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Abstract: Accurately forecasting stock prices movements can lead to financial gains, making it a highly sought-after area of study.
In recent studies, Temporal Convolutional Network (TCN) has risen in popularity due to its use of dilated convolutions, which are
adept at capturing temporal dependencies within time series data. DeepTCN, a variation of TCN designed specifically for probabilistic
forecasting, is said to outperform other models in time series forecasting. As far as we know, no extensive research has been conducted
to evaluate the performance of DeepTCN compared to TCN. This study conducted a comparative analysis to assess the performance of
both TCN and DeepTCN in Indonesian stock price prediction. Both models will be evaluated using Mean Squared Error (MSE), Root
Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) scores. The result from this comparative analysis shows
that DeepTCN is superior to TCN in predicting stock prices. DeepTCN consistently outperforms TCN, with lower values of MSE,
RMSE, and MAPE. This improved performance lies in the parametric approach used in DeepTCN, which allows it to better capture
and adapt to fluctuations in stock trends. The findings from this comparative analysis emphasize the need to assess forecast objectives

and dataset requirements when choosing between TCN and DeepTCN.
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1. INTRODUCTION

The stock exchange, commonly known as the stock
market, functions as a dynamic marketplace where the
trading of shares takes place. It has been proven that stock
market capitalization holds a crucial role in propelling a
global economic development [1]. Shares of publicly traded
companies, having undergone the listing process on the
stock market, represent tradable ownership units in these
companies. Owning company shares serves as evidence
of ownership, granting shareholders access to associated
benefits and privileges. The movement of stock prices is
primarily influenced by the interaction between demand
and supply forces, further shaped by the actions of traders
engaged in buying and selling shares. Share transactions
aim for financial gains, like conventional transactions
involving goods and services. Accurately predicting a
stock’s trajectory can lead to substantial financial gains,
making it a highly sought-after area of study. Forecasting
the stock market presents a challenge due to the market’s
susceptibility to national policies, global and regional
economic factors, as well as psychological, human, and an
excessive focus on univariate data [2].

In the era of artificial intelligence, machine learning has
become crucial for time series forecasting. Deep learning
algorithms are well-regarded for their advancements in
stock price prediction [3]. Since the trends of the stock
market are constantly changing, the amount of data
generated in the stock market is huge and has significant
nonlinearity. To effectively handle such dynamic data,
a model that can identify hidden patterns and provide
reliable, scalable forecasting solutions is needed [4].

Recently, deep learning models have been increasingly
used as their performance surpasses statistical and
traditional models. The nonlinear dynamics within deep
learning enables a comprehensive understanding of the
complex patterns and temporal dependencies in the
stock market [5]. Among these models, a specialized
Convolutional Neural Network (CNN) architecture, namely
Temporal Convolutional Network (TCN), has gained
popularity due to its dilated convolutions, which can
effectively capture long-range dependencies in time
series, making them well-suited for modeling temporal
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relationships in sequential data. In addition to TCN, a
variant known as Deep Temporal Convolutional Network
(DeepTCN) has been developed by [6 developer] to
forecast numerous correlated time series data through
an encoder-decoder architecture. DeepTCN builds upon
TCN foundation by introducing additional elements
like residual blocks to tackle more challenging task of
probabilistic forecasting, which stated by [6] that their
model demonstrates a better result when compared to
state-of-the-art models in both forecasting and probabilistic
forecasting tasks. However, to the best of our knowledge,
the capabilities of the DeepTCN model have not been
thoroughly evaluated in comparison to its baseline TCN
model.

To address the issue, this study conducted a comparative
analysis between TCN and DeepTCN to evaluate their
performance in the sector of forecasting Indonesian stock
prices. Utilizing DeepTCN’s strength in probabilistic
forecasting, this study also presents a novel method
for Indonesian stock price prediction by integrating
probabilistic forecasting framework with parametric
approach to forecast time series data. This method
leverages the capability of DeepTCN to deliver not only
point predictions but also a measure of uncertainty,
allowing for more informed decision-making in stock
market investments. Various evaluation metrics, including
Mean Squared Error (MSE), Root Mean Squared Error
(MSE), and Mean Absolute Percentage Error (MAPE) were
employed to evaluate the performance of these models.
The key contributions of this study are as follows:

e Providing a comparative analysis of TCN and
DeepTCN for Indonesian stock price prediction. This
would involve training and testing the models on In-
donesian stock data and assessing their effectiveness
in forecasting future prices.

o Identifying strengths and weaknesses of TCN and
DeepTCN models to analyze which model performs
better for Indonesian stock price prediction. This
study delves into factors that influence the perfor-
mance of TCN and DeepTCN, potentially attributing
it to factors like the data’s characteristics or the
models’ suitability for the financial sector.

e Given DeepTCN’s specialization in probabilistic fore-
casting, this study explores its ability to predict not
just a single future price but also the probability
distribution of possible prices. By integrating prob-
abilistic forecasting with parametric approach into
Indonesian stock price prediction, this study also
explores new possibilities for enhancing forecasting
accuracy and managing risks in financial contexts.
This could provide valuable insights into potential
risks and uncertainties associated with stock price
movements in the Indonesian stock market.

The outcomes of this study not only contribute to the
advancement of stock price prediction by offering a robust
comparison between TCN and DeepTCN in the context of
Indonesian stock market, but also illuminate the strengths
and limitations of each method in this specific application.
The results serve as valuable guidance for financial analysts
and researchers in selecting the most appropriate model
for similar tasks in the realm of stock price forecasting,
promoting more accurate and reliable predictive models.

This study also introduces a novel method to Indonesian
stock price prediction by integrating probabilistic
forecasting with a parametric approach. This method
has the potential to improve prediction reliability while
offering a better way to manage uncertainty, leading to a
deeper understanding of stock market trends. By uniting
these techniques, the research aims to inspire new ways to
address the inherent volatility in financial markets, while
fostering innovative approaches to investment planning and
risk management. Overall, the insights presented in this
paper contribute to the growing field of Al in financial
analysis, with potential implications for improving market
insights, risk assessment, and investment strategies in
Indonesian stock market.

The paper is structured as follows. Section 2 provides
a comprehensive review of related research, focusing
on the methodologies used in previous studies for stock
prediction. This section outlines the various approaches
taken by researchers, detailing how they have addressed
stock forecasting, and it summarizes the outcomes and
insights derived from these studies. It includes a discussion
of the evolution of predictive models, leading up to
TCN, which have shown promise in handling time
series data for stock prediction. Section 3 describes the
proposed methodology, outlining the research process with
a flowchart, providing information on the dataset and
pre-processing steps, and examining the architecture of
TCN and DeepTCN in detail. Section 4 presents a detailed
description of our experiments and tasks, providing a
comprehensive overview of the approaches we use to
adjust parameters and examine the model’s characteristics,
while Section 5 showcases the experimental results and
evaluates them using specific metrics. Finally, Section 6
summarizes the conclusions, addresses any limitations, and
proposes directions for future research.

2. LITERATURE REVIEW

Numerous research has been conducted to forecast
the stock market for financial gains, employing a
variety of techniques with diverse outcomes. Historically,
conventional statistical techniques that involve different
types of moving averages and simple forecasting strategies
were often employed to predict stock prices [7]. However,
Statistical methods are inherently linear, which restricts
their effectiveness in predicting stock prices [8]. Since
stock data is nonstationary, chaotic, random, and influenced
by various technical factors, traditional statistical methods
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lack the accuracy needed for reliable forecasts [9].

As machine learning evolves, deep learning is
becoming more prominent in stock price prediction,
providing advanced models that can identify complex
patterns in financial data, which traditional machine
learning models often struggle with. These deep learning
models are increasingly being used to enhance the accuracy
and reliability of stock forecasts. Singh and Srivastava
[10] introduced a market forecasting model that utilizes
principal component analysis for feature extraction, which
serves as an input for a Deep Neural Network (DNN).
Althelaya assesses the capabilities of various LSTM-
based deep learning architectures in predicting financial
time series, focusing on both short-term and long-term
forecasts. The study compares bidirectional and stacked
LSTM models with simpler neural networks and standard
LSTM setups to evaluate their relative performance [11].
In a separate study, Recurrent Neural Network (RNN) with
attention mechanisms was introduced by [12] to predict
multivariate time series, demonstrating its effectiveness in
stock price forecasting.

Besides RNN, Convolutional Neural Network (CNN)
are also recognized as powerful models for forecasting
stock prices. Although CNN was originally designed for
computer vision tasks, they can be applied to time series
data due to their capability to capture relevant patterns
and features in sequential data. CNN were utilized to
predict stock prices using historical data and found that
the convolutional sliding window technique can effectively
capture stock movements [13]. As the study progresses,
it has been observed that traditional RNN are prone to
gradient explosion, while CNN are often deemed unsuitable
for time series analysis [14].

In more recent studies, a form of specialized CNN
architecture, namely temporal convolutional networks
(TCN), has gained popularity due to its dilated convolutions,
which can effectively capture long-range dependencies
in time series, making them well-suited for modeling
temporal relationships in sequential data. Deng et al. [15]
conducted a study on stock trend prediction using TCN
model. They discovered that TCN outperforms ARIMA
and deep neural networks such as LSTM and CNN in
sequence modeling and classification tasks. Another study
[14] introduces a feature attention mechanism into the
feature extraction process of TCN. Their results show that
this approach enhances TCN performance across various
error metrics, suggesting that the features processed by
TCN with attention lead to improved predictive outcomes.
In another experiment, Zhang and Wang demonstrated
that combining wavelet transform with TCN outperformed
LSTM [16]. This improvement is attributed to TCN’s
distinctive convolutional network design, which excels at
capturing and analyzing trends in time series data. By
combining TCN and BERT, the model was able to capture
the contextual nuances of financial news more effectively

than traditional methods relying on sentiment scores.
Zhang et al. propose that the TCN-at-BERT model offers
a more detailed and accurate framework for stock market
prediction, showing performance improvements of 5.8% to
19.9% over the LSTM-BERT model [17].

New models are regularly developed to improve
the accuracy and flexibility of TCN in the field of time
series forecasting [6], [18], [19]. DeepTCN is one of
these innovations, designed specifically for probabilistic
forecasting [6]. Probabilistic forecasting provides a
distribution of possible future outcomes in specific time
period that allows for a more detailed understanding
of risks and opportunities associated with future events
[20]. Baba observed that probabilistic forecasting can
improve the prediction accuracy by offering probability
distributions within the state space, enabling a more
thorough fit to the data than the single curve used in
conventional statistical methods [21]. Due to the challenge
of predicting uncertainty, probabilistic models often struggle
to generate precise probability distributions, leading to
either overconfidence in predictions [22] or overly broad
uncertainty ranges [23]. Jensen, Bianchi, and Anfinsen
[24] introduced an innovative approach to probabilistic
time series forecasting using DeepTCN and LSTM as their
deep learning models. Their method combines Conformal
Prediction (CP) to generate Prediction Intervals (PIs) with
reliable coverage and ensemble learners that use Quantile
Regression (QR) to address heteroscedastic data. However,
a notable limitation of their approach is its reliance on
computationally intensive ensemble methods, which may
hinder scalability and efficiency in real-time applications.
Another study addressing uncertainty issues within the
framework of volatility modeling using Efficient Market
Hypothesis (EMH) [25]. Although the findings offer
valuable insights, the study’s assumption of EMH being
valid across all market conditions may restrict the model’s
applicability in markets influenced by behavioral biases or
other inefficiencies.

To our knowledge, no comparative study has assessed
the effectiveness of DeepTCN against TCN. This gap in
research creates an opportunity to investigate the potential
strengths and limitations of both models, offering insights
into which might be more suitable for specific applications
or datasets. Moreover, while probabilistic forecasting
holds considerable promise, its broader applicability is
hindered by practical challenges, including computational
complexity and the need for robust assumptions. By
addressing these research gaps, this research not only
emphasizes the practical applications of DeepTCN and
TCN models but also lays the groundwork for future
studies in probabilistic forecasting and financial modeling.

3. METHODOLOGY

In this section, we provide a comprehensive overview
of the research methodology employed in this study. The
model used in this study will also be described in detail, pro-
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viding a structured way to analyze the collected data. Fig.
1 illustrates the research workflow, outlining the sequential
steps taken from data collection to model evaluation.

¥
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Figure 1. Main research framework

A. TCN

Temporal Convolutional Network (TCN) is a category
of convolutional neural network (CNN) uniquely designed
to effectively manage time series data [26]. Originally
proposed for action segmentation and detection [27], TCN
consists of a series of cascaded 1D convolutional layers,
enabling the mapping of inputs of varying lengths to output
sequences of same length [28]. The network structure of
a TCN expands upon that of a 1D CNN, where multiple
layers of 1D convolutions are layered consecutively. The
fundamentals of 1D convolution layer are depicted in (1)
[29].

k=1
FOo) = (xx )0 = ) ffxmjst 2 k
j=0

u=Fxp), F(xk +1)),...,F(x,)) 1)

Both TCN and DeepTCN utilize encoder-decoder ar-
chitecture to process time series data as shown in Fig. 2.
The encoder extracts features, and the decoder uses those
features to generate predictions. Both models use causal
convolutions to ensure that they only rely on previous
information when making predictions, which aligns with
the causality principles in time series data [6]. Dilated con-

volutions might be employed to expand the receptive field
and capture long-range dependencies within the sequence.
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Figure 2. TCN Architecture [?]

Algorithm 1 outlines the TCN algorithm for stock price
prediction, offering a step-by-step guide on the architecture
and key components. It covers the specific configurations
employed to handle time-series data

| Algorithm 1 TCN \

INPUT

data

arch

OUTPUT

p(val)

eval

check _null(data)

scaler(data)

data(train), data(val)

10 | Model « build model(arch)

11 | Model « train(data)

12 | p(val) « predict(Model, window _step, data(val))
13 | MSE, RMSE, MAPE « (data(val), p(val))
14 | Return MSE, RMSE, MAPE

O 00NN B~ W=

Unlike conventional CNNs, TCN employs causal and
dilated convolutions. In causal convolutions, the output at a
given time point t is convolved solely with elements from
time t and earlier in the preceding layer. This ensures that
there is no information leakage from future time points to
past ones [30]. A causal convolutional layer addresses the
issue by appending zero padding of length k-1 at the start
of the input sequence which is represented in (2) [29].

k-1
FOo)=(xx )= Y flxj  %e0:=0
=0
u=(Fx), F) .., F(x,) @

An additional concern with the basic 1D CNN is its
receptive field, which scales linearly with the number of
layers. This is undesirable for our purpose as we intend
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to capture long-term dependencies. To address this, dilated
convolution is employed as a technique that enables recep-
tive fields to grow exponentially with the number of layers.
More precisely, when integrated with causal convolution,
the dilated convolutional layer at the r-th level can be
expressed using (3) [29].

k=1
FOo) = (o, O = D fi % x0:=0
=0
w=(F(x), F)),.... Fa) ()

B. DeepTCN

Deep Temporal Convolutional Network (DeepTCN) is
a forecasting model that builds upon the TCN architecture,
but the key difference lies in its use of stacked residual
blocks as shown in Fig. 3. Residual blocks allow the
network to learn even more intricate temporal relationships
by creating a “shortcut” path for the information to flow [6].
These blocks help address the vanishing gradient problem,
a common challenge in training deep neural networks on
long sequences. The architecture also includes two distinct
probabilistic forecasting frameworks. The first framework
utilizes a parametric approach, enabling the generation of
probabilistic forecasts for future observations by directly
predicting the parameters of the hypothetical distribution
through maximum likelihood estimation. The second frame-
work, on the other hand, is nonparametric and creates a set
of forecasts based on specific quantile values of interest.

Residual block with two inputs i

Residual Block: (K,d) ReLu + -

—® i SV w—
Batch Norm ' Batch Norm '

t L ‘
Dilated Conv Dense Layer !

t t

ReLU : ReLU

t H t - ‘
Batch Norm H Batch Norm '

t : t :
Dilated Conv H Dense Layer ‘

Figure 3. Stacked Residual Blocks

(6]

Algorithm 2 provides an overview of the DeepTCN
method for forecasting stock prices, maintaining the same
input and output structure as TCN algorithm. The primary
variation lies in line 10, where the model incorporates a
parametric approach into the algorithm.

Tnputs X0, o 1

| Algorithm 2 DeepTCN

INPUT

data

arch

OUTPUT

p(val)

eval

check _null(data)
scaler(data)
data(train), data(val)

O 00NN B~ Wi —

11 | Model « train(data)

12 | p(val) « predict(Model, window _step, data(val))
13 | MSE, RMSE, MAPE « (data(val), p(val))

14 | Return MSE, RMSE, MAPE

10 | Model « build model(arch, parameteric _approach)

The parametric approach assumes that the data follows
a specific distribution defined by parameters such as the
mean and standard deviation. In this study, the half-normal
distribution is used as the parametric approach. The half-
normal distribution is a variant of both the folded normal
and truncated normal distributions [31]. Unlike a symmetric
normal distribution, the half-normal distribution extends
from zero to positive infinity, representing only positive
values. It can be visualized as a standard normal distribution
folded at its mean [32], resulting in a distribution where
all negative values are eliminated. This creates a shape
resembling the right half of a typical normal distribution,
characteristic of the half-normal distribution. The probabil-
ity density function of half-normal distribution is defined in

.
2 1 1( x—p\2
y=f(xlp, o) = \/j_e_Z((r) X > U )
To

where p defines the location parameter and o defines the
scale parameter. The probability density function (pdf) is
undefined if x < p.

C. Evaluation Metrics

This study uses mostly error assessment metric to see
how good the model is to predict stock prices. The metrics
that are used in this study are as follows.

1) Mean Squared Error (MSE): The Mean Squared
Error quantifies the average squared deviation be-
tween the actual values and the predicted values
[33]. It assigns equal importance to both large and
small errors, which makes it particularly sensitive to
outliers. MSE is calculated as:

IS e
MSE_n;(Al P) §))

where n represents the number of data points, A; is
the actual value, and P; is the predicted value.
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2) Root Mean Squared Error (RMSE): The Root Mean-
Squared Error (RMSE) is calculated by taking the
square root of the MSE and serves‘ as an indicator
for typical size of errors in the original data, it
prioritizes significant errors over minor ones. In
contrast to MSE, RMSE offers an error metric that
uses the same units as the target variable [34]. RMSE
is calculated as:

RMSE = VMSE (6)

3) Mean Average Percentage Error (MAPE): The Mean
Average Percentage Error calculates the average per-
centage difference between the actual and predicted
values [35]. MAPE is expressed as a percentage,
making it easier to interpret. MAPE is calculated as:

¥ A % 100
N

MAPE = @)

4. EXPERIMENTAL PROCEDURE

The experiments were conducted on a high-performance
workstation featuring an AMD Ryzen 5 3500U with Radeon
Vega Mobile Gfx CPU @ 2.1GHz, 20GB of RAM, and an
AMD Radeon (TM) Vega 8 GPU. This hardware configura-
tion provided the computational power required for training
and evaluating machine learning models efficiently. The
machine learning models were implemented using Python
programming language (version 3.9.7). We utilized popular
libraries such as NumPy, Pandas, and Scikit-learn for data
preprocessing, and model evaluation. As for the model
used (TCN), the library used is Darts. All experiments
were conducted using Python within a Jupyter Notebook
environment.

A. Datasets

The dataset used in this study includes historical stock
data from the Kaggle [36] , covering the period from April
16, 2001, to January 6, 2023, with intervals ranging from
minutes to daily. The characteristics and origins of the stock
data are summarized in Table I below, offering a strong
foundation for analyzing stock price trends and movements
in the following sections.

B. Preprocessing

This study utilized historical stock data from the In-
donesian stock market, consisting of 1,570 stock records.
The dataset was split into training (1,256 records) and
validation sets (314 records) with an 80:20 ratio. When
it comes to stock price prediction, cross-validation is not
performed because historical data from previous records is
required to observe the patterns in a sequential manner.
MinMax scaling was applied to normalize features such
as opening price, closing price, high price, low price, and
volume, ensuring all feature values were scaled between 0
and 1. Feature selection was organized into two approaches:
univariate predictions, which focused on predicting the
closing price, and multivariate predictions, which aimed to
predict both the opening and high prices at the same time.

C. Hyperparameters

In this study, the hyperparameters are derived from the
Darts library’s implementation of a TCN model. Both TCN
and DeepTCN models share the same basic structural con-
figuration. The parameters for both models are as follows:

1) Batch_size : processes input data sequences at a time
during training.

2) Epoch : the amount of loop that the model will be
trained.

3) Input chunk length : this parameter determines
how much historical data the model considers at each
step.

4)  Output _chunk length : this parameter determines
the length of the output sequences it generates.

5) Dropout : Regularization technique used to prevent
overfitting.

6) Kernel size : this parameter defines the size of
the filter that moves across the input data during
convolution.

7) Num_ filters : filters are the building blocks of con-
volutional neural networks and are responsible for
detecting features in the input data.

8) Optimizers : used for optimizing the model’s param-
eters during training.

Despite the structural similarities, DeepTCN in this study
adopts a parametric approach using the half-normal
distribution. The half-normal distribution is a continuous
probability distribution that includes only positive values
(where x > 0). It is derived by taking the absolute values of
a standard normal distribution’s random variable, removing
any negative values, which results in a distribution focused
solely on positive outcomes.

During the training process, we incorporate a parameter
known as past covariate. Past covariates provide historical
context for the time series data being analyzed. They serve
as features that describe past conditions or events that may
influence the target variable [36]. In this study, the volume
of the stocks will be used as the past covariate.

The TCN model is designed with a batch size of
32 to strike a balance between computational efficiency
and the stability of gradient updates. It is trained in over
50 epochs, offering enough iterations for the model to
learn effectively while minimizing the risk of overfitting.
An input chunk length of 300 allows the model to identify
medium to long-term patterns in time-series data, such
as cycles and trends, while an output chunk length of
30 targets short-term predictions, which are particularly
relevant for stock market analysis. To reduce the likelihood
of overfitting, a dropout rate of 0.2 is applied, randomly
deactivating 20% of the model’s units during training. The
kernel size of 3 is selected to capture localized temporal
patterns, and 4 filters are used to maintain a balance
between extracting key features and keeping the model
architecture simple. Lastly, the Adam optimizer is chosen
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TABLE I. Dataset Used

| No | Ticker | Stock Name \ Sector | Features | No Data |  Source |
1 INDF PT Indofood Indonesia Tbk. Consumer Goods
2 | ACES | PT Ace Hardware Indonesia Tbk. Cyclical 5 1564 Kaggle [36]
3 | BBNI | PT Bank Negara Indonesia Tbk. Finance

TABLE II. Hyperparameter Settings

| Method | Parameter

TCN batch size = 32, epoch = 50, input_chunk length = 300, output chunk length = 30, dropout = 0.2,
kernel size = 3, num_ filters = 4, optimize = Adam

DeepTCN | batch size = 32, epoch = 50, input chunk length = 300, output chunk length = 30, dropout = 0.2,
kernel size = 3, num_ filters = 4, optimize = Adam, likelihood = HalfNormalDistribution()

TABLE III. Metrics for univariate predictions

Method | Ticker | Period(Days) | ~MSE RMSE | MAPE |

INDF 6675.3193 | 81.7026 | 0.9078

Naive | ACES 1 561.3642 | 23.6931 | 1.8991
BBNI 19394.969 | 139.2658 | 1.1697

INDF 0.0063 0.0797 | 0.1352

ACES 1 0.0055 0.0745 | 0.1094

BBNI 0.0764 0.2764 | 0.5683

INDF 0.0045 0.0671 | 0.1014

ACES 5 0.0131 0.1152 | 0.1643

BBNI 0.0662 02573 | 0.5308

TCN INDF 0.0025 0.0782 | 0.0503
ACES 20 0.0311 0.1766 | 0.2522

BBNI 0.0282 0.1681 | 0.1191

INDF 0.0018 0.0425 | 0.0613

ACES 30 0.0285 0.1691 | 0.2421

BBNI 0.0254 0.1591 | 0.6338

INDF 0.0011 0.0334 | 0.0703

ACES 1 0.0003 0.0015 | 0.0021

BBNI 0.0185 0.1361 | 0.3889

INDF 0.0035 0.0596 | 0.0905

ACES 5 0.0089 0.0948 | 0.1126

BBNI 0.0267 0.1635 | 0.2573
DeepTCN | INDF 0.0014 0.0119 | 0.0209
ACES 20 0.0099 0.0997 | 0.1151

BBNI 0.0141 0.1191 | 0.3041

INDF 0.0017 0.0135 | 0.0239

ACES 30 0.0103 0.1017 | 0.1064

BBNI 0.0193 0.1389 | 0.2272
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TABLE IV. Metrics for multivariate predictions

| Method | Ticker | Period(Days) | MSE | RMSE | MAPE |

INDF 0.0097 | 0.0986 | 0.1622
ACES 1 0.0057 | 0.0756 | 0.1113
BBNI 0.1093 | 0.3307 | 0.6073
INDF 0.0292 | 0.1711 | 0.2654
ACES 5 0.0173 | 0.1315 | 0.1925
BBNI 0.0922 | 0.3036 | 0.5711
TCN INDF 0.0198 | 0.1409 | 0.2638
ACES 20 0.0312 | 0.1766 | 0.2547
BBNI 0.0441 | 0.2101 | 0.3726
INDF 0,0197 | 0,1406 | 0,2975
ACES 30 0,0288 | 0,1699 | 0,2451
BBNI 0,0314 | 0,1773 | 0,2931
INDF 0.0003 | 0.0173 | 0.0352
ACES 1 0.0001 | 0.0121 | 0.0158
BBNI 0.0051 | 0.0715 | 0.2507
INDF 0.0063 | 0.0796 | 0.1182
ACES 5 0.0081 | 0.0901 | 0.1024
BBNI 0.0427 | 0.2067 | 0.3769
DeepTCN | INDF 0.0047 | 0.0689 | 0.1224
ACES 20 0.0119 | 0.1091 | 0.1233
BBNI 0.0314 | 0.1773 | 0.2931
INDF 0.0033 | 0.0578 | 0.0944
ACES 30 0.0178 | 0.1334 | 0.1541
BBNI 0.0207 | 0.4298 | 0.1441

for its ability to adapt learning rates dynamically and its
effectiveness in handling large datasets, resulting in faster
and more reliable convergence.

DeepTCN will be provided with the same
hyperparameter —as  TCN. However, = DeepTCN
incorporates an additional parameter, likelihood =

HalfNormalDistribution(), to enable probabilistic modeling.
This likelihood function is well-suited for stock price
predictions, as it captures the uncertainty and skewness
often observed in such data. By integrating this probabilistic
approach, DeepTCN enhances its ability to provide robust
predictions even in the presence of highly volatile market
conditions, making it more adaptable to real-world
scenarios.

5. REsuLr ANp DiscussioN

In this study, we evaluate both models into two
categories for each stock: univariate prediction and
multivariate prediction. Univariate evaluation examines
single variables independently, whereas multivariate
evaluation explores the connections between several
variables to offer a more profound understanding of the
phenomenon studied.

The evaluation metrics for univariate and multivariate

predictions are provided in Table V and Table VI,
respectively. These tables display error metrics (MSE,
RMSE, and MAPE) for predictions made across various
companies (INDF, ACES, and BBNI) and over different
window steps (1, 5, 20, and 30 days).

A. Performance Evaluation - Univariate Prediction

In univariate prediction, we established a naive model
as a baseline to provide a point of comparison for TCN
and DeepTCN in 1 day prediction. The naive model, often
representing a simple yet effective prediction method,
helps to contextualize the improvements brought by more
complex architectures. By comparing the evaluation metrics
of TCN and DeepTCN against the naive model, we can
assess the capability of these advanced models.

The results in Table III reveal that DeepTCN
consistently outperforms TCN across all window steps in
terms of MSE, MAPE, and RMSE, as evidenced by the
data. For a 1-day window step, DeepTCN reduces MSE
by 18%, 75.2%, and 82.54% for different companies,
while for a 5-day window, the reduction in MSE ranges
from 22.3% to 59.3%, demonstrating its effectiveness over
short-term predictions. In longer window steps, such as
20 and 30 days, the reductions are even more significant,
with MSE dropping by up to 68% in some instances,
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reflecting the model’s ability to capture long-term stock
price fluctuations. Similarly, improvements in MAPE
and RMSE are also notable, with DeepTCN consistently
delivering better performance across all metrics. For
example, in specific cases, MAPE sees reductions of up to
98%, and RMSE decreases by as much as 76.32%, further
illustrating the superiority of DeepTCN in handling both
short- and long-term stock movements.

B. Performance Evaluation - Multivariate Prediction

In this study, the results in Table IV reveal that
DeepTCN consistently outperforms TCN across all window
steps in terms of MSE, MAPE, and RMSE, as evidenced
by the data. For a 1-day window step, DeepTCN reduces
MSE by 18%, 75.2%, and 82.54% for different companies,
while for a 5-day window, the reduction in MSE ranges
from 22.3% to 59.3%, demonstrating its effectiveness over
short-term predictions. In longer window steps, such as 20
and 30 days, the reductions are even more significant, with
MSE dropping by up to 68% in some instances, reflecting
the model’s ability to capture long-term stock price fluctu-
ations. Similarly, improvements in MAPE and RMSE are
also notable, with DeepTCN consistently delivering better
performance across all metrics. For example, in specific
cases, MAPE sees reductions of up to 98%, and RMSE
decreases by as much as 76.32%, further illustrating the
superiority of DeepTCN in handling both short- and long-
term stock movements.

C. Forecast Analysis

In this study, we found that using a parametric approach
in DeepTCN significantly improved prediction outcomes,
particularly for stock prices. The DeepTCN model with this
parametric approach outperformed traditional TCN models
without parametric features. Even when tested across three
different stocks, the DeepTCN model showed consistent
and stable performance. Both models perform much
better than a basic, simple naive model when it comes
to predicting stock data. We used a parametric approach
based on the half-normal distribution which ensures that
the dataset’s variance remains positive, a critical aspect
when dealing with stock prices where negative values are
not possible.

The forecasts shown in Fig. 4 highlight that DeepTCN
outperforms TCN across all observed stock emitters.
The parametric approach employed by DeepTCN allows
the model to recognize and adapt to highly volatile
stock prices, which are common in dynamic markets.
While both models can capture the general direction of
stock price movements, DeepTCN excels at identifying
intricate patterns and trends in the data. In contrast, TCN’s
predictions tend to be more linear, lacking the detailed
recognition that DeepTCN offers. This distinction in pattern
recognition underscores the more advanced capabilities of
DeepTCN in providing accurate and robust stock price
predictions across different companies and time windows.

Actual vs Predicted ACES Close Prices
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1700 -x- Predicted DeepTCN
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(a) ACES Univariate Prediction
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(c) INDF Univariate Prediction

Figure 4. Forecast comparison between TCN and DeepTCN for
univariate predictions

Additionally, the predictions in Figure 5 demonstrate
that DeepTCN consistently outperforms TCN across all
observed stock emitters, with its parametric approach al-
lowing it to adapt to the highly volatile and dynamic
nature of stock prices. While both models can capture
general trends, DeepTCN excels in identifying complex
patterns and nuances, whereas TCN’s predictions are more
linear and lack detailed pattern recognition. Notably, the
multivariate prediction results closely mirror those from
the univariate approach, further affirming DeepTCN’s ro-
bustness in delivering accurate forecasts regardless of input
dimensions. This underscores its superiority in navigating
the challenges of the Indonesian stock market, an emerging
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market characterized by high volatility and sensitivity to
both local and global events.

Actual vs Predicted ACES Open and High Prices
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Figure 5. Forecast comparison between TCN and DeepTCN for
multivariate predictions

D. Statistical Validation

To strengthen the claim that DeepTCN outperforms
TCN, statistical validation was conducted using a paired
t-test. This method aims to assess the significance of the
performance difference between the two models based on
RMSE, ensuring that DeepTCN superiority is not merely
coincidental but is supported by statistical evidence. A
paired t-test was conducted to assess whether the differ-
ences in RMSE between the two models were statistically

significant.

sa/ \n

The hypotheses for the test were as follows: the null hypoth-
esis Hy stated that the mean difference in RMSE was zero,
indicating no significant performance difference, while the
alternative hypothesis H, proposed that the mean difference
was greater than zero, implying DeepTCN'’s superior per-
formance. The results showed a t-statistic of 3.36 and a p-
value of 0.0027. Since the p-value is significantly lower than
the standard threshold (@ = 0.05), the null hypothesis was
rejected, providing strong statistical evidence that DeepTCN
significantly outperforms TCN in predicting stock prices.

®)

t — value =

6. CoNcLUsION

In this study, a comparison analysis was conducted
between TCN and DeepTCN models in forecasting stock
prices using 3 Indonesian stock historical price data.
In summary, DeepTCN demonstrates its superiority in
stock price prediction compared to TCN. DeepTCN
is capable of outperforming TCN by achieving lower
values of MSE, MAPE, and RMSE. The half-normal
distribution parametric approach used in this study has
proven to make DeepTCN better at capturing fluctuating
stock trends. Datasets limited to 2023 may not fully
capture emerging patterns or significant events occurring
in subsequent years, which are critical for accurate stock
price forecasting. For example, new geopolitical events,
changes in monetary or fiscal policies, and breakthroughs in
technology can significantly impact stock market dynamics.

The future work recommended in this study involves
evaluating the performance of TCN and DeepTCN on a
varied set of datasets. This evaluation aims to understand
the capabilities of DeepTCN across different types of data
characteristics and tasks. By assessing these models on
diverse datasets, researchers can gain insights into how well
DeepTCN generalizes and performs in various scenarios.
When considering parametric approaches, it is important
to choose a method that aligns with the characteristics of
the dataset and the specific goals of the analysis. This
evaluation can provide valuable insight for understanding
the strengths and limitations of DeepTCN and guide its
application in real-world datasets across different domains.
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