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Abstract: Embedded systems and smartphones are vital in real-time applications, inspiring our interaction with technology. Smartphones
possess various sensors like accelerometers, gyroscopes, and magnetometers. Deep Learning (DL) models enhance the capabilities of
sensors, enabling them to perform real-time analysis and decision-making with accuracy and speed. This study demonstrates an intelligent
system that detects smartphone movements using deep learning (DL) techniques such as convolutional neural networks (CNN) and
stacked autoencoders(SAEs). The dataset has six smartphone movements, with 921 samples split into 695 for training and 226 for testing.
The best training performance was achieved by Auto-Encoder 1 and Auto-Encoder 2. The SAEs had high classification accuracy (CA) and
AUC values of 0.996 and 1.0, respectively. Similarly, CNN performed well with CA and AUC values of 0.991 and 0.998. These results
show that CNN and SAEs are effective in identifying smartphone movements. The findings help improve smartphone apps and understand
how well they can identify movement. The study indicates that CNN and SAE are influential in accurately identifying smartphone
movements. Future research can improve motion detection by integrating more sensor data and advanced models. Using advanced
deep learning architectures like RNNs or transformers can enhance the understanding and accuracy of predicting smartphone movements.
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1. INTRODUCTION
Smartphones are ubiquitous and have many features [1].

They have accelerometers, gyroscopes, and magnetometers
that track movement and orientation. By using DL models,
we can create intelligent apps to analyze this sensor data
(SD) in real-time and make decisions. The ”Intelligent
Smart Phone Movement Identification Embedded System”
is a system that uses smartphone sensors to recognize
and classify smartphone movements accurately. It uses
advanced DL models to analyze the SD and detect user
movements. The system uses the smartphone’s magne-
tometer, gyroscope, and accelerometer to record precise
motion data in real-time. It relies on real-time embedded
systems to process the SD quickly and efficiently. The
system has sensor interfaces, data acquisition modules,
processing units, and decision-making algorithms. These
components work together to read the SD and interpret the
movements. The sensors continuously record the phone’s
orientation, acceleration, and angular velocity, providing
much data to understand how the user moves. Once the

movements are identified, the embedded system can act or
give feedback to the user or other apps on the smartphone
[2] [3]. DL models are used in this system to process and
understand SD. These algorithms learn and detect various
movements using a vast quantity of labeled data. The system
can identify smartphone gestures such as clock and anti-
clock cycles, up-down, left-right, wave or snake cycles,
and idle mode. It accurately distinguishes these movements
and provides real-time feedback on smartphone movements.
This system has many benefits, including tracking physical
activities without wearable devices [4]. It eliminates the
need for bulky accessories and improves user convenience.
The medical and fitness industries use these systems that
monitor physical activity patterns and assist people in
becoming more fit. It combines DL with smartphones to
accurately identify and analyze movement. The research
addresses smartphone movement identification challenges
and proposes an intelligent solution using embedded DL
models. The paper will review existing literature, discuss
advancements and limitations, and present the proposed
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model and materials used for experimentation. The paper’s
remaining sections are described as

• The literature review thoroughly examines previous
research and publications on smartphone movement
identification and embedded DL models. Researchers’
methods, algorithms, and techniques will be discussed
in this. The review identifies literature gaps, chal-
lenges, and opportunities to form our model.

• Proposed Model and Materials: We present our
intelligent smartphone movement identification model
using embedded DL. Our model’s training method
is architecture and network design. The dataset, pre-
processing methods, and hardware and software re-
quirements for our experiments will also be discussed.

• The experimental results of our model are shown in
the results and discussion sections. We evaluated
our approaches using performance metrics like F1
score, accuracy, precision, and recall. By comparing
our findings to methods reviewed in the literature,
we can identify the strengths and weaknesses of our
model. We will provide a detailed explanation of the
reasons behind the results.

• Conclusion: We summarize our intelligent smart-
phone movement identification research using em-
bedded DL models. We emphasize the importance
of our approach and its potential impact on field
applications. Our findings, limitations, and future
research will be discussed.

2. LITERATURE REVIEW
Smartphone technology has improved and now allows

for new uses in recognizing human activities and healthcare
applications. Researchers Huang et al. [5] have suggested
using a cell phone dongle for blood lipid testing. The
dongle has shown promising results, with high correlation
coefficients (0.903) and low variation (4.575%). It indi-
cates that the dongle is accurate and reliable, considering
it a useful tool for cholesterol monitoring in the future.
Johnson et al. [6] have developed an algorithm that can
automatically detect whether a smartphone is used by the
driver or passenger in a moving vehicle. This technology
can help prevent distracted driving, especially for iPhones
and other smartphones that currently cannot differentiate
between driver and passenger usage. Masud et al. [7] have
introduced a smartphone-based approach to assess depres-
sion levels by monitoring daily activities. This method
is cost-effective and non-intrusive and has achieved high
accuracy (87.2%) in identifying severe depression cases. It
offers a promising way to assess and monitor depression,
providing timely intervention and support for individuals
with mental health disorders. Qi et al. [8] proposed a
smartphone-based human (HAR) activity recognition and
automatic labelling framework. This framework uses sig-
nals from Microsoft Kinect cameras and smartphones to

label everyday tasks accurately. Compared to other mod-
els, their methodology and algorithm perform better in
accuracy assessment. Researchers studied and discussed a
method called DL-based sensor-based activity recognition.
They also proposed a FL-PMI technique to Enhancing
Efficiency and Accuracy of intelligent healthcare systems.
Wang et al. [9] performed a survey of DL for sensor-
based movement identification. They researched recent ad-
vancements, challenges, and potential solutions in DL-
based motion identification. The survey discussed sensor
modality, deep models, and applications in detail. It also
provided insights into the factors contributing to improved
performance in DL models. Arikumar et al. [10] introduced
an approach known as FL-PMI, which combines deep
(DRL) reinforcement learning, federated (FL) learning,
and Bi-LSTM. Their method achieved high accuracy and
addressed computational costs, memory usage, and data
transmission challenges in intelligent healthcare systems.
It improved efficiency, reduced resource requirements, and
decreased data transmission by 36.73%. The FL-PMI out-
performed other systems in accuracy, precision, F1-score,
and recall, demonstrating its effectiveness in sensor-based
Motion Identification. Liu et al. [11] presented a security
mechanism using channel state information to detect rogue
Wi-Fi devices. Their mechanism achieved a high accuracy
of 96% in detecting rogue connections and had a low false
alarm rate. It was also eight times faster than existing
solutions regarding detection speed. This research enhances
security and mitigates vulnerabilities in Wi-Fi networks,
WLAN, and IoT environments. The study [12] addressed
vulnerabilities in biometric-based authentication methods
by introducing Lip Pass, a lip-reading-based authentication
system. Their DL approach, combined with Doppler profiles
and smartphone acoustic sensing, achieved high accuracy
rates in user identification and spoofed detection. Lip-
reading-based authentication can enhance privacy protection
on mobile devices and is resilient to ambient environmental
factors. Recent research has focused on how to use DL
techniques, like CNNs, to make systems more accurate
and efficient. Table I summarizes research on smartphone
sensor data (SSD) for HAR using different ML and DL
models. Studies focus on dataset size, sensor types, model
architecture, and performance metrics.

Ponciano et al. [20] have created a way utilizing smart-
phones and sensors to measure and analyze the timed-up
and going test parameters. This method makes it easier
to collect and process data, which can be used to group
test results and identify patterns related to balance changes,
neurological disorders, and other conditions. The proposed
architecture shows promise for comprehensive analysis and
assessment in physiotherapy. The study [21] proposed a
deep neural network architecture for HAR that encodes SD
as images and uses computer vision (CV) techniques. This
method performs better than other methods in terms of F1-
value and accuracy rate by using fusion residual networks
and different layers of deep residual networks. Testing on
various datasets supports the idea that this method can
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TABLE I. Key Studies of the Existing Research Works On Smart-Phone Sensor Data

Ref.
No.

Author
& Year

Aim and Description Results and Models Analysis

[13] Jiang et
al.

The study utilizes a smartphone-based HAR system,
utilizing CNN, to investigate the correlation between
health issues and six physical activities.

The CNN achieved a recognition accuracy
of 97.5% for a UCI HAR dataset.

[14] Zhou et
al.

study developed a smartphone-based HAR using
CNN, synthesizing a 6 GB sensor dataset from
various smartphone accelerometers, magnetometers,
gyroscopes, and barometers.

CNN achieved 97.5% accuracy, while J48
achieved 95.5% accuracy.

[15] Ravi et
al.

The proposed DL approach utilizes SD analytics
on wearable or mobile devices for efficient on-
node processing, utilizing CNN models on diverse
datasets.

Active-Miles achieved a 95.7% accuracy
rate, WISDM v1.1-98.6%, WISDM v2.0-
92.7%, Skoda-95.3%, and DaphnetFoG-
95.8% for each dataset.

[16] Zebin et
al.

The study assessed the DL system’s execution time
and memory HAR system on affordable smartphone
gadgets, focusing on developing a CNN for HAR
tasks.

The proposed CNN model demonstrated a
remarkable accuracy (96.4%) in a five-class
dynamic and static activity identification
setup.

[17] Qi et al. The authors developed a novel FR-DCNN model for
HAR, utilizing smartphones, ISP algorithms, and an
SS module to improve the effectiveness and extend
the entropy of IMU sensors’ raw data.

The FR-DCNN model demonstrated a re-
markable prediction time of 0.0029 seconds
with a 95.27% accuracy for HAR.

[18] Xia et
al.

The authors developed a DNN that integrates CLs
and LSTM for automatic feature extraction and
classification of activity data, resulting in significant
enhancements.

The model demonstrated high accuracy on
three public datasets, with 95.78% accu-
racy on UCI-HAR, 95.85% accuracy on
WISDM, and 92.63% accuracy on oppor-
tunity.

[19] Ye et al. The authors explored the performance limits of
combining two-stream and recurrent neural net-
works, highlighting spatial structure and appropriate
fusion methods, and proposing ConvLSTM net-
works with two-stream ConvNet.

The proposed method achieves an accuracy
rate of 69.4% on HMDB51 and 93.9% on
UCF101 datasets, demonstrating its effec-
tiveness in activity recognition tasks.

help make data-driven decisions for HAR. The comparative
analysis of fusion layers using a specific dataset shows
that the Conv3 fusion layer performed the best with high
accuracy. Dasgupta et al. [22] studied how economic and
healthcare factors in US counties were related and how
social distancing measures affected people’s movement.
They used data from mobile devices to analyze this. The
study found that places with stay-at-home orders signif-
icantly decreased movement than places without orders.
This showed that some people had more privilege to stay
home than others. The study shows that social distancing is
essential in addressing inequalities during health crises like
COVID-19. Auto-encoders are models that can learn from
data without supervision. They can be used for tasks like
reducing dimensions, detecting anomalies, and extracting
features. They are good at finding patterns in data. They
can be used to detect human activities using SSD. A study
by Alo et al. [23] showed that their deep-stacked auto-
encoder algorithm, along with features that don’t change
with orientation, can accurately identify complex human
activities with a high level of accuracy. This is better
than traditional ML methods and deep belief networks.
This approach can be helpful for health monitoring, fall

detection, and emotion detection. Another study by Gar-
cia et al. [24] proposed a multi-class approach for HAR
based on an auto-encoder ensembling model. The findings
suggested that this strategy is more successful than other
approaches. The group of autonomous auto-encoders had a
higher accuracy in comparison to other models like EkVN.
The autonomous auto-encoders also outperformed EkVN
regarding user accuracy, showing better performance in
most users. However, different models like JiangYin and
Haetal slightly outperformed the autonomous auto-encoders
and EkVN regarding average accuracy. Wu et al. [25]
emphasized the importance of road surface maintenance
and proposed an automatic pothole detection system using
smartphone vibration sensors.

Researchers Hasanuzzaman et al. [26] have studied DL
-based HAR systems in wearable devices and smartphones.
They found that these systems have unique features, ad-
vantages, and limitations. One study [26] focused on the
transpiration influences on the flow of a vertical, shallow
body’s boundaries in natural convection. They used nu-
merical analysis to understand the impact of parameters
on fluid dynamics and heat transfer. Another study [27]
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reviewed DNN methodologies for automatic feature extrac-
tion in HAR. They discussed the implementation, design,
advantages, and disadvantages of these methodologies, as
well as their performance evaluation. The study also high-
lighted challenges and discussed various DL functionalities
used in sensor-based recognition systems for wearables
and smartphones, providing insights into their uniqueness,
advantages, and limitations. In a study by Rana et al.[28], a
system was developed to monitor and assess the roughness
of road surfaces using vehicle dynamics and smartphones.
This system aims to improve road maintenance and driving
conditions. Kołakowska et al. [29] reviewed several iden-
tifications of emotion techniques using SSD data. Their
analysis provides insights into advancements, challenges,
and potential applications in the field of emotion detection
in mobile computing. Nooruddin et al. [30] reviewed fall
detection systems to help keep older adults and those prone
to falls safe. They discussed various sensors, algorithms,
and techniques, along with the challenges and future direc-
tions in the field. Straczkiewicz et al. [31] systematically
reviewed smartphone-based HAR for healthcare purposes.
They analyzed the existing literature and highlighted these
methods’ strengths, limitations, and potential applications
in monitoring and analyzing HAR.

3. MODELS AND MATERIALS
The proposed ML models for identifying alcohol con-

sumers using a vowelized voice dataset can be implemented
using a pre-processed vowelized voice dataset. In the pre-
processing, we remove noise and normalize the audio levels.
The pre-processed data is split into training and testing
sets. The training set is used to train the model, while
the testing set is used to evaluate the model’s performance.
For this, we use 10-fold cross-validation. We chose some
suitable machine-learning algorithms for this task. The cho-
sen algorithms are k-NN, C4.5, SVM, and Random Forest
algorithms, as well as NNs. The selected ML algorithm
is trained on the training set using the extracted voice
features. The model’s performance is evaluated using ac-
curacy, precision, recall, and F1-score metrics. A collection
of voice recordings of people pronouncing different vowels.
The dataset should include both alcohol consumers and non-
alcohol consumers.

A. Proposal Model
The proposed model in Figure 1 is for a Smart Phone

Moment Identification System. The research aims to collect
movement data from smartphones using embedded sensors.
The data is collected using embedded systems connected to
a computer and stored for easy access. The data undergoes
preprocessing steps to improve its quality. The preprocessed
data is then divided into training and testing sets. Stacked
Auto-Encoders and CNN models are used to learn patterns
from the data. The models are fine-tuned to improve their
performance. Finally, the models are compared and tested
to accurately predict and classify smartphone movement
patterns, which can be used in activity recognition and
related applications.

B. Data Collection and Dataset Description
Figure 2 shows the SSD analysis’s Data Collection,

Expansion, and Data storage processes. Smartphones’ em-
bedded systems (ES) acquire data from built-in sensors
like magnetometers, accelerometers, gyroscopes, and GPS
receivers. These sensors continuously measure the smart-
phone’s position, orientation, velocity, and acceleration. The
ES transmits the acquired SD of the smartphone to the com-
puter system. We can achieve this by using either wired or
wireless communication protocols like USB, Bluetooth, or
Wi-Fi. Computer systems like laptops, Desktops, or servers
receive the SD transmitted by the smartphone’s embedded
system. It establishes a connection with the smartphone
and prepares to process the received data. The computer
system processes the received data from a sensor to derive
meaningful information about the smartphone’s movement.
The computer system uses algorithms and software appli-
cations to interpret the SD and extract relevant motion-
related parameters. The system analyses the smartphone’s
movement patterns using the processed SD. It can generate
visualizations, graphs, or reports that provide insights into
the smartphone’s motion behavior over time. This analysis
can be helpful for research, diagnostics, or monitoring
purposes.

The computer system integrates the analyzed motion
data with various applications or software systems. It can
provide input to virtual or augmented reality applications,
where the smartphone’s movement influences the displayed
content or virtual interactions. The computer system can
synchronize the processed motion data with other devices or
platforms. Based on the analyzed data, it can send feedback
or commands back to the smartphone. For instance, it
can trigger notifications, adjust settings, or control other
connected devices based on the smartphone’s movement.
The computer system can store the processed motion data
for further analysis or historical reference. It can perform
advanced data analytics, pattern recognition, or ML tech-
niques based on the data provided to gain insights or
improve future motion-related algorithms. Figure 3 displays
the six types of motions of the smartphone sensor signals
in detail: clockwise motion (Figure 3 (A)), Anti-clockwise
motion (Figure 3 (B)), Idle, and so on (Figure 3 (C, D,
E, F)). Table II describes signal form descriptions for
different movement patterns, including clockwise circular,
anticlockwise circular, idle, left and proper, right forms, up
and down, inactive forms, and snake or wave movement.
The total samples for each available class code range from
82 to 160, indicating the overall size of the dataset for
each specific movement pattern. Training samples provide
necessary data to teach the model about the characteristics
and patterns associated with each movement class, with
varying numbers for each class. Testing samples analyze the
task’s performance and generalization ability of the trained
models or algorithms, providing a benchmark for assessing
how well the model can classify or predict movement
patterns. The number of testing samples varies, ranging
from 20 to 48 for different movement classes.
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Figure 1. Proposal Model of Smart Phone Moment Identification System

Figure 2. Figure 1. Smartphone Sensor Data analysis: Data Collec-
tion, Expansion, and Data storage processes

C. CNN Architecture
Figure 4 shows the user-defined CNN model. This

simple CNN architecture takes a 625x3 as input and applies
layers with complete connections, pooling, and convolution
to learn and classify the source data into among the six
categories.

DataInputLayer: This layer specifies the input data
shape as [625 3 1], demonstrating that the input consists
of 625x3 sensor 3-axis data. Convolution2DLayer: This
layer adds Sixteen 5x5 filters to the supplied image. The
filters learn the incoming data’s spatial properties[32]. Re-
LULayer: The O/P of the layer that came before it is
applied element-by-element by this layer using the Rectified
(ReLU) Linear unit function of activation. ReLU brings
nonlinearity into the framework of networks.
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TABLE II. Smart Phone Sensor Signal Dataset Description

Class (Code) Smartphone Sensor Signal Form Description Total
Samples

Training
Samples

Testing
Samples

CCM (1) Clockwise Circular Sensor Signal Movement 127 96 32
ACM (2) Anti-Clockwise Circular Sensor Signal Movement 92 72 20
IDM (3) Idle or No Sensor Signal Movement 167 127 40
LRM (4) Left and Right Sensor Signal Movement 177 132 45
UDM (5) Up and Down Sensor Signal Movement 171 129 43
WAM (6) Snake or Wave Sensor Signal Movement 187 139 48
Total Six Types of Movements 921 695 226

Figure 3. Smartphone Signals for all Movement Classes

MaxPooling2DLayer: This layer uses max pooling that
has a 2x2 stride to reduce the spatial dimensions of the maps
of features by a ratio of two. It helps capture the most salient
features while reducing computational complexity[33].

FullyConnectedLayers: This layer consists of 120 neu-
rons and is fully connected to the previous layer. It learns
higher-level features by combining the extracted spatial
features. This layer consists of 6 neurons, representing the
number of classes in the classification task. It maps the
learned features to the respective courses.

SoftmaxLayer: The softmax activation (SAF) function
is used in this layer to normalize the previous layer’sO/Ps
into probability values. It provides the final predicted prob-
abilities for each class.

ClassificationOutputLayer: This layer computes the
loss and performs the classification based on the predicted
probabilities and the ground truth labels. The I/P of the
(8-layer) CNN model is the SSD in four dimensions. The
total training samples are 695, with each sample size [625
3] having one channel. The first layer of the Data Input
specifies the input data shape as [625 3 1], demonstrating
that the input consists of 625x3 sensor 3-axis data. In the
Convolution2D Layer, let X be the layer of I/P, combining
Batch Size, Width, Height, and Channels. Let ‘W’ be the
weight tensor of the shape of combinations of FilterWidth,
Filter-Height, InputChannels, and O/P Channels. Let b
represent the bias vector that shapes the O/P channels. The
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Figure 4. 8-Layer CNN simple Model for Smart-Phone Sensor Data
Analysis

feature map Y is described as

Y[i, j, k] = ReLU

∑
m,n,p

(X[m, n, p] ×W[i, j, p, k])

 (1)

Where ‘m’ in range (filter-width), for ‘n’ in range (filter-
Height), for ‘p’ in range (input-channels, (input-channels)+
b[k]). ReLU Layer: Let X is I/P Layer. The O/P Y is
computed as Eq. (2).

Y = max(0, X) (2)

Maxpooling2DLayer: Let X is layer of I/P, with shape
(batch size, width, height, channels). The pool’s size should
reflect the dimensions of the pooling window (width,
height). Let stride be the stride parameter used in the
pooling procedure. O/P feature map Y is calculated as Eq.
(3).

Y[i, j, k] = max(X[m, n, k]) (3)

Where ’m’ is in Range(istride,istride + pool size[0]) range
for n in range (jstride, jstride + pool size[1])) Connected
Layer: With shape (BatchSize, InputSize), let X serve as
the input to the layer. Shape’s weight matrix (InputSize,
OutputSize) can be represented by W. Shape’s bias vector
(OutputSize), let b be. The result, Y, is calculated as

Y[i, j, k] = ReLU(X ∗W + b) (4)

ReLU Layer: Let X serve as the layer’s input. The result,
Y, is calculated as

Y = max(0, X) (5)

Fully Connected Layer: With shape (BatchSize, InputSize),
let X serve as the input to the layer. The O/P Y is calculated
as W is the shape’s weight matrix (InputSize, OutputSize),
and b is its bias vector (OutputSize).

Y = X ×W + b (6)

Softmax Layer: With shape (BatchSize, InputSize), let X
serve as the input to the layer. The result, Y, is calculated
as

Y[i, j] =
eX[i, j]∑
eX[i,k] (7)

Where k in range (1, InputSize))

D. Staked Auto-Encoder
Figure 5 illustrates the component diagram of the var-

ious layers of the 2-Layer Stacked Auto-encoder, where
each layer consists of an encoder and a decoder, and
softmax layers. The Input (I/P L) Layer represents the
I/P data that flows into the auto-encoder. The Layer 1
Encoder that this block performs a linear transformation
and applies a non-linear activation function to compress the
I/P data into a lower-dimensional representation. The first
auto-encoder compresses the input, capturing its essential
features and reducing its dimensionality. The second auto-
encoder further squeezes the O/Ps from Auto-Encoder 1, ex-
tracting higher-level representations of I/P Data. The Layer
2 Decoder receives the compressed representation from
Layer 2’s encoder and reconstructs the data by applying
reverse transformation and activation. The softmax layer
takes the O/P from Layer 2’s decoder and performs from
and uses the softmax (SMF) function, which makes them
probabilities for each class. The O/P layer of the model
provides the final classification result, identifying the most
probable class for a given input based on the probabilities
obtained from the softmax layer [34].

Layer1: Let X is the Dataset with elements set X1,
X2. . . Xm then the Auto-Encoder 1’s encoder denotes Eq.
(1) and computation as follows as

E(1) = f (X ∗W (1) + b(1)) (8)

where W(1) is the weight matrix, b(1) is the bias vector,
and f represents the activation function for the encoder of
the first layer. The Auto-Encoder 1’s encoder denotes D(1)
and computation as follows as

D(1) = f (E(1) ×W ′(1) + b(1)) (9)

Here, E(1) is the encoded representation, W’(1) is the
transpose of the weight matrix, b(1) is the bias vector, and
f represents the activation function for the decoder of the
first layer.
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Figure 5. 2-Layer Stacked Auto-Encoder Model for Smart-Phone Sensor Data Analysis

Layer 2: The Auto-Encoder-2’s encoder denotes E(2)
and computation as follows as

E(2) = f (E(1) ∗W (2) + b(2)) (10)

where W(2) is the weight matrix, the bias vector is b(2),
and the activation function for the first layer’s encoder is
denoted by f. The Auto-Encoder-2’s encoder denotes D(2)
and computation as follows as

D(2) = f (E(2) ∗W ′(2) + b(2)) (11)

Here, E(2) is the encoded representation, W’(2) is the
transpose of the weight matrix, b(2) is the bias vector, and
f represents the activation function for the decoder of the
first layer.

Softmax Layer: Assuming the input to the softmax
layer is denoted as Z, that is O/P of Auto-Encoder-2, and it
has dimensionality (BatchSize, NumClasses), where Num-
Classes is the total number of classes in the classification
job and BatchSize is the number of samples. The input Z
is sent into the SoftMax algorithm, which computes the
probabilities for each class. The probabilities are calculated
by exponentiating the input values and normalizing them
across all classes. The SoftMax function can be defined as

P(Classi) =
eZ[:,i]∑

(eZ[:, j], axis = 1)
(12)

Here, P(class i) represents the probability of class i, Z[:
i] denotes the values of the i-th class in the input Z, and
sum(exp(Z), axis=1) calculates the sum of exponentiated
values across all classes. In classification tasks, a common
loss function used with SoftMax is the cross-entropy loss.
The cross-entropy loss may be computed using the actual
labels Y and the projected probability P.

L = −
∑(

Y ∗ log(P)
)
, axis = 1) (13)

Figure 6. General Confusion Matrix for 6-classes

Here, Y represents the one-hot encoded true labels, log(P)
denotes the element-wise logarithm of the predicted prob-
abilities, and the sum is taken across the classes (axis=1).
For multi-class issues with classification, the softmax layer
is usually used in the O/P component of a neural network.
The overall objective of the stacked auto-encoder combines
the pre-training and fine-tuning objectives.

Ltotal =
(
λ1 ∗ L1

pretrain + λ
2 ∗ L2

pretrain + λtask ∗ Ltask

)
(14)

Here, λ1, λ2, and λtask are weighting factors that control
the importance of each component in the overall objective.
L1

pretrain and L2
pretrain represent the reconstruction losses for

the pre-training of the respective layers, and Ltask represents
the loss function specific to the task being performed.

E. Confusion Matrix and Performance Parameters
In Figure 6, a confusion matrix represents a problem

with six classes. The matrix uses arrows to show when a
class is misclassified as another class. For example, if an
arrow from FP1 to 2 indicates that instances of Class 1 were
misclassified as Class 2.

The AUC is an efficiency statistic used in ML to assess
the performance of a model used for classification. It is
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computed by finding the ROC curve. A ROC curve is
a comparison of true (TPR) and false (FPR) favorable
rates for various categorization thresholds [35] [36]. CA
(Classification Accuracy) is the number of successfully
categorized samples divided by the overall number of data
points in a dataset. It is a fundamental performance statistic
for assessing the entire accuracy of a classification system
[37]. The computations are as follows:

CA =
No.O fCorrectlyClassi f iedInstances

TotalNumberO f Instances
(15)

F1 score is recall and precision’s harmonic means, two other
important performance metrics for classification models.
The F1 score considers both precision and recall and gives
a fair assessment of the system’s efficiency [38]. It is
calculated as

F1 = 2 ·
Precision · Recall
Precision + Recall

(16)

Precision is the TP ratio to the sum of TP and FP instances.
It measures how many positive instances model predictors
are true positive instances.

Precision =
T P

T P + FP
(17)

Recall is defined as a percentage of TP to the total of TP
and FN occurrences. It measures how many of the actual
positive instances the model has correctly identified.

Precision =
T P

T P + FN
(18)

4. RESULT ANALYSIS
This section shows that the embedded DL models iden-

tify smartphone movements well. These models use DL
algorithms on the smartphone, allowing them to identify
real-time movements. This makes them useful for things
like fitness tracking and augmented reality. The analysis of
the results shows that embedded DL models have a lot of
potential and advantages for identifying smartphone move-
ments. This research helps advance the field of intelligent
smartphone applications and can inspire future research.

A. Two-Layer Stacking Auto-Encoder Results Analysis
Load the data from the WaveTrain.mat and

WaveTest.mat files using the load() function. Assign
the loaded data to the appropriate variables: trainData,
trainLabels, testData, and test Labels. Preprocess the
training and testing data by dividing each element of the cell
array by the maximum absolute value of the array using the
cell fun() function. Set the parameters for the autoencoder1.
Define hiddenSize1 as 100, MaxEpochs as 400,
L2WeightRegularization as 0.004, SparsityRegularization
as 4, SparsityProportion as 0.15, and ScaleData as false.
Train the first autoencoder using the trainAutoencoder()
function with train data and the defined parameters. Store
TrainedAutoencoder in autoenc1. Encode the training
data using autoenc1 and store the result in feat1. Set the

parameters for the autoencoder2. Define hiddenSize2 as
50, MaxEpochs as 100, L2WeightRegularization as 0.002,
SparsityRegularization as 4, SparsityProportion as 0.1,
and ScaleData as false. Train the second autoencoder
using the trainAutoencoder() function with feat1 and the
defined parameters. Store TrainedAutoencoder in autoenc2.
Encode the features feat1 using the encode method of
autoenc2 and save the resulting features as feat2. Train the
softmax layer with the TrainSoftmaxLayer function using
the encoded features feat2 and the training labels trainable
with the specified hyperparameters MaxEpochs. Save the
resulting softmax layer as softnet. Stack the three trained
neural networks (autoenc1, autoenc2, and softnet) together
using the stack function and save the resulting stacked
neural network as stackednet. Convert the training data
TrainData into a matrix xTrain with the size inputSize (the
number of features) by numeral (TrainData) (the number of
training samples) by flattening each training data element.
Fine-tune the stacked neural network stackednet with the
training matrix xTrain and corresponding training labels
trainLabels using the train function.

Figure 7 shows the Best Training Performance (MSE)
analysis of Auto-Encoder 1 and Auto-Encoder 2 in the
Staking Auto-Encoder model. In this, Figure 7(A) shows
the best performance analysis with a 0.11758 MSE value
at epoch 400 of Auto-Encoder 1. Figure 7(B) shows the
best performance analysis with the 0.08432 MSE value of
Auto-Encoder 2 at epoch 100.

Figure 8 shows the confusion matrix of the Stacking
Auto-Encoder for the testing dataset. As per the Confusion
matrix analysis, most of the five classes performed well
with 100% accuracy. In class 3, one miss calculated value
is classified as class 1. The testing dataset has an accu-
racy (99.6%), whereas the training dataset has an overall
accuracy (99.8%). The model’s performance was assessed
using various parameters. The performance measures’ full
analysis is shown in Table III. The accuracy of correctly
classifying instances for most classes was perfect, with
a score of 1.00. However, class 3 had a slightly lower
accuracy of 98.5%. The model also had high AUC values,
indicating its ability to distinguish between different classes
accurately. For every class, the F1 scores—which gauge
how well memory and accuracy are balanced—were very
high. Most classes had excellent precision values, indicating
zero false positives, and recall values, indicating no false
negatives. Overall, the stacked autoencoder model per-
formed excellently across all classes, with high AUC values,
accurate predictions, and balanced precision and recall.
The average performance measures further confirmed the
model’s effectiveness, with high values for AUC, precision,
recall, accuracy, and F1-score. These results demonstrate
that the model can accurately identify and classify different
movement types.
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Figure 7. Best Training Performance (MSE) Analysis

B. Eight-Layer Convolution Neural Network (CNN) Results
Analysis
Figure 9 shows the progress of Smart Phone movement

SD Set Training using a CNN architecture with eight
levels. Sensor signal data is sent, divided into six classes,
and processed using convolution2dLayer and ReLULayer
for non-linearity. The input size is maintained by setting
the ’Padding’ option. The maxPooling2dLayer reduces the
spatial dimensions of the previous layer’s O/P by a factor
of 2 using a 2x2 window and a stride of 2. The Ful-
lyConnectedLayer has 120 output neurons and receives

Figure 8. Confusion Matrix of the Stacking Auto-Encoder for 6-
classes

TABLE III. PERFORMANCE PARAMETERS FOR EACH CLASS
OF STACKING AUTO-ENCODER

Class AUC CA F1 Prec. Rec.
CCM (1) 1.00 1.00 0.985 1.000 0.970
ACM (2) 1.00 1.00 1.000 1.000 1.000
IDM (3) 0.99 0.98 0.987 0.975 1.000
LRM (4) 1.00 1.00 1.000 1.000 1.000
UDM (5) 1.00 1.00 1.000 1.000 1.000
WAM (6) 1.00 1.00 1.000 1.000 1.000
Overall 1.00 0.996 0.9953 0.9958 0.995

flattened input from the previous layer. Another ReLU
activation layer is applied after the FullyConnectedLayers.
The FullyConnectedLayers (FCL) is a layer with six O/P
neurons representing measurements or members of different
classes in a classification task. The (SAF) softmax activation
function is used by the SoftMax Layer (SML) to create a
probability distribution among the classes. Calculating the
cross-entropy loss between the actual and predicted label
probabilities is the task of the last layer, ClassificationLayer.
The training progress for the Smart Phone Movement SD
Set is shown in Figure 9. The red line displays the loss
numbers, while the blue line depicts the training procedure.
The mini-batch loss function takes 4 seconds to handle the
training dataset. A GPU that is hardware, is used in the
training process. The smoothed training accuracy points
are represented by the dark blue line, and the training
accuracy for each iteration is shown by the light blue
line. The training loss value for each iteration is shown
by the light red line. Figure 10 shows the Best Training
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Figure 9. CNN Smart Phone movement Sensor Data Set Training
Progress

Figure 10. Best Training Process Step by Step with Time Elapsed
and Base Learning Rate

Process with Minibatch Accuracy and Loss Values. The
input describes the training process of a CNN employing
small batch sizes. Epochs, which are made up of many
iterations each, are used to separate the training process. In
the first epoch, at the first iteration, the mini-batch accuracy
is 25.00%, and the mini-batch loss is 4.9888. The training
time elapsed is 00:00:00. After training for three epochs,
at the 50th iteration of the third epoch, the mini-batch
accuracy has improved to 81.25%, and the mini-batch loss
has reduced to 0.5293. The training time elapsed is still
00:00:00. At the 100th iteration of the sixth epoch, the
mini-batch accuracy has increased to 90.62%, and the mini-
batch loss has significantly reduced to 0.1593. The training
time has elapsed now 00:00:01. Finally, at the last epoch,
the training is completed at the 170th iteration (Epoch 10,
Iteration 170). The mini-batch accuracy remains 100.00%,
reducing the loss to 0.0162. The total training time elapsed
is 4 seconds. Figure 11 shows the Best Training Process
with Minibatch Accuracy and Loss Values. Figure 11 (A)
shows the analysis of CNN’s best mini-batch accuracy. It
achieved one at 170 iterations (10 epochs). Figure 11 (B)
indicates the study of CNN’s best mini-batch loss value.

Figure 12 shows the CNN confusion matrix for the
Testing Dataset and analysis. Table IV shows the per-

TABLE IV. PERFORMANCE PARAMETERS FOR EACH CLASS
OF THE CNN MODEL

Class AUC CA F1 Prec. Rec.
CCM (1) 0.991 0.969 0.984 0.969 1.000
ACM (2) 1.00 1.00 1.000 1.000 1.000
IDM (3) 1.00 1.00 1.000 1.000 1.000
LRM (4) 1.00 1.00 1.000 1.000 1.000
UDM (5) 0.997 0.977 0.988 0.977 1.000
WAM (6) 1.00 1.00 0.978 1.000 0.960
Overall 0.998 0.991 0.992 0.991 0.993

formance parameters of the Stacking Auto-Encoder. The
class CCM demonstrates an AUC value of 0.991, indicat-
ing excellent performance in distinguishing positive and
negative instances. The classification accuracy is 0.969,
suggesting that 96.9% of cases were correctly classified.
The F1 score, which combines precision and recall, is
0.984, indicating a successful balance between recall and
precision. The precision is 0.969, representing the symmetry
of all instances that were correctly predicted to be positive.
The recall is 1.000, demonstrating that all positive instances
were correctly identified. The Class ACM demonstrates
outstanding performance in all measures. The AUC value
of 1.000 indicates perfect discrimination between positive
and negative instances. The classification accuracy of 1.000
means that all the cases were correctly classified. The
F1 score, precision, and recall are all 1.000, suggesting
flawless performance in predicting positive instances. Class
2, classes 3, and 4 perform well. Class UDM achieves
high scores across all performance measures. The AUC
value of 0.997 indicates excellent discrimination ability. The
classification accuracy is 0.977, suggesting that 97.7% of
instances were correctly classified. The F1 value is 0.988,
showing a good balance. The precision is 0.977, and the
recall is 1.000 with good balance. Class WAM demonstrates
high performance in most measures. When the AUC is
1.000, the discriminating ability is flawless. The accuracy of
classification is 1.000, indicating that every case was accu-
rately categorized. Recall is 0.960, accuracy is 1.000, and F1
score is 0.978, suggesting that the dataset is well-balanced
for the model. The overall performance of the classification
model is excellent, with an AUC value of 0.998, indicating
high discrimination ability. The classification accuracy is
0.991, suggesting that 99.1% of instances were correctly
classified. The F1 score of 0.992 reflects a good balance of
precision of 0.991 and recall of 0.993.

5. DISCUSSIONS
This research discusses the advantages of using embed-

ded DL models to identify smartphone movements. These
models can use DL algorithms directly on the smartphone
without relying on cloud-based processing. The research
compares these embedded models to similar studies and
discusses the trade-offs in complexity and computational re-
quirements. The smartphone can identify movements in real
time using embedded DL models. This is useful for applica-
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TABLE V. SOME OF THE RESEARCH WORKS COMPARED WITH PRESENT RESEARCH AND ANALYSIS

Ref.
No.

Author &
Year

Description Results and Models Analysis

[39] Straczkiewicz
et al.

Using the UniMiB-SHAR public dataset, the authors
proposed a DL method for HAR that makes use of
the Resnet architecture.

The leave-one-subject evaluation yielded
significant results, with accuracy rising
from 78.24% to 80.09% and the F1-score
from 78.40% to 79.36%.

[40] Ignatov et al. The proposed method utilizes CNNs to achieve real-
time HAR from smartphones’ accelerometers.

CNN + stat. features + data centring
achieved 97.63% accuracy.

[41] Mutegeki et al. Introduced a holistic DL-based HAR architecture,
CNN-LSTM, enhancing predictive accuracy and re-
ducing model complexity.

Achieved 99% accuracy on the iSPL
dataset and 92% on the UCI HAR public
dataset.

[42] Huang et al. A novel method for automatically extracting activity
recognition features from mobile sensor signals that
capture scale invariance and local dependence.

The CNN-based model achieved 88.19%
accuracy, outperforming the best algorithm
(PCA-ECDF).

[43] Rahman et al. The approach employs CNNs for real-time HAR
from smartphone accelerometer data.

The CNN model achieved a high accuracy
of 85.1%.

[44] de et al. Introduced the use of CNNs and RNNs (LSTM
and GRU) for activity identification from SSD,
achieving improved accuracy on the UniMiB SHAR
dataset.

Using a GRU network, the 5-fold cross-
validation achieved 95.49% accuracy for 17
activity categories.

[45] Aquino et al. The study aimed to improve the interpretability of
1-D CNN models in HAR applications.

1-D CNN achieved 0.978 accuracy using
SD and signal intensity techniques, and
BUI network averaged 0.937 accuracy.

[46] Gamble et al. Introduced a DL approach using a 1D-CNN model
for HAR and HARI by extracting features from
smartphone accelerometer and gyroscope signals.

The 1D-CNN model achieved 96.77%
accuracy for activity categorization and
82.37% for identity classification.

[47] Aquino et al. Introduced a novel XAI method utilizing t-SNE
learned features in one-dimensional CNNs, show-
casing performance on public datasets SHO and
HAPT.

CNN models achieved 0.98 accuracy on
the SHO dataset and 0.93 accuracy on the
HAPT dataset.

Present
study

Experiment on synthesis (real-world) dataset 8-layer CNN-Model achieved AUC: 0.998
and Accuracy: 99.1%.

Present
study

Experiment on synthesis (real-world) dataset 2-layer Auto-Encoder achieved AUC: 1.0
and Accuracy: 99.6%.

tions like fitness tracking, health monitoring, and augmented
reality, where immediate feedback is essential. The research
shows that both 2-layer Stacked Auto-Encoders and 8-layer
CNNs perform well in accurately classifying smartphone
movements. Both models in this analysis have achieved
perfect accuracy in classifying smartphone movements. The
2-layer Stacked Auto-Encoders performed better than the
CNN model, with higher values for all classes and overall
AUC and CA. It indicates that the Stacked Auto-Encoders
are more effective and reliable in accurately classifying
smartphone movements. Other researchers have also pro-
posed models for DL with different datasets, but they
have achieved moderate accuracy compared to the proposed
model in this analysis. Peppas et al. [48] suggested a real-
time CNN model that effectively recognizes human physical
activity using accelerometer data on a mobile device. It
achieved a high classification accuracy of 94.18% on the
WISDM dataset and 79.12% on the Actitracker dataset.
Thakur et al. [49] proposed a unified architecture called
”ConvAE-LSTM” that combines CNNs, auto-encoders, and

LSTM networks for smartphone-based activity recognition.
Their model achieved a remarkable accuracy of 95.69%
on the OPPORTUNITY dataset, surpassing the accuracy of
Random Forest and Support Vector Machine models. Khan
et al. [50] conducted experiments and collected a compre-
hensive dataset of nine daily activities. They trained various
ML models on SD from smartphones and wearable devices.
The random forest algorithm achieved a test accuracy of
95%, while a custom-built Bi-LSTM model outperformed it
with an improved accuracy of 98.1%. Table V compares the
proposed model with other research models in the analysis.

6. Conclusions and FutureWork
This study shows that using DL like CNN and SAEs

can accurately identify different types of smartphone move-
ments. The SAEs performed well during training, with
Auto-Encoder 1 and Auto-Encoder 2 achieving the best
results at epochs 400 and 100, respectively. The SAEs
also performed well regarding AUC, CA, F1-score, pre-
cision, and recall, meaning they can accurately identify
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Figure 11. Best Training Process with Minibatch Accuracy and Loss
Values

and classify smartphone movements. The CNN model also
performed well, showing high values for AUC, CA, F1-
score, precision, and recall. The study indicates that CNNs
can capture complex patterns and features from the in-
put data. Implementing these DL models for smartphone
movement identification can have real-time applications in
fitness tracking, health monitoring, and augmented real-
ity. The researchers found that using models directly on
smartphones can identify movement in real time without
relying on cloud-based processing. These models, such as
CNNs and SAEs, are accurate and perform well, which can
improve smartphone applications. Future researchers may
explore more advanced DL methods like RNNs or TLs to

Figure 12. CNN Confusion Matrix for the Testing Dataset

improve accuracy. The goal is to make the system practical
and valuable for different applications. Future work may
involve developing techniques that allow the models to
adapt to other users, activities, and smartphone sensors.
The researchers will continue to enhance the models and
optimize their performance.
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