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Abstract: Reduced eye damage and the possibility of treatment are outcomes of early detection of ocular illnesses. Deep learning
models using color photographs of the eye allow artificial intelligence systems to diagnose and categorize ocular disorders. This paper
showcases the use of Convolutional Neural Network (CNN) deep learning models on color pictures of the retinal fundus to detect,
identify, and classify cataracts. Three hundred normal photos and one hundred cataract images make up a set of four hundred color
photographs. Histogram equalization (HE) and contrast limited adaptive histogram equalization (CLAHE) were used for automatic
pre-processing of the datasets before segmentation. In this study, three different models were used: Densenet201, GoogleNet, and
ResNet-101. In the first case, raw source photographs were used; in the second, photos that had been histogram equalized (HE) were
used; and in the third, a combination of HE and CLAHE was used. In tests, the Densenet201 model achieved an accuracy of more than
98%, whereas the GoogleNet model achieved 90% accuracy in classification. For both the cataract detection and classification tasks,
the experimental findings are assessed using standard performance measures like as accuracy, precision, sensitivity, specificity, and
F1-score. Accuracy, early identification, training, and promotion of future education all contribute to improved ocular health, and the
proposed model represents a significant step forward in the automated detection and classification of cataract treatments for detection
and performance support.
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1. INTRODUCTION
According to the American Academy of Ophthalmol-

ogy, the clouding of the lens refers to the cataract. The
most common factors that cause cataracts are indicated in
research such as advanced age, diabetes, hypertension, and
radiation exposure [1]. There are several types of cataracts,
and their reasons and risks are summarized as follows [2]:

1) Congenital and developmental: Genetics, prenatal
lens development issues, maternal malnutrition, in-
fections, medicines, radiation, fetal/infantile factors,
metabolic disorders, birth trauma, malnutrition, birth
deformities, and idiopathic. It might start from birth
or develop throughout childhood and youth.

2) Age-related: Aging, dehydration, systemic diseases,
smoking, oxidative stress, and a deficiency in key
nutrients. Most of the elderly are beyond the age of
50.

3) Traumatic: Physical injury to the eye lens capsule,

penetration by foreign substances. Welders and glass
furnace workers are examples of people who operate
in dangerous environments.

4) Complicated: Complications of some chronic in-
flammatory and degenerative eye disorders Patients
with skin conditions, allergies, uveitis, glaucoma,
diabetes, emphysema, and asthma.

5) Metabolic: Metabolic diseases Diabetes mellitus and
galactosemia. Individuals lacking in specific en-
zymes and hormones Toxic Certain toxicants and
drugs— Steroids and NSAIDs People undergoing
steroid therapy or taking hazardous medicines.

6) Radiation and Electrical: Infrared, X-rays, UV rays,
and a strong electric current. Individuals face exces-
sive sunlight, artificial radiation, and high voltage.

This is generally transparent, and the refractive lens un-
dergoes degenerative alterations that lead to a reduction in
transparency and a decline in optical performance. These
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Figure 1. Retinal Fundus Images (a) non-cataract, (b) mild-cataract,
(c) moderate-cataract, (d) severe-cataract

alterations eventually give rise to cataracts. Cataract-related
visual impairments include changes in color perception
as well as blurred vision. Fig. 1 shows several classes
of cataracts. Colors can seem washed out, desaturated,
or faded, making it difficult to distinguish between them
accurately. Cataracts can cause increased light sensitivity,
leading to glare and halos around light sources, particu-
larly in dim or bright settings. Moreover, individuals with
cataracts frequently express discomfort about their eyesight,
characterized by the perception of dim or dark objects.
This decreased sensitivity to contrast makes it harder to
discern things against backgrounds with identical tonal
values, making it harder to see objects in low-contrast
environments. Nuclear cataracts are the first type of cataract
we encounter. This type impacts the nucleus, the lens’s
center portion close to the eye’s inner corner. This area’s
opacity adds to the cloudiness and brown or yellow tint.
This distortion obscures the light’s path while also hinting
at the physiological alterations taking place inside the lens
[3]. The World Health Organization defines a cataract as an
ocular cloud [3]. The staggering number of persons affected
by visual impairment is 285 million. 39 million people in
this group have visual constriction, whereas the remainder
have abnormal visual phenotypes. Cataracts cause 33% of
visual weakness cases while 51% represent the blind [4].
The two main types of eye cataracts are nuclear cataracts
and cataracts in the cortex [5], [6]. Every day the cataract
gets worse. There has been a 43.6% increase in recent
cataract cases. Of all cataracts, 23.1% are nuclear, 13.1% are
posterior subcapsular (PSC), and 22% are cortical. Merely
26.8% of patients had cataract surgery. Recent studies
suggest that the incidence of cataract operations performed
on girls surpasses that of males [7]. A nuclear cataract (NC),
cortical cataract (CC), or posterior subcapsular cataract is
characterized by the location of the opacity in the crystalline
lens. NC signifies a hardening and gradual opacification of
the nuclear area. CC is defined by white, wedge-shaped,
radially arranged opacities that expand in a spoke-like
configuration from the periphery of the lens toward the
center [8], [9]. PSC is characterized by granular opacities
and symptoms such as little breadcrumbs or sand particles
distributed behind the lens capsule [10].
In medical science, Artificial Intelligence (AI) has made a
huge impact in recent years in several applications such as
breast cancer early detection, lung cancer, fatal blood dis-
orders, COVID-19 detection, gender detection, eye disease
(glaucoma and cataracts), and others in ophthalmology [11],

[12], [13], [14]. Deep learning processes based on artificial
intelligence have become commonly used in various appli-
cations due to the enormous ability of large computations
to extract high-level features of huge and different data,
which has prompted many researchers to work on detecting
cataracts and classifying the degree of opacity automati-
cally, with high speed and accuracy. One kind of neural
network that is extensively used in picture processing is
the Convolutional Neural Network (CNN). This network
architecture comprises singular or multiple convolutional
layers [13], [14]. Deep learning networks automatically
extract characteristics from pictures, texts, and signals by
simulating the human brain’s physiological activity using
artificial neurons with several layers. The ability of CNN to
automatically extract features from pictures without human
involvement is a major benefit compared to other feature
extraction methods [11].
This paper presents several objectives such as developing
a deep-learning model aimed at the early detection and
classification of various eye ailments. in addition to in-
troducing support for ophthalmologists in overcoming the
difficulties in examining and treating visual impairment
problems that directly affect a large population. To over-
come these challenges, pre-trained deep learning networks
can be used, through which uncertainty can be effectively
managed and the classification process organized accurately
and intelligently. The contributions behind this work are
summarized as follows:

1) Several enhancements have been applied to the
dataset including HE, CLAHE, and segmentation
to improve image quality and by extension, perfor-
mance.

2) Three CNN models (GoogleNet, ResNet-101, and
Densenet201) have been used to compare their
performance and determine the optimal model for
cataract detection.

3) The results from the detection section are applied
to the classification section for calculating cataract
severity using the same CNN models.

4) Calculate the performance evaluation for detection
and classification cases.

2. LITERATURE WORK
Several recent studies have integrated DL pre-trained

models with detection and classification models from
computer-aided diagnostic (CAD) systems. A lot of people
in the medical imaging field are interested in finding ways
to automatically detect and classify cataracts from retinal
pictures. Various research articles in this discipline high-
light that the process typically involves three main stages:
preprocessing, feature extraction, and classification.
A recent study attained 95.00% accuracy with an active
shape model that used over 5,000 training examples [15].
In their presentation, Li et al. established a ResNet-based
DST system. They achieved a 94.00% accuracy rate in di-
agnosing cataracts after surmounting the vanishing gradient
challenges.



International Journal of Computing and Digital Systems 3

In [16], they produced methods of automatic detection and
grading for cataracts. They used two proposed CNN models,
DST-ResNet and EDST-ResNet. they have experimental
results that produce better performance for the combined
features than a single type of feature with an accuracy
of detection/ grading of 0.94/0.8238 and 0.9143/0.805 for
DST-ResNet and EDST-ResNet respectively.
In [17], they used Slit-lamp lens images to evaluate a
novel computer-aided design (CAD) imaging software for
assessing nuclear lens opacity. A correlation coefficient of
0.96 was generated for the CAD approach by the experi-
mental findings. They developed a computer-aided design
(CAD) method based on fundus image analysis to grade
and classify cataracts automatically [18]. To extract features
from the fundus pictures, approaches based on sketches
and wavelet transformations are employed. Compared to
techniques based on sketches, wavelet produces superior
results (accuracy approaches 90.9%).
They evaluated CNN’s ability to automatically detect and
classify nuclear cataracts using slit-lamp pictures [19].
With a success rate of 88.4%, they used a Support Vec-
tor Machine (SVM) to grade cataracts and get high-level
characteristics.
In [20], they presented an automatic cataract detection using
computer science (CNN) with retinal fundus images. they
used two methods for cataract classification the SVM and
SoftMax with accuracies of 86% and 94.01% respectively.
They presented a CNN-RF hybrid approach to cataract
grading using fundus images in [21]. With an average
accuracy of 90.69%, the trial findings are impressive.
In [22], they focused mainly on the detection of cataracts
from fundus retinal images using computer-aided diagnosis
CAD and pre-trained CNN for cataract classification. They
used an image quality selection module before using the
SVM for cataract classification and obtained an accuracy
of 92.91%.
To address issues like categorization and imbalanced
datasets, which lead to performance deterioration, they de-
veloped a new CNN architecture called Tournament-based
Ranking CNN [23]. The obtained results of the applied
structure present a model record of the exact accuracy of
68.36% while the record of ranking CNN and ResNet is
53.40% and 56.12% respectively.
In [24], they proposed a practical machine-learning model
for congenital cataracts identification. This case study is
performed on 2005 subjects (1274 cataracts and 731 nor-
mal) at Zhongshan Ophthalmic Center. The experimental
results show an accuracy of validation approaches to 94%
using the 4-fold cross-validation.
In [25], the author proposed an automatic detection of
eye cataracts using CNN and retinal fundus images. They
achieved an accuracy of 95.77%.
The optimal CNN network selection in the presence of
additive white Gaussian noise (AWGN) was evaluated in the
context of a computer-aided cataract diagnostic system [26].
Applying this strategy ensures that the pre-trained CNN
maintains its optimal performance even when exposed to
varying levels of noise.

The CNN employing the VGG-19 cataract detection tech-
nique proposed in [27] attained an overall accuracy of
97.47%, a precision of 97.47%, and a loss of 5.2.
In [28], they assessed the classification of cataracts using
the pre-trained CNN models using publicly available im-
ages. They have the highest validation accuracy approaches
98.17%.
The authors of [29] introduced a CNN deep learning system
that uses images taken with slit lamps and retro illumination
lenses to automatically diagnose and grade cataracts accord-
ing to the Lens Opacities Classification System (LOCS).
The suggested approach achieves a 91.22% success rate
using pre-trained, up-to-date convolutional neural network
(CNN) models.
According to their proposal in [11], utilizing convolutional
neural networks (CNNs) and discrete Fourier transform
(2D-DFT) on fundus pictures, they could automatically
identify and classify early-stage cataracts. The top color
picture quality algorithm yields a maximum accuracy of
93.10%.
In [30], the authors primarily dealt with the topic of cataract
anomaly detection by the use of machine learning and
image processing methods for digital camera photos. They
achieved a 96% success rate by utilizing the LeNet-CNN
model.
The automatic assessment of nuclear cataracts utilizing slit-
lamp images and a Support Vector Machine (SVM) grading
model was illustrated in [31]. A 95% success rate in feature
extraction and a mean grade difference of 0.36 was attained
by utilizing over 5,000 clinical photographs for training.
In [32], they used a non-contact capturing of cataract
opacity using AS-OCT images for the nucleus region to
detect nuclear cataracts automatically. The MRA-Net and
SENet models are used as the proposed method for NC
severity level classification based on AS-OCT images. They
achieved an accuracy of 87.78%.
In [33] more than 25000 retinal images are used with an
automated deep learning algorithm for cataract detection
with an accuracy approach of 96.6%.
In [5], they used ocular pictures (smartphone slit-lamp
images) to apply deep learning algorithms to the problem
of automated nuclear cataract severity. Cataract grading
and assessment make use of a mix of ShuffleNet and
SVM models, while YOLOv3 is employed for nuclear area
detection. They were able to attain an F1-score of 92.3%
and an accuracy of 93.5%. In this article, the presented work
differs from previous works by the enhancement algorithms
especially the segmentation process of the dataset. Also, the
utilization of detection and classification algorithms may
have different strategies to achieve results at each stage.

3. METHODOLOGY
Automatic cataract identification and categorization is

made more effective and exact by utilizing the techniques
and approaches that have been provided in this part. The
primary framework of the suggested project is shown in
Figure 2. It produces the complete vision of how the cataract
can be detected and classified automatically. This section
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Figure 2. The proposed structure of the automatic cataract detec-
tion/classification system

contains the dataset acquisition, pre-processing stage, the
CNN models stages (detection and classification), and the
final decision stage where the lens opacity is identified and
categorized. The tools that are utilized in this study are a PC
laptop, Matlab2022a, and retinal fundus images (dataset).

A. Dataset
TThe availability of sufficient data is one of the essential

things to complete this work. Therefore, images of the eye
must be available and classified so that they can be used
in the training process for various deep learning functions
and to obtain appropriate cataract detection and diagnosis.
The datasets that have been used in this work are retinal
fundus images collected from Kaggle and available at [34].
The dataset consists of 400 images that are divided into
300 normal images and 100 cataract images. The datasets
in this study are chosen for the highest resolution, diversity
of conditions, and other aspects.

B. Image Pre-Processing
To ensure or enhance the certainty of successful di-

agnosis or classification of images, pre-processing of the
images is conducted. Fig. 3 shows the image enhancement
with various image processing techniques. Segmentation
of the image is carried out to focus on the eye lens,
followed by conversion of the images to grayscale format.
Border detection is then carried out, followed by edge
enhancement and noise reduction methods. Small items
are then removed. The generated images, which depict
the eye lens, are used on a white background. Image
segmentation is the final stage before the use of image
improvement techniques such as histogram equalization
(HE) and contrast-limited adaptive histogram equalization
(CLAHE). For a more accurate diagnosis, HE and CLAHE
improve contrast and disclose essential, minute information.
Certain segments of the image have been modified using
adaptive enhancement, preserving local details. To enhance
image quality, it is essential to minimize artifacts, particu-
larly in noisy environments. the identification of anatomical
characteristics and abnormalities can be accomplished by
Improved visibility and retention of image information are
crucial for guaranteeing clinical accuracy.

C. Cataract Detection and Classification using the CNN
model
Automatic cataract diagnosis and categorization using

deep learning pre-trained models follows the development

 
(a)                           (b)                           (c) 

Figure 3. The image processing enhancement before applying CNN
algorithms, a) Original image, b) Segmented image, c) Image after
HE and CLAHE

of methods for pre-processing retinal fundus pictures.
This article utilizes three pre-trained convolutional neu-
ral network (CNN) models: GoogleNet, ResNet-101, and
Densenet-201.
In addition to its three fundamental layers—the convo-
lutional, pooling, and inception layers—GoogleNet, one
of the most popular CNN variants, has 22 complicated
layers. An alternative model is ResNet-101, which has
101 layers total and includes pooling, batch regularization,
and convolutional layers. Layers for batch normalization,
activation, and pooling are among the 201 that make up
the final model, DenseNet-201. These convolutional neural
network (CNN) models are trained and tested using 224 ×
224 x 3 input pictures.
Feature extraction and classification are the two main steps
in diagnosing and categorizing cataracts. Because of the
vital role it plays in the diagnostic and classification pro-
cesses, the feature extraction step is considered an essential
and basic part of the process. Employing a pre-trained
CNN model is deemed a pivotal step in carrying out the
automated diagnosis and categorization procedures, given
that the parameters of this model are fine-tuned to enhance
the accuracy and ease of the training process [35], [36].
As indicated in Table I, the three CNN models undergo
optimization. The selection of the suitable optimizer during
the model training phase is of utmost significance due to its
direct influence on the speed of convergence, model efficacy,
and generalization capability. The SGDM optimizer was
used to find the fastest path to finding the optimal solution
by accelerating the convergence process while collecting the
momentum of the previous training. Also, by using intrinsic
momentum, it is possible to move away from the minimum
and circumvent this problem by giving the optimizer the
ability to move away from the minimum. The other criterion
in the training process is the percentage of learning rate,
and it is set to 0.0001 because of its direct impact on
convergence speed, robustness, and in general on the final
performance of the model. Finally, a mini-batch size of
about 4 was used, which was carefully chosen because of its
effect on the speed of training and the stabilization process.
Another significant selection is the number of approaches to
achieve the equilibrium between underfitting and overfitting.
Consequently, the models underwent training for multiple
epochs, including 10, 20, 25, and 30. The number 20 was
determined to be the most suitable point at which the model
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exhibited stability across the training curve.
In the stage of classification, the decision was made to
employ the SoftMax classifier. The prediction of the cataract
classes is achieved by using the SoftMax function. It can
be used to transform logarithmic values into probabilities
by taking the exponential of each output and dividing it
with the total sum of all values (exponentiated), where
the cumulative sum of the output vector equals one. the
SoftMax function can be presented in (1) [37]:

S o f tMax(Z j) =
Exp(Z j)∑k

k=1 Exp(ZK)
, f or j = 1...,K (1)

In this context, Zj denotes the input applied to the
SoftMax function about class j, while the denominator
signifies the aggregate of the exponential values of the raw
class scores within the output layer. K represents the number
of output neurons. In this study, the fundamental frame-

TABLE I. THE TRAINING PARAMETERS OF CNN MODELS
FOR CATARACT DETECTION

Configuration Value

Optimizer SGDM
Learning Rate 0.0001
Minibatch Size 4

Epochs 20
Classification Function SoftMax

work is delineated in Fig. 4, illustrating the progression
of images through a two-phase pre-processing procedure
within CNN architectures. During the initial stage, known
as the diagnostic phase, the dataset is instructed to ascertain
the presence of cataracts in patients, with the adoption of
DenseNet-201. The DenseNet-201distinguishing feature is
the parameter efficiency achieved by the dense intercon-
nections, and this can assist feature reusability and reduce
redundantly computations. The DenseNet model relies on
improving the training process and accelerating convergence
over other models with a smaller number of connections.
Moreover, the DenseNet model showed high levels of
detection performance compared to the rest of the models,
achieving a high accuracy rate using fewer parameters.
Three categories of cataracts are classified by using the
GoogleNet model, mild cataracts, moderate cataracts, and
severe cataracts. GoogleNet ’s design enabled efficient pa-
rameter consumption by combining various filter dimen-
sions into a single layer. Because of its lesser depth,
GoogleNet displayed a very simple training procedure when
compared to complicated designs such as DenseNet-201
and ResNet-101. The model produced innovative results and
demonstrated strong performance in the domain of picture
categorization.

4. RESULTS AND DISCUSSIONS
Here we present the experimental findings obtained by

using pre-processing methods and CNN pre-trained models
to the retinal fundus pictures to automatically detect and

 

If the cataract is 

detected 

Yes 

start 

Image  

Pre-Process 

DL Mode 

Detection 

(CNN) 

Condit

ion  

Normal 

Case 

No 

DL Mode 

Classification 

(CNN) 

Mild 

Cataract 

Moderate 

Cataract 
Severe 

Cataract 

Figure 4. The proposed algorithm for automatic cataract detection
and classification

classify cataracts. Accuracy, sensitivity, and F1-score are
only a few of the performance criteria measured by the
outcomes. This section is divided into three parts, perfor-
mance evaluation metrics, experimental results of detection,
and classification results.

A. Performance Evaluation Criteria
Here you may find the important metrics that were used

to measure how well the pre-trained convolutional neural
network (CNN) models performed in the detection and
classification tasks. Standard criteria including F1 score,
specificity, accuracy, and sensitivity form the basis of these
models’ performance evaluations [11]:

Accuracy =
T P + T N

T P + T N + FP + FN
(2)

S ensitivity =
T P

T P + FN
(3)

S peci f icity =
T N

T N + FP
(4)

Precision =
T P

T P + FP
(5)
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F1 − score = 2 ∗
(Precision ∗ S ensitivity)
(Precision + S ensitivity)

(6)

It is common practice to classify test pictures as either true
positive (TP), true negative (TN), false positive (FP), or
false negative (FN) to ascertain the assessment. The F1
score gained popularity as a result of how easy it is to
calculate accuracy and sensitivity, which are often the most
utilized metrics for evaluation in this area of study.

B. Results of Detection
The dataset shown in Table II is used to accurately iden-

tify ocular cataracts. Training, validation, and test subsets
make up 80%, 10%, and 10% of the dataset, respectively.
After running three deep-learning models—GoogleNet,
RestNet-101, and DenseNet-201—on the dataset, the test
set is utilized to evaluate the outcomes. Table III shows the
outcomes of the accuracy tests conducted using the three
CNN models before and after picture pre-processing. The
outcomes acquired from just using the three CNN models,
devoid of any picture modifications, are displayed in the
second column of Table III. In this case, the DenseNet-
201 confirms 93.33% which dominates by 8% and 3%
on the GoogleNet and RestNet-101 models respectively.
In the third column of Table III, the results have been
obtained after applying the Histogram Equalization (HE)
and segmentation processes. the results show a notable
enhancement in the accuracy for all the CNN models. the
accuracy of the DenseNet-201 model is increased to 96.83%
and it also dominates the RestNet-101 and GoogleNet by
1% and 9% respectively. The last column summarizes the
accuracy of further image enhancements with HE, CLAHE,
and the segmentation process. there is a significant im-
provement where the DenseNet-201 achieved an accuracy
of 98.33% which exceeds the GoogleNet and RestNet-101
by 10% and 1% respectively. Looking at Table III, it’s clear
that the DenseNet-201 model is the top performer. Table
IV displays the best model’s performance results for test,
validation, training, and total accuracy. For the detection
example, Table V summarizes the performance assessment
metrics for the top model. The DenseNet-201 model’s high-
level detection is provided via the performance assessment
metrics. The eye is a crucial organ, thus getting a quick and
precise diagnosis of cataracts is crucial. Twenty seconds
following picture input, the suggested approach enables
rapid and accurate cataract identification. From the results
of the detection tables, it can be seen that even though the
dataset size (no. of images) is considered to be small but
achieved higher accuracy than previous works.

TABLE II. THE DATASET USED FOR THE CATARACT DETEC-
TION

Dataset type Normal Cataract Total images

PNG 100 300 400

TABLE III. THE RESULTING TEST ACCURACY OF DETECT-
ING OF VARIOUS DEEP LEARNING MODELS WITH DIFFER-
ENT CASES OF IMAGE PROCESSING

Deep
learning
Models

Dataset
without
Pre-
Processing
(Original)
(%)

Dataset
with Pre-
Processing
(HE and
Segmenta-
tion) (%)

Dataset
with Pre-
Processing(HE
and
CLAHE
and
Segmenta-
tion) (%)

GoogleNet 85.67 87.35 88.69
ResNet-
101 90 95.67 96.56

Densenet-
201 93.33 96.83 98.33

TABLE IV. THE PERFORMANCE RESULTS OF THE BEST DL
MODEL

Deep
learning
Models

Testing
Accuracy
(%)

Validation
Accuracy
(%)

Training
Accuracy
(%)

Overall
Accu-
racy
(%)

Densenet-
201 98.33 98.89 100 99.67

TABLE V. THE PERFORMANCE RESULTS AND EVALUATION
METRICS OF THE BEST DL MODEL

Deep
learning
Models

Accuracy
(%)

Precision
(%)

Sensitivity
(%)

Specificity
(%)

F1-
Score
(%)

Densenet-
201 98.33 98 98 100 98

C. Results of Classification
Upon establishing a precise cataract diagnosis, the sub-

sequent phase entails the categorization of cataracts into
three tiers: Mild, Moderate, and Severe. Table VI presents
the dataset of cataract classifications. The CNN models
utilized for cataract identification are also employed for
cataract grading. The categorization performance results
are displayed in Table VII. Table VII indicates that the
predominant model is the GoogLeNet model, which at-
tained an accuracy of 82.23%, surpassing DenseNet-201
and ResNet-101 by 7% and 6%, respectively. Subsequently,
data processing and picture enhancement utilizing HE were
performed, leading to improved data quality. The accu-
racy of the GoogLeNet model rose to 86.40%, exceeding
DenseNet-201 by 8% and ResNet-101 by 7%. Finally, an
additional improvement process, CLAHE, was performed,
which raised the accuracy result to 90%, which outper-
formed DenseNet-201 by 7%, and RestNet-101 by 5%.
The classification process is essential because knowing the
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extent of the deterioration of the patient’s condition is one
of the basics of diagnosis, and also determining the type
of classification makes the process of giving appropriate
treatment easier and faster. Entering the image of the eye
lens into the automatic diagnosis and classification model
is a quick process that offers fast and accurate results in
a time not exceeding 40 seconds. In Table VIII, we can
see the training set, validation set, test set, and overall
data assessment findings, all demonstrating the GoogLeNet
model’s superior performance. Table IX shows the test set
assessment metrics based on the model findings. Finally, the
proposed work has been compared with previous works to
show the effectiveness of the presented work over the rest
of the work, as shown in Table X.

TABLE VI. THE DATASET USED FOR THE CATARACT CLAS-
SIFICATION

Cataract Classes Total images

mild 35
moderate 45

Severe 20

TABLE VII. THE RESULTING TEST ACCURACY OF CLAS-
SIFICATION OF VARIOUS DEEP LEARNING MODELS WITH
DIFFERENT CASES OF IMAGE PROCESSING

Deep
learning
Models

Dataset
without
Pre-
Processing
(Original)
(%)

Dataset
with Pre-
Processing
(HE and
Segmenta-
tion) (%)

Dataset
with Pre-
Processing
(HE and
CLAHE
and
Segmenta-
tion)(%)

GoogleNet 82.23 86.40 90
ResNet-
101 76.64 79.30 85.20

Densenet-
201 75.72 78.60 83.40

TABLE VIII. THE PERFORMANCE RESULTS OF THE BEST
DL MODEL

Deep
learning
Model

Testing
Accu-
racy (%)

Validation
Accu-
racy (%)

Training
Accu-
racy (%)

Overall
Accu-
racy (%)

GoogleNet 90 91.67 96 93.33

TABLE IX. THE PERFORMANCE RESULTS AND EVALUA-
TION METRICS OF THE BEST DL MODEL

Deep
learning
Models

Accuracy
(%)

Precision
(%)

Sensitivity
(%)

Specificity
(%)

F1-
Score
(%)

GoogleNet 90 82 82 95 82
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5. CONCLUSIONS
This research uses a dataset of fundus retinal images

to autonomously identify and categorize cataracts utilizing
pre-trained deep learning models. The challenge has two
components: one focused on cataract detection and the
other on their classification. The output of the convolutional
neural network (CNN) is integrated into the cataract classifi-
cation method, enabling the two algorithms to function col-
laboratively. In both sections of this study, CNN pre-trained
models like Densenet-201, ReseNet-101, and GoogleNet
are utilized. With a 98.33% success rate, Densenet-201
is the top model for cataract detection, while GoogleNet
is the top model for cataract classification with a 90%
success rate. The experimental findings demonstrate that
the suggested work can hold its own against prior studies
using assessment measures like F1 score (96%), specificity
(100%), accuracy (98.33%), and precision (98%). Not only
may the suggested study make it easier to identify and
classify cataract disorders, but it can also lower the expense
of doing so. This is particularly helpful in remote regions
without equipment or supplies to detect eye problems. Until
equipment is fully automated and the IoT is utilized for
remote diagnosis, categorization, and result retrieval, the
suggested work can be developed in the future by using
an optimization process for enhanced feature extraction or
classification of the used pre-trained DL models. In addi-
tion, the proposed algorithm can be used as an application
that works remotely, especially in rural areas.
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