrimental, potentially increasing the risk of
disease outbreaks.

• Maize: Similar to rice, nitrogen plays a crucial role
in maize selection, with a positive SHAP value.
Low nitrogen levels could negatively impact maize
yield and quality, potentially leading the model to
discourage maize cultivation in such areas. While the
influence of humidity is weaker than that of rice, it
still exhibits a positive influence on maize selection,
suggesting that maize can tolerate a wider range of
humidity levels than rice. However, excessively high
humidity can still be detrimental. Adequate potassium
availability is also crucial for maize, as indicated
by the positive SHAP value. Low potassium levels
could hinder maize growth and development. Rain-
fall generally has a positive influence on the model
selection, similar to rice. However, excessively high
rainfall can also be detrimental, potentially leading to
waterlogging and reduced crop yield.

• Chickpea: The SHAP plot reveals a positive influ-
ence of humidity on chickpea selection. This sug-
gests that moderate humidity levels are suitable for
chickpea growth. However, excessively high humid-
ity can still be detrimental, similar to the other
crops discussed. Potassium emerges as another crucial
factor, with a positive SHAP value indicating the
importance of adequate potassium availability for
optimal chickpea growth and yield. While nitrogen,
temperature, rainfall, and pH also have positive SHAP
values, their influence is less significant compared to

potassium. Insufficient levels or unsuitable values of
these features could still negatively impact chickpea
growth and yield.

• Banana: The SHAP plot reveals a positive influence
of nitrogen on banana selection, highlighting the im-
portance of sufficient nitrogen availability for banana
growth and fruit production. However, excessively
high nitrogen levels could also be detrimental, po-
tentially leading to issues such as compromised fruit
quality or increased disease susceptibility. Both potas-
sium and phosphorus exhibit positive SHAP values,
indicating that adequate levels of these nutrients are
also important for banana selection. Rainfall had a
slightly positive influence, suggesting that moderate
rainfall is beneficial for banana cultivation. However,
excessively high or low rainfall can be detrimental,
potentially leading to waterlogging or drought stress,
respectively.

Our approach underscores the significance of both ac-
curacy and explainability in crop selection systems. By
integrating SHAP values, we not only enhance the pre-
dictive capability but also offer transparent insights into
the features that steer the model’s decisions for various
crops. This transparency provides farmers and agricultural
professionals with a deeper understanding of the decision-
making process, fostering trust and potentially catalyzing
broader adoption of these AI-powered tools.

C. Discussion
The agricultural sector is increasingly turning to ma-

chine learning to make use of its analytical power. These
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Figure 9. Feature Importance for Rice, Maize, Chickpea, and Banana Selection.

algorithms excel at processing complex datasets, uncover-
ing insights that traditional statistical methods struggle to
perceive. Our study aimed to develop a highly accurate
and interpretable crop selection model, leveraging the Ad-
aBoost algorithm to minimize false positives and optimize
prediction accuracy. This dual emphasis on accuracy and
interpretability sets our work apart from previous studies,
offering farmers valuable insights alongside reliable crop
selection.

Accurate crop selection relies heavily on understanding
the intricate interplay of climate and soil characteristics. Our
model was evaluated on a diverse dataset encompassing 22
crops. Rigorous data cleaning addressed missing values and
outliers, followed by a crucial feature selection step. By
employing correlation coefficients, we identified the most
influential factors for model training, focusing our attention
on the most relevant information to enhance performance.

Our AdaBoost model achieved outstanding results:
99.77% accuracy, 100% precision, recall, and F1-score.
This represents a significant improvement over existing
models. For example, while ACRM achieved high accuracy
for specific Egyptian crops (98.7% for maize and 98.1%
for rice) [5], others such as random forest (99.45%) [6]
and an IoT-based framework (99%) [8] displayed lower

performance. These enhancements translate to tangible ben-
efits for farmers, with minimized false positives leading to
more reliable predictions and ultimately, better decision-
making. In the context of crop selection, the significance
of minimizing false positives cannot be overstated, as any
misclassification poses substantial risks and potential losses
for farmers.

In time-sensitive agricultural scenarios, model efficiency
is equally crucial. Our AdaBoost model boasts a rapid
training time of 0.57 seconds. This efficiency translates to
optimized resource utilization, making AdaBoost a com-
pelling choice for real-time decision support. Faster training
times pave the way for practical applications, empowering
farmers with quicker and more efficient decision-making
tools.

Bridging the gap between model predictions and ac-
tionable insights for farmers is essential. We utilize SHAP
values, a powerful interpretability technique, to determine
how climate and soil factors influence crop selection. Our
analysis reveals humidity as the most influential factor,
underscoring its substantial impact on model predictions.
This aligns with established agricultural knowledge, as hu-
midity significantly affects plant health, water use efficiency,
and overall productivity. Understanding this key driver
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Figure 10. Decision Plot for Rice, Maize, Chickpea, and Banana Selection.

empowers farmers to optimize irrigation strategies based
on expected rainfall and humidity levels, or adjust planting
schedules accordingly. Nitrogen (N) follows closely as
a crucial factor, highlighting its importance for various
plant processes such as photosynthesis and protein syn-
thesis. Potassium (K) emerges as another significant factor
impacting various plant functions. A moderate influence
is observed for rainfall, emphasizing the importance of
adequate soil moisture management. Additionally, temper-
ature and pH have a moderate influence, playing a role in
the model’s decision-making process by affecting nutrient
availability and diverse plant functions. These SHAP results
not only aid in comprehending our model’s decision-making
process but also offer valuable insights into crop selection.
They enhance the interpretability and understanding of the
model’s predictions for stakeholders and farmers alike. By
demystifying the model’s inner workings, farmers can grasp
its reasoning and feel more confident in its selection. This
transparency builds trust and encourages wider adoption of
AI in agriculture, ultimately leading to the development of
even more interpretable and effective AI models for diverse
agricultural applications.

The system’s interface incorporates SHAP explanations,
presented to users through intuitive visual plots. These
SHAP plots help users understand how key features such as
nitrogen levels, rainfall, and humidity impact crop selection

decisions. For instance, a farmer can easily visualize how
the model weighs the significance of ”rainfall” when rec-
ommending a crop like rice, or how ”humidity” influences
the choice of mung beans. This visual approach effectively
bridges the gap between the model’s complex internal
decision-making process and the farmer’s ability to interpret
and trust the system’s recommendations.

While the SHAP-based explanations are designed to
enhance interpretability, it is essential to acknowledge the
system’s current limitations. The dataset used may not fully
capture the diversity of regional variations or the full range
of crop types. Additionally, although the SHAP visualiza-
tions provide insight into the model’s reasoning, a formal
usability study is required to assess their practical impact.
Such a study would involve testing with a diverse group of
farmers, evaluating how well they interact with the system,
how clearly they understand the SHAP-based explanations,
and how much they trust the recommendations. This study
will focus on gathering feedback on the clarity of SHAP
plots, ease of use, and farmers’ grasp of how model features
relate to outcomes. Insights from this testing will be crucial
for refining the system in future iterations to better meet the
practical needs and expectations of farmers.

4. Conclusions
In conclusion, this research underscores the effectiveness

of interpretable machine learning in developing highly
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accurate and efficient crop selection systems. By leveraging
the AdaBoost algorithm, our system achieved an impressive
99.77% accuracy and a rapid fit time, rendering it suitable
for real-time decision support in agriculture. By minimizing
false positives and enhancing predictive capabilities, this
system significantly mitigated financial risks for farmers
and enhanced their decision-making processes. Moreover,
the incorporation of SHAP values provided invaluable
insights into the model’s reasoning, allowing farmers to
comprehend how climate and soil factors influence crop
selection. Notably, humidity emerged as the most critical
factor, emphasizing the significance of considering water
availability in crop selection decisions.

While this research work primarily focused on a specific
dataset and model, it lays the groundwork for further
research exploring diverse data sources, advanced inter-
pretability techniques, and user-friendly decision support
tools. By combining high accuracy, interpretability, and
efficiency, this approach heralds the advent of AI-powered
tools that empower farmers and contribute to sustainable
agricultural practices.
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