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Abstract: Migraine (MD) is a neurological disorder that can be accompanied by auditory and visual symptoms called aura and affects
the lives of many people around the world. It causes temporary disability and may progress to serious diseases such as epilepsy or
stroke, which affect individual health and limit societal productivity. The overlap of migraine symptoms with those of various other
diseases makes identifying and diagnosing migraines challenging and time-consuming. We developed two machine learning models to
help doctors diagnose and differentiate between types of migraine—both with and without aura—and to enhance patient care beyond
traditional methods that rely on interrogation or visual analysis of complex, non-linear Electroencephalography (EEG) signals that
require time and expertise. The first model focuses on diagnosing migraine versus healthy controls (HC) using (EEG) obtained from
Steady State Auditory Evoked Potentials (SSAEP) and Steady State Visual Evoked Potentials (SSVEP) stimuli from 17 migraine
patients and 20 healthy controls. These EEG signals were analyzed using Discrete Wavelet Transform (DWT) and Fast Fourier transform
(FFT) to extract the alpha, beta, delta, theta, and gamma frequencies, which were then used to train machine learning algorithms. The
second model, on the other hand, expands the visual stimulus data to include 503 participants, enabling the diagnosis of migraine and
the differentiation between its two main types—migraine without aura (MwoA) and migraine with aura (MwA)—compared to healthy
individuals. Both models achieved a classification accuracy of over 90%, effectively identifying migraine and distinguishing between
its main types. This innovative approach enhances the accuracy and efficiency of migraine diagnosis and provides valuable insights
into the disorder’s neurological underpinnings. By integrating advanced signal processing techniques with machine learning, our model
represents a significant advancement in the medical field, offering a more efficient and accurate method for diagnosing migraines and
improving patient care.

Keywords: Electroencephalography, Migraine without Aura, Migraine with Aura, Discrete Wavelet Transform, Fast Fourier
transform

1. Introduction
Migraine is a debilitating neurovascular condition Char-

acterized by spells of headache with accompanying au-
tonomic and perhaps neurological symptoms, vomiting,
and nervous system malfunction [1]. Approximately one-
third of migraine patients experience transient neurological
disturbances before, during, or after their headaches, known
as migraine aura [2].An aura is typically a visual illusion
or sensory experience, frequently described as tingling or
numbness in the face, arms, or other parts of the body.
According to numerous studies, migraine with aura (MwA)
is associated with cortical hyper-responsiveness and altered
sensory information processing compared to migraine with-
out aura (MwoA) or healthy individuals, even during the
interictal phase [3].Migraines are the second most common
neurological condition in the world, causing more disability
than all other neurological diseases combined [4], [5].

Migraine is frequently misdiagnosed since its symptoms
coincide with those of other conditions such as tension
headache, epilepsy, and stroke [6].Therefore, studies have
shown that relying on and analyzing EEG data is an effec-
tive way to detect migraines and other neurological diseases,
EEG is a neuroimaging technique that measures electrical
impulses produced by electrodes applied to the scalp to
record brain activity [7]. The EEG signals are inexpensive,
non-radioactive, and non-invasive. As a result, they are now
frequently employed to identify brain abnormalities [8], [9].
The most significant benefit of EEG is its exceptionally
high temporal resolution, which makes it possible to capture
electrical impulses thousands of times per second [7].
Since the nature of EEG signals is non-linear, a trained
neurologist is needed to investigate abnormal EEG patterns
associated with these disorders. Efficiency varies greatly
in the visual evaluation of these signals. Evaluating long
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EEG recordings can be tedious manually, and results may
not always be consistent. With a little human help, the
automated system can identify neurological conditions and
track brain activity [10] to develop an effective model
that supports doctors in making diagnostic decisions. The
brain’s electrical activity is recorded using electrodes that
adhere to international standards, such as the 10-20 system.
This record is referred to as electroencephalogram (EEG)
activity. EEG data represent the electrical activity of the
human brain, which fluctuates in response to neurological
conditions. EEG signals are key indicators of neurological
diseases and can help with disease diagnosis [11]. Where
EEG, magnetic resonance imaging, and computed tomog-
raphy are employed to supplement expert judgment in the
disease diagnosis. However, because EEG is less expen-
sive and requires less equipment, it is favored for disease
identification in computer-assisted diagnosis systems [12].
Many researchers employ EEG signals, particularly for
the diagnosis of neurological illnesses. Machine learning
algorithms classify features extracted from EEG data in
various ways. From this perspective, the relevant literature
includes research that uses EEG signals and machine learn-
ing algorithms to diagnose migraines [13].

EEG recordings are obtained by attaching electrodes to
the scalp using a conductive gel. Each active electrode’s
signal is amplified relative to a reference electrode using a
differential amplifier [14]. EEG signals were first discovered
in 1875 by Richard Caton, a physician studying electrical
brain activity in rabbits and monkeys. In the early 1900s,
the first human EEG recordings were made, focusing on
absent seizures (when a person loses consciousness for a
short time). By the 1930s, the identification of epileptic
spikes and seizure patterns spurred significant interest in
EEG as a new field [14]. EEG waveforms vary by frequency
band. The delta band has the highest amplitude and is
frontal in adults and posterior in children. The theta band
is common in young children and indicates drowsiness or
arousal in adults, often spiking during active inhibition. The
alpha band is linked to eye movements and is found in the
posterior regions on both sides of the head. The beta band is
associated with motor behavior and is located in the frontal
regions on both sides of the head [15].

This research aims to develop a binary classification
model capable of detecting and diagnosing migraines in
comparison to healthy controls. Subsequently, the dataset
used in the binary classification model is expanded to
create a ternary classification model, which can identify the
main types of migraines (MwA and MwoA) versus healthy
controls. This is the first study to identify the main types of
migraines based on data from Carnegie Mellon University,
after expanding and enhancing this data set.

2. Materials AndMethods
This section describes the dataset used, preprocessing

techniques, and the method for extracting important features
for later use as inputs for machine learning classifiers.

Section 1 and Figure 1 present the proposed approach
scheme, which shows an overview of the proposed method
for diagnosing migraine using EEG signals.

Figure 1. The Migraine Classification System’s structural diagram.

The following steps describe the methodology used in
this study:

• Data Collection: Electroencephalographic (EEG) sig-
nals were recorded from migraine patients during
auditory and visual stimulation using 15 channels
which have been reported in the scientific literature
as having an association with migraine pain sites.
These channels include (Fp1, F7, C3, Pz, Fp2, Fz,
F8, Cz, C4, F3, F4, P3, P4, O1, O2), with their
locations illustrated in Figure 2. The resulting data
for each participant was organized into a matrix of
size (15 × 307201), where the first dimension (15)
represents the number of EEG channels. and the
second dimension (307201) represents the number of
time samples extracted within the specified time range
from (100 to 700 seconds).

• Signal Cleaning: The signals were processed to re-
move interference from power lines and artifacts
caused by eye movements and muscle activity.
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• Signal Analysis: Several feature extraction techniques
can be applied to these overlapping EEG signals to
facilitate further analysis and processing [13]. One
such technique is the use of the Daubechies wavelet
transform (db8), which allows for the decomposition
of the signal into multiple frequency bands, namely
Delta, Theta, Alpha, Beta, and Gamma. After wavelet
decomposition, the Fast Fourier Transform (FFT) is
applied to convert them from the time domain to the
frequency domain. The most frequent frequency in
each of the five frequency bands (Delta, Theta, Alpha,
Beta, and Gamma) is then extracted for each of the 15
EEG channels. These most common frequencies are
stored in the feature matrix for later use in machine
learning classifiers [16], [17].

• Data Representation and Dimensionality Reduction:
Two methods were tested for data representation to
reduce dimensions and organize data in a way that is
easier to enter into classifiers and train it.

• Several classification algorithms, such as SVM, LDA,
Random Forest, KNN, and Decision Trees, are ap-
plied to classify the migraine conditions.

• Data Augmentation: Data augmentation techniques
were applied to improve the robustness of the model.
This included calculating the minimum and maximum
values for the delta, theta, alpha, beta, and gamma
bands independently for each band and generating
random values within those limits. This was ap-
plied independently to all groups (HC, MwoA, and
MwA) to ensure that the augmented data represented
frequency bands similar to those in the original
data while adding sufficient variance to increase the
model’s ability to generalize.

• Hyperparameter Tuning: Grid search was used to find
the best hyperparameters for SVC and RF classifiers.

• Cross-validation: Cross-validation was applied to as-
sess model performance.

• Model Evaluation: Accuracy, sensitivity, specificity,
and F1 score were used to evaluate the model’s
effectiveness in diagnosing migraines.

A. Dataset Collecting Stage
This study categorized migraine sufferers and healthy

individuals using an EEG dataset recently released on
KiltHub, Carnegie Mellon University’s online data repos-
itory. The EEG data was recorded using the Bio Semi-
Active Two device with a 512 Hz sampling frequency and
a 24-bit analog-to-digital (A/D) converter, consisting of 128
channels [18]. The dataset includes data from 18 migraine
sufferers and 21 control participants, with ages ranging from
19 to 54 years (13 females, 5 males in the migraine group;
12 females, 9 males in the control group), under visual and
auditory stimulation [12]. Participants were recruited from

Figure 2. EEG electrode placement.

Carnegie Mellon University and the Pittsburgh area. They
did not have any neurological or psychological diagnoses
(except for migraine), no history of severe head injury or
trauma, normal hearing, and, according to their reports, nor-
mal or corrected-to-normal eyesight. All procedures were
reviewed and approved by the Carnegie Mellon University
Institutional Review Board.

The visual stimulation (SSVEP) involves vertically dis-
playing black-and-white longitudinal wave patterns (grat-
ings) with a spatial frequency of 0.05 cycles per degree of
visual angle (cpd), covering an area with a diameter of 5.7
cpd, and displayed at the center of the screen 1 meter away
from the participant. Patterns were smoothed using a 2D
Gaussian filter to reduce sharp edges. The patterns change
in contrast at a time-frequency of 4 Hz or 6 Hz for 2 s each
time, followed by an interval of 1 to 1.5 s. Each temporal
frequency was presented 100 times in a randomized order.
A central fixation cross with a spatial frequency of 0.5 cpd
was displayed throughout the experiment, superimposed on
the gratings to ensure participants maintained visual focus.

The auditory stimuli (SSAEP) included two-second pre-
sentations of 1 kHz tones modulated by a sinusoidal carrier
frequency of 4 Hz or 6 Hz. At 44.1 kHz, the stimuli
were captured with 16-bit resolution, and 100 repetitions
of each carrier frequency were made. The tones were
separated by a silent inter-stimulus interval of one to one
and a half seconds. Throughout the experiment, participants
focused on a black central fixation cross shown on a grey
screen while the tones were played using insert earphones
(Etymotic Research, Inc.). Reference [19] provides detailed
information on the dataset and experimental setting. In our
study, participant M13 was excluded due to the lack of
electroencephalography (EEG) recordings of the auditory
stimulation. In addition, Participant C12 was excluded to re-
duce the difference between the number of healthy controls
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and migraine patients, thus reducing potential bias towards
the healthy group with a larger number. The other reason for
excluding Participant C12 was that the recording duration
of his signal was shorter than that of the others.

B. Preprocessing Stage
Two experiments were conducted: the first for visual

stimulation and the second for auditory stimulation.
Recordings from 15 channels were chosen because of their
association with migraine pain areas, as well as to reduce
the complexity of the work. These channels have been
mentioned previously. To read these signals and store them
in an array, they were converted from BDF to EDF, as it
is one of the most commonly used formats for EEG data
and is most compatible with our research requirements,
using the EDF Browser software. In the preprocessing
step, EEG signals are filtered to reduce noise before being
separated into specific signal fragments [20]. Filtering tech-
niques have been used to filter out signals from unwanted
frequencies. Electroencephalogram (EEG) data is recorded
with interference and noise from many sources, such as
electrical devices, lighting, and other electronic devices,
causing unwanted signals to be introduced to the electrodes
of the EEG device. Signal interference can also occur when
a patient’s eyes move during an EEG recording. This causes
changes in the recorded electrical signal.

First, a notch filter removes the specific high frequency
of 50 Hz. This means the filter reduces the strength of
any signal containing this frequency. The elimination of
AC interference caused by Power-line (PLI) from biological
signals, such as the ECG and the EEG, to discrete wavelet
form is one of the classic uses of digital notch filters [21].
Then, a high pass filter is used to remove low frequencies.
In this case, frequencies below 4 Hz are filtered out. This
means that the filter removes low-frequency signals and
leaves only high-frequency signals. Thus, low-frequency
signals (below 4 Hz) and high-frequency signals (above 50
Hz) are eliminated, thus preserving signals in the interme-
diate frequency range between 4 and 50 Hz. The filtering
approach seeks to eliminate all noise and interference,
improving the signal-to-noise ratio and thereby improving
classification accuracy outcomes [22].

In the final stage, the detrend function is used with
the ’constant’ option to eliminate the signal’s mean value,
essentially eliminating any constant bias or offset. After
applying the notch filter to remove power-line interference
(50 Hz) and the high-pass filter to reduce low frequencies
(below 4 Hz), the detrend function calculates the mean of
the filtered signal and subtracts it from each data point. This
method enhances signal quality by removing any constant
offset, allowing for easier analysis of the signal’s true
physiological components. For example, if an EEG signal
has a baseline drift due to sensor movement, the detrend
function will rectify this by centering the signal around
zero. But it will retain all the original changes and patterns
in the data. This means that the signal will still contain the

important information but without any consistent bias or
skew, allowing for a more accurate interpretation of brain
activity.

C. Feature Extraction
After the waves are read and filtered, a high-dimensional

array of overlapping signals is obtained. To reduce their
complexity and focus on the most important data for our
work, these attributes must be significant for model learning
tools. Therefore, they must be discriminative and non-
redundant, allowing the data to be fully utilized. This is
achieved by selecting optimal features while minimizing the
number of features (dimensionality reduction) [23]. Feature
extraction involves converting raw data into meaningful
features,and capturing relevant information and patterns to
facilitate analysis and modeling.

By extracting informative features using wavelet anal-
ysis, the data’s dimensionality can be reduced, and noise
can be filtered out, leading to improved performance of
machine learning algorithms for learning and predictions.
Different types of wavelets are available, wavelet families
can be categorized into two main types: orthogonal and
biorthogonal wavelets [24].

Orthogonal, translated, and dilated wavelets are orthog-
onal to each other. This reduces redundancy in conversion
transactions, making data more efficient and less redundant.
Among its types: Daubechies wavelets are a popular type
of orthogonal wavelet, offering smoother scaling functions
than Haar wavelets. They are defined by the number of
vanishing moments, with orders ranging from db1 to db45.
Higher orders improve the ability to analyze complex sig-
nals and filter out noise. In this study, we relied on the db8
wavelet, which uses eight coefficients to process adjacent
signal parts. resulting in clearer signal reconstruction and
reduced rapid fluctuations, making it smoother and more
effective for signal analysis [24].

First, the frequency bands of each wave are determined
based on the Nyquist frequency ratio, where the bands
are defined as follows: Gamma (30-100 Hz), Beta (12-30
Hz), Alpha (8-12 Hz), Theta (4-8 Hz), and Delta (0.5-4
Hz). Next, bandpass filters are designed using a third-order
Butterworth filter for each frequency band, and these filters
are applied to the original signal using filtfilt, producing
filtered signals representing each band. The Butterworth
filter is an Infinite Impulse Response (IIR) filter that aims
to generate a frequency response that is as flat as possible
within its passband. Stephen Butterworth proposed it in
1930, and it is frequently used in digital signal processing
applications such as biomedical, audio, and seismic. The fil-
ter refines signal spectra within a specified frequency range,
known as the cut-off frequency, and the order influences the
sharpness of attenuation in the transition band [25]. After
the filtering process, wavelet analysis is applied. Discrete
wavelet transform (DWT) allows the use of discrete wavelet
coefficients (db8) to characterize EEG signals and transform
them into discrete wavelet representations [21] to become
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increasingly important.

In the Discrete Wavelet Transform (DWT), the initial
signal is broken down into two key components: approx-
imation, which captures the low-frequency information,
and detail, which highlights the high-frequency details.
Following the first stage of decomposition, only the approx-
imation component proceeds to undergo further decomposi-
tion, while the detail component remains unchanged. This
iterative process continues until a predetermined level of
decomposition is achieved [26]. The approximation compo-
nent in wavelet analysis contains low-frequency information
and is typically used to extract low-frequency activities such
as theta and delta waves. On the other hand, the detail com-
ponent often contains high-frequency information, which
can be utilized to extract high-frequency activities such as
alpha, beta, and gamma waves.

Therefore, the db8 function analyzes the EEG brain sig-
nal into several levels, to obtain five main frequency bands:
GM (Gamma), BT (Beta), AP (Alpha), TH (Theta), and DT
(Delta). Then fast Fourier transform (FFT) transforms these
components from the time domain to the frequency domain.
The output of a (FFT) is an array of frequency bins, where
each bin represents a specific frequency. Each bin contains
a composite value indicating the amplitude and phase of
the frequency component. Thus, the output representation
of the signal in the frequency domain [27]. The dominant
frequencies of the alpha, beta, delta, theta, and gamma
bands are extracted and stored in an array for later use.
This is done through an iterative loop, which calculates the
coefficients for each frequency band for each of the 15 EEG
channels.

Table I summarizes the main characteristics of different
brain wave rhythms and their functional correlates. It pro-
vides a useful reference for understanding the neurophysio-
logical basis of various cognitive and behavioral processes.

Thus, we obtain a matrix (15 x5), where the first
dimension (15) represents the number of channels that are
relied upon to record brain electrical activity, and the second
dimension (5) represents the sum of the brain frequencies
known as delta, theta, alpha, beta, and gamma.

D. Migraine Classification
At this stage, we will begin by dividing the data into a

training and test set to create a model capable of detecting
the disease and supporting the opinion of doctors. We
focused on machine learning classifiers because the size of
the data is small and because most of these classifiers are
characterized by a variety of parameters, which allows us to
choose the optimal parameters to achieve better accuracy.
In addition to their strength with digital data, and also
because of their popularity in the field of neurology, and
most importantly, they are subject to supervision because
Our practice requires data classifications to train migraine-
related features and distinguish them from those of healthy
people, where after experimentation, it became clear that

these classifiers have fast and good classification perfor-
mance, which makes them better than others. Among these
classifiers are:

Linear discriminant analysis (LDA) is frequently used
to reduce dimensionality and identify a feature subspace
in which the data samples are separable [2], Support vec-
tor machine (SVM) is used for regression analysis and
classification. It aims to find the optimal hyperplane with
the largest margin between classes in an n-dimensional
classification space [36]. In this study, the Support Vec-
tor Classification (SVC) method was employed for the
classification tasks. K-nearest neighbors (KNN) determine
a similarity between training and testing instances using
Euclidean distance. Nearest neighbors are determined based
on these similarities, and the testing sample’s class label is
determined by majority voting. The choice of distance met-
ric, K value, and majority voting method affect categoriza-
tion performance [37], Random Forest (RF) classifiers are
ensembles of randomly grown trees. Leaf nodes are labeled
based on posterior distributions for different classes. Internal
nodes have tests for data partitioning [23]. Randomness is
introduced through subsampling the data and selecting node
tests during training [36].

Classification involves aggregating predictions from in-
dividual trees to make the final prediction, Tree Decisions
(DTs) are tree-like models used in supervised data mining.
They consist of internal nodes representing attribute tests,
branches reflecting test results, and leaf nodes indicating
class names. The root node stores all tuples, and classifica-
tion is achieved by branching and splitting based on data
properties [38].

At this stage, two models will be created. The first model
will focus on diagnosing migraines compared to healthy
persons. In contrast, after efforts to expand the dataset,
the second model will attempt to diagnose migraines and
distinguish between its two main forms (MwoA and MwA)
in addition to healthy individuals.

1) The First Model

This model used binary classification for migraine diag-
noses versus healthy controls.

As a first step, the sum of the frequencies of each
band (delta, theta, alpha, beta, and gamma) is calculated
separately for all EEG channels for each participant, thus
reducing each participant’s data from 15 rows (channel)
to one row representing the sum of those Frequencies for
each frequency band. This statistical method helps reduce
the dimensionality of the data, then we use the sum of
frequencies as features, which are statically partitioned into
a 75% percent training set and 25% test set using the
Holdout method. The SVC algorithm was applied to the
visual stimulus dataset with the following parameters: C =
1000, Gamma = 100, Kernel = rbf. The LDA was applied
with the parameter discrimType = Linear, and the KNN
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TABLE I. The main characteristics of brain wave rhythms EEG

Rhythms Brain Wave Rhythms Related Functions

Delta (δ) 0.5–4 Hz show up in babies and during profound sleep [28], [29].

Theta (θ) 4-8 Hz Children’s brains process tasks in the temporal and parietal areas. The temporal
manages hearing, memory, and recognizing faces/emotions, while the parietal
handles sensory and motor information [30], [31].

Alpha (α) 8-12 Hz It appears in an awake adult, where it can be found in the parietal and frontal areas
and the scalp. It also appears in the occipital region [32].

Beta (β) 12-30 Hz Low beta rhythm is associated with movement occurring whether through actual
activity, planning, or visualization. This decrease is visible in the corresponding
motor cortex, which controls the movement of the body on the other side of it. It can
be detected during movement in the frontal and medial lobes of the head [33], [34].

Gamma (γ) 30-100 Hz The rhythms with frequencies higher than 30 Hz are the higher ones. It has to do
with how ideas are formed, how language is processed, and different kinds of
learning [35].

algorithm was applied with K = 3. Similarly, the SVC
algorithm was applied to the auditory stimulus dataset with
the parameters C = 1, Gamma = 100, and Kernel = rbf.
The LDA was used with discrimType = Linear, and KNN
was applied with K = 3

This step was followed by dividing the data in a bal-
anced manner and training it using the five-fold (K-fold)
cross-validation technique, repeated five times. As for the
classifier, the random forest algorithm was used, where the
best results were searched using two loops, the first for the
number of trees (100, 300, 500) and the second for the depth
of those trees (5, 10, 15). This is to avoid bias towards a
fixed division and to obtain a more comprehensive result
than the previous one. The highest accuracy was achieved
with 100 trees and a depth of 15 for the visual stimulus
dataset, while the best results for the auditory stimulus
dataset were also obtained with 100 trees and a depth of
15.

To explore another way to represent data as input
features for machine learning classifiers, we considered all
channels for each participant and transformed them into a
vector. This resulted in 37 vectors for the visual and 37
vectors for the auditory stimulus conditions. These vectors
were statically divided into 75% for training and 25%
for testing, and the SVC algorithm was applied to the
visual stimulus dataset with the following parameters: C=
0.001, Kernel= polynomial, and Gamma= 10. The LDA
was applied with the parameter discrimType = Linear, and
the KNN algorithm was used with K = 3. Similarly, the
SVC algorithm was applied to the auditory stimulus dataset
with the parameters C= 0.001, Kernel= polynomial, and
Gamma= 10. The LDA was used with discrimType =
Linear, and KNN was applied with K = 3.

To further validate the results, the vectors were par-
titioned in a balanced manner, the fixed partitioning was
replaced with five-fold cross-validation repeated five times.
The SVC classifier was evaluated using grid search to
find the best parameters for the SVC classifier by testing
different values of C [0.001, 0.01, 0.1, 1, 5, 10, 15, 25, 100]
and Gamma [0.001, 0.01, 0.1, 1, 5, 10, 15, 25, 100], as
well as kernel options (Linear, rbf, polynomial) where Grid
Search is used to determine the parameters that achieve the
highest average accuracy of the classifier across all folds. It
ensures that the classifier trained with the best parameters is
tested correctly and calculates various performance metrics.
The best parameters for the visual stimulus group were C =
15, Gamma = 5, and Kernel = polynomial, while the best
parameters for the auditory stimulus group were C = 25,
and Kernel = linear.

Since the linear kernel does not need a gamma parameter
to compute, KernelScale does not need to be specified
when using KernelFunction = ’linear’ in support vector
machines. KernelScale is not required because the linear
kernel computes the dot product of input features directly.

2) The Second Model

In this model, we relied on the tripartite classification for
diagnosing migraine, identifying its two main types (MwoA
and MwA) versus healthy controls. Since obtaining real
data is challenging due to patient privacy,data augmentation
techniques were applied to the visual stimulation data in
the frequency domain, that is, after cleaning the signals
and extracting the main features represented by alpha, beta,
gamma, theta and delta frequencies.

Visual stimulation data was used to augment the data, as
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it is more commonly utilized in the health sector compared
to auditory stimulation. The data for each category (HC,
MwoA, and MwA) was expanded by generating random
numbers within the minimum and maximum ranges of
brain frequencies (alpha, beta, gamma, theta, and delta).
This approach ensured that the augmented data represented
frequency bands comparable to those in the original data
while providing sufficient variability to enhance the model’s
generalizability. As a result, the dataset size increased from
37 to 503 individuals, distributed as follows: 160 healthy
controls (HC), 167 MwA, and 170 MwoA.

Since the Random Forest classifier and the frequency
summation approach performed well in the first model, they
were also utilized in this model. The data is divided into five
folds using K-fold cross-validation, with one-fold assigned
for testing and the remaining folds for training. The Random
Forest classifier is trained on balanced training data using
a ”bagging” technique, consisting of three learning cycles
with individual decision trees. The test fold is then used for
cross-validation to generate predictions.

3. Result
A. Result Of The First Model

Here, a binary classification was performed for migraine
diagnosis versus healthy controls, using two methods to
represent the data and reduce dimensions, given that each
participant has 15 rows (channels).

In the first method, the sum of frequencies for each band
across all channels for each participant was calculated to
form a new dataset, which was then divided into 75% train-
ing and 25% test sets. SVC, KNN, and LDA classifiers were
applied. The results for the visual and auditory conditions
are shown in Figures 3 and Figures 4, respectively:

Figure 3. Classification Results for SSVEP Represented as Sum of
Frequencies

Figure 4. Classification Results for SSAEP Represented as Sum of
Frequencies

Thus, we note the superiority of the SVC classifier
compared to other classifiers.

The relationship between Gamma and C values signif-
icantly impacts the accuracy of the classifier (SVC) for
visual stimulation data, as shown in Figure 5. The red
dot shows the maximum accuracy achieved using the RBF
kernel, emphasizing the importance of choosing appropriate
parameters to improve classifier performance.

Figure 5. The SVC classifier’s accuracy for the SSVEP

As shown in Figure 6, the ROC curve of the SVC
classifier shows an optimal classification of the auditory
stimulus data in this specific experiment when the data
was split into a fixed training and test set, with an area
under the curve (AUC) of one. The x-axis shows the false
positive rate, and the y-axis represents the true positive
rate. The ROC curve depicts how the true positive rate
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varies with the false positive rate as the decision threshold
shifts. The curve approaches the top-left corner, suggesting
high model performance. The AUC of one indicates that
the model properly identifies the positive (migraine) and
negative (healthy) classes when each participant’s data is
represented by calculating the sum of the frequencies for
each band.

Figure 6. The SVC classifier’s accuracy for the SSAEP

To evaluate the data comprehensively and monitor the
results on unseen data, a five-fold cross-validation technique
was applied, which was repeated five times using an RF
classifier. The results are shown in Table II.

Figures 7 and 8 show the accuracy of all iterations,
with the parameters used in each iteration. Grid search
was relied upon to choose the appropriate parameters each
time. Each iteration represents a five-fold cross-validation.
Figure 7 shows the results for the visual stimulation data,
while Figure 8 shows the results for the auditory stimulation
data, both Figures are screenshots of the execution results
obtained from MATLAB.

Figure 7. RF Classifier Results for SSVEP with Repeated cross-
validation 5 times.

The second method for data representation, the 15 rows

Figure 8. RF Classifier Results for SSAEP with Repeated cross-
validation 5 times.

for each participant were converted into a single vector to
form a new dataset and then divided into 75% training and
25% testing. SVC, KNN, and LDA classifiers were applied,
and the results for the visual and auditory conditions are
shown in Figures 9 and 10, respectively:

Figure 9. Classification Results for SSVEP Represented as Vector

The KNN classifier showed good performance for both
visual and auditory stimuli.

A five-fold cross-validation technique was then applied
to comprehensively evaluate the data and monitor the results
on the unseen data, which was repeated five times using the
SVC classifier. The results are shown in Table III.

The accuracy of all iterations is shown in Figures 11
and 12, where each iteration represents a five-fold cross-
validation. Figure 11 shows the accuracy histogram of each
iteration applied using SVC on the visual stimulus data,
while Figure 12 shows the accuracy histogram of each
iteration applied using SVC on the auditory stimulus data.

To evaluate the results of this study, the proposed model
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TABLE II. Metrics for RF using 5-fold cross-validation repeated 5 times

The cases The metrics Average metrics across repetitions Best results in the repetitions

SSVEP Accuracy 93.21 95
Sensitivity 93.66 95
Specificity 90 90
F1-Score 91.54 92.77

SSAEP Accuracy 97.42 97.5
Sensitivity 92.33 95
Specificity 100 100
F1-Score 95.54 97.14

TABLE III. Metrics for SVC using 5-fold cross-validation repeated 5 times

The cases The metrics Average metrics across repetitions Best results in the repetitions

SSVEP Accuracy 71.85 76.07
Sensitivity 69.33 80
Specificity 74 75
F1-Score 70.74 74.04

SSAEP Accuracy 73.07 81.07
Sensitivity 70 81.66
Specificity 76 80
F1-Score 70.20 80.57

Figure 10. Classification Results for SSAEP Represented as Vector

will be compared with related studies. The comparison
results will be presented in Table IV, which shows the
number of channels used in each study, the method of
extracting important features from the EEG signals, and
the conditions under which these signals were recorded.
In addition to presenting the strengths, weaknesses, and the
degree of accuracy achieved by each study.

Thus, we can observe the convergence of the results
between the proposed model, which relied on the DWT

Figure 11. SVC Classifier Accuracy for SSVEP with Repeated cross-
validation 5 times.

method for feature extraction, and the studies of Aslan and
Firat Orhanbuluku, despite using a smaller number of chan-
nels. Moreover, the proposed model outperformed Subasi’s
research, which also used the DWT method but applied the
Daubechies 4 (db4) wavelet to extract features and relied
on only two channels. This highlights the significance of
the channels used in this study and the importance of using
(db8) along with FFT in selecting the essential features for
each channel.

Thus, this study stands out from other studies by relying
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TABLE IV. A comparative study of literature research on migraine

Previous
studies

Channel
count

Feature
extraction

number of
participants

Status
type

Highest
accuracy Strength point Weaknesses

Kazemi
and
Katibeh
(2018)

19 Welch’s
method and
the Yule-
Walker AR
method.

43(19
Controls,24
Patients)

SSVEP 93% Application of
the genetic
algorithms to
find the optimal
combination of
(features and
electrodes) to
maximize
performance.

This study
focuses
only on
pediatric
EEG
migraine
classification.

[39]

Subasi et
al. (2019)

2 DWT (db4) 30 (15
Controls,15
patients)

SSVEP 85% The study’s
conclusions are
strengthened by
the application
of 10-fold
cross-validation
(CV) techniques,
which guarantee
the accuracy of
the classification
results.

Dependence
only on
flash
stimulation
and the use
of specific
EEG
channels.

[6]

Aslan
(2021)

128 TQWT and
statistical
features

39 (21
controls,18
patients)

(Resting
state)

89% Using ensemble
learning
techniques,
non-linear
feature
extraction, and
Q-factor wave
transformation
technique.

The
complexity
of the
calculations
and the
need to
adjust
parameters,
which takes
a long time.

[13]

Hanife
Göker
(2022)

(Experiment1)14 Welch 39 (21
controls,18
patients)

(Resting
state)

93.25% Two experiments
were performed
with 14 channels
and 128
channels, which
allowed analysis
of the effect of
the number of
channels on
model
performance.

The limited
number of
participants
may affect
the general-
izability of
the results.

[12]

(Experiment2)128 Welch 39 (21
controls,18
patients)

(Resting
state)

95%

Aslan
(2023)

128 CWT 39 (21
controls,18
patients)

(Resting
state)

100% CNN has a high
ability to extract
features from
large-
dimensional data
such as EEG
signals, which
helps improve
diagnostic
accuracy.

CNN is
complex
and requires
high com-
putational
power and
a large
amount of
data.

[40]
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TABLE IV. (Continued) A comparative study of literature research on migraine

Previous
studies

Channel
count

Feature
extraction

number of
participants

Status
type

Highest
accuracy Strength point Weaknesses

Fırat
Orhanbu-
lucu et
al. (2023)

64 CWT 39 (21
controls,18
patients)

(Resting
state)

99.74% This study is very
detailed as EEG
signals recorded in
states of rest,
visual stimulation,
and auditory
stimulation were
used.

It is highly
uncommon to
find research on
migraine
diagnosis and
the use of EEG
signals in
deep-learning
models.
Consequently,
there wasn’t
much research to
compare the
results of this
study with.

[41]

SSAEP 99.44% The study’s DCNN
model was created
and its
performance
compared with
other widely used
CNN architectures.

SSVEP 98.96%

This
study

15 DWT (db8)
and FFT

37 (20
controls,17
patients)

SSAEP 100% Combining features
extracted from db8
(which provides
temporal and
frequency
information) and
features extracted
from FFT (which
provides precise
frequency
information) results
in a richer
representation of
the signal, which
helps train the
model better.

The small
number of
participants may
restrict the
results’
generalizability.

SSVEP 100%

on DWT (db8) combined with FFT to analyze EEG signals
and extract important features for each channel.

B. Result Of The Second Model
The results of the RF classifier with five-fold cross-

validation are shown in Figure 13. This classifier was used
to diagnose and classify migraine types versus healthy
subjects by combining original data with data generated
under visual stimulation.

The results of the five folds of Random Forest classi-
fication, including accuracy, sensitivity, specificity, and F1-
Score, are displayed in a line graph as shown in Figure 14.
Only three lines are shown, instead of four, due to the
overlap between sensitivity and F1-Score, which shows little
variation in model performance across different folds and
classification efficiency.

We observe the stability of results across folds after data
augmentation. This indicates the power of the model itself
and the method used to represent the data. This stability
means that the model’s performance remains similar across
different datasets, which is a positive indicator of its relia-
bility and effectiveness.

We found one paper by Alex Frid et al. (2019) [3] in
distinguishing between migraine types (MwoA and MwA),
which achieved an accuracy of 84.62%. However, we cannot
compare results because patients and sample sizes vary
widely.

4. Discussion
Migraine symptoms often overlap with other headache

symptoms, and even among different types of migraine,
many migraine patients suffer from sensitivity to light and
loud sounds, which complicates the diagnosis of migraine
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Figure 12. SVC Classifier Accuracy for SSAEP with Repeated cross-
validation 5 times.

Figure 13. The result of the RF classifier.

with or without aura, making accurate diagnosis difficult
and time-consuming. This challenge is exacerbated when
communicating with children or the elderly, as they may
forget symptoms during medical inquiries. Therefore, there
is no point in relying on traditional methods that are
question-based, nor is it possible to rely on visual exam-
ination of brain signals, as they are complex and non-
linear and require effort, experience, and time. To address
these problems, we suggest relying on the models proposed
in this study, as they automatically analyze these signals,
simplifying the diagnosis process. It ensures appropriate and
timely treatment.

Where EEG signals from visual and auditory stimulation
were analyzed, focusing on specific channels (Fp1, F7,
C3, Pz, Fp2, Fz, F8, Cz, C4, F3, F4, P3, P4, O1, O2).

Figure 14. Five-Fold Cross-Validation Results for RF with Sum of
Frequencies.

These signals underwent preprocessing to remove noise and
environmental interference. They were then decomposed
into frequency bands using the db8 wavelet transform.
Afterward, FFT was applied to convert these extracted
bands from the time domain to the frequency domain and
identify the dominant frequency within each band Each
participant’s data includes multiple rows corresponding to
different channels, necessitating dimensionality reduction
for efficient classification. For the first model, two methods
were used to represent data and reduce dimensions:

1) Frequency values for each band (delta, theta, alpha,
beta, and gamma) were summed across all 15 channels
corresponding to each participant. And

2) All 15 rows corresponding to each participant were
converted into a single vector.

The method that summed the frequency values for each
band (delta, theta, alpha, beta, and gamma) independently
across all rows (channels) corresponding to each participant
had great success, especially with the RF and SVC classi-
fiers in diagnosing of migraine versus the healthy controls.
The auditory stimulus data had the highest accuracy, fol-
lowed by the visual.

On the other hand, representing the data as vectors
resulted in good accuracy with the SVC classifier, especially
for audio data when cross-validation was used. In contrast,
the KNN classifier performed better with fixed partitioning
for both datasets (SSVEP and SSAEP). However, the fre-
quency sum method outperformed the vector representation
method in auditory and visual stimulation conditions. It
has proven to be the most effective, achieving much better
results than the vector-based method.

In the second model, data for visual stimuli, previously
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cleaned and analyzed in the first model, were expanded due
to their broader applicability compared to auditory stimuli.
The method of summing frequencies for each band (delta,
theta, alpha, beta, and gamma) across all channels corre-
sponding to each participant was used, because it showed
superior performance in the first model when applied with
RF and SVC classifiers. RF was chosen as a classifier for
this model because it relies on a triple classification to
distinguish between types of migraines.

This makes using the SVC classifier impractical, as it is
designed for binary classification and its performance dete-
riorates in triple classification scenarios. We employed five-
fold cross-validation to test as many datasets as possible,
and excellent results were obtained, confirming the success
of this approach in identifying migraine types versus healthy
controls.

The proposed study has some limitations. First, there are
no publicly available EEG datasets on migraine other than
those from Carnegie Mellon University, which prevented
testing the study with different datasets. Another limitation
is the scarcity of studies aiming to identify types of migraine
based on EEG, making it difficult to test the proposed
methodology in such a context.

5. Conclusions And FutureWork
This study developed two electroencephalogram(EEG)

–based models to diagnose migraines and classify their
types using machine learning. The first model distinguishes
migraine patients from healthy individuals, while the second
classifies migraine with aura (MwA), migraine without
aura (MwoA), and healthy controls. By utilizing 15 EEG
channels, the study effectively reduced computational com-
plexity while achieving reliable accuracy in diagnosing
migraines and their types. The Butterworth filter efficiently
removed irrelevant frequencies, and the db8 wavelet, com-
bined with FFT, facilitated a detailed analysis of brainwave
patterns across key bands (delta, theta, alpha, beta, gamma).
Among the data representation techniques used, the fre-
quency sum method showed superior accuracy compared
to the vector method. Among the classifiers used, the RF
classifier achieved the highest accuracy for both models
while the SVC classifier particularly stood out in the first
model for diagnosing migraine versus healthy controls
because it was designed for binary classification. Moreover,
comparing patients and healthy controls, an increase in beta
and theta band values was observed, with a clear decrease
in alpha band values in migraine patients, especially in the
case of migraine accompanied by an aura.

In the future, the data set can be expanded to include
other types of migraines and other types of neurological dis-
eases can be included, such as tension and sinus headaches,
as well as epilepsy, because their symptoms overlap with
those of migraines, thus developing EEG-based care for this
type of neurological disorder.
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