
International Journal of Computing and Digital Systems
2025, VOL. 17, NO.1, 1-19

http://dx.doi.org/10.12785/ijcds/1571040201

Behavior Analysis of the (DESFO) Algorithm Using Different
Transfer Functions and Different Classifiers

Ahmed Sabry Abolaban1, O. E. Emam 2 and Safaa. M. Azzam 3

1,2,3Department of Information Systems, Faculty of Computers and Artificial Intelligence, Helwan University, Helwan, Egypt

Received 18 June 2024, Revised 4 December 2024, Accepted 9 December 2024

Abstract: The process of feature selection (FS) plays a crucial role in optimizing model performance in machine learning. It achieves this
by reducing data dimensionality and eliminating irrelevant features. This study uses Transfer functions and Machine learning classifiers
to evaluate the proposed DESFO, which is the effectiveness of integrating the Differential Evolution (DE) with Sailfish Optimization
(SFO) in FS issues. The DESFO algorithm is tested with both V-shaped and S-shaped transfer functions across various classifiers, such
as k-nearest Neighbors (k-NN), Support Vector Machine (SVM), and Random Forest (RF). The study conducted experiments on 14
benchmark datasets from the UCI Machine Learning repository, illustrating that using DESFO with either type of transfer function
notably improves classification accuracy and computational efficiency. The findings indicate that V-shaped transfer functions perform
well in situations requiring precise feature selection, whereas S-shaped transfer functions show outstanding generalization capabilities.
When inspecting the mean accuracy, DESFO-RF employing V-shaped V4 and DESFO-SVM employing S-shaped V4 configurations
outperform all other transfer functions in 10 of the 14 benchmarks. Regarding the mean Fitness functions, DESFO-RF employing
V-shaped V1 and DESFO-SVM employing S-shaped V3 is superior in 8 of the 14 benchmarks. Moreover, considering the number of
selected features, DESFO-RF equipped with an S-shaped V1 stands out in 8 of 14 benchmark datasets.

Keywords: Feature selection, Transfer Functions, V-shaped, S-shaped, Classification, Machine learning, differential evolution,
Sailfish, Optimization

1. Introduction

Machine learning (ML) algorithms use features, or mea-
surable aspects of the observed process, for classification.
The feature count in ML applications has grown from
tens to hundreds over time. Addressing the challenge of
irrelevant and redundant variables, Feature Selection (FS)
is a technique that helps in understanding data, reducing
computational needs, overcoming the curse of dimensional-
ity, and improving prediction accuracy. Supervised learning
algorithms utilize data as a matrix [1]. Optimizing high-
dimensional datasets often requires reducing these datasets.
This can be achieved by finding a similar matrix with fewer
features, making it easier to use. Dimensionality reduction
simplifies the process by focusing on discoveries with fewer
columns. Additionally, selecting appropriate features can
lower measurement costs and enhance problem understand-
ing [2], [3].

Due to its numerous benefits, FS is widely used in
real-world applications, particularly in classification and
regression problems. It has effectively addressed challenges

in various domains, such as micro-array analysis, image
classification, gene selection [4], facial recognition, and text
classification [5]. Feature selection in ML involves using
multiple statistical methods such as filters, wrappers, and
embedded methods. The filter method is a preprocessing
step that selects features based on specific criteria without
considering their effect on the algorithm’s performance [6],
[7]. On the other hand, wrapper methods evaluate feature
subsets based on the accuracy of a given predictor and
use search strategies to yield nested subsets of variables
[8]. Finally, embedded methods perform variable selection
during the training process and are specific to certain
learning machines, making it impossible to separate the
learning and FS steps [9]. Methods for FS, such as wrap-
pers or embedded methods, involve utilizing nonparametric
algorithms like decision trees, support vector machines, and
neural networks [10].

Over the past few decades, numerous techniques have
been introduced for classification. Some of the most
commonly utilized methods include K-Nearest-Neighbors
(KNN), artificial neural networks (ANNs), support vector

E-mail address: ahmed sabry 1053@fci.helwan.edu.eg, osamaemamfcih@gmail.com , eng safaa azam@yahoo.com

http://dx.doi.org/10.12785/ijcds/1571040201

2 Ahmed Sabry Abolaban, et al.

machines (SVMs), and ensembles of classification trees like
Random Forest (RF) [11]. ML algorithms are found to be
more precise when compared to statistical techniques such
as logistic regression or discriminant analysis, particularly
when the input datasets have varying statistical distributions
or when the feature space is complicated [12]. Recently,
with the increased computational power, ML algorithms
have gained more attention, improving the quality of pat-
tern recognition systems. Hence, most classification studies
report that RF, KNN, and SVM are the top classifiers,
achieving high accuracies [9].

Numerous advanced literature reviews have emphasized
the difficulties faced in FS across diverse ML domains.
As per Zhigljavsky [13], FS is likely a combinatorial
optimization problem that falls under the NP-complete
category because of the exponential increase in potential
solutions with adding more dataset features. This makes
it challenging to find feature subsets that are close to
optimal. FS has been classified as an NP-hard problem
that exhibits an exponential increase in computational time
with complexity [14]. As a result, considerable attention has
been given to using metaheuristic (MH) algorithms, which
effectively optimize diverse scenarios [15].

There are four main types of algorithms used in MH:
SI algorithms, EA, PhA, and Human-based algorithms [16].
SI algorithms are based on animal behaviors and swarms,
such as particle swarm optimization (PSO) and ant colony
optimization (ACO), and are commonly used in vehicle
routing and FS applications. The Artificial Bee Colony
(ABC) algorithm is another type of SI algorithm [17].
Evolutionary algorithms (EA) are designed to replicate
the natural process of evolution, including mutation and
selection. Examples of such algorithms include Genetic
Algorithm (GA) and Differential Evolution (DE). Physical
laws inspire some algorithms in the field of PhA. These
algorithms include BBBC, GSA, and MVO. Algorithms
based on human behaviors, like TBLA, SELOA, sine cosine
algorithm, and volleyball Premier League Algorithm, are
designed to optimize various processes [18]. MH algorithms
follow a similar pattern that involves two key phases:
exploration and exploitation. These algorithms randomly
generate operators to explore the problem space during the
exploration phase. In the exploitation phase, Try to identify
the optimal solution by harmonizing these phases. This
approach helps prevent getting stuck in local optima traps.

When dealing with the FS tasks, it becomes crucial to
incorporate Transfer Functions (TFs). According to various
studies, TFs are highly recommended for several reasons.
To begin with, TFs are not bound to any particular algorithm
and don’t influence an algorithm’s search behavior. Further-
more, the algorithm’s computational complexity remains
unaffected since the TF is computed for each solution
in every iteration. Finally, using a TF can enhance both
exploration and exploitation [19], [20], [21].

A. Motivation
The DE algorithm was proposed by Storn et al. [22] as

a stochastic search approach that operates on populations.
It is a practical and straightforward approach for globally
optimizing continuous search, and it has also been utilized
in diverse fields. The Sailfish Optimizer (SFO) was created
and introduced by Shadravan et al. [23]. It depends on the
behavior of a flock of sailfish hunting a flock of sardines.
It imitates their hunting strategy by attacking the flock
of sardines and retrograding after capturing their prey.
This algorithm operates on the principle of population and
aims to optimize performance. It has become well-liked
in optimization because of its efficiency and robustness.
Consequently, this paper introduces a hybrid technique
named DESFO algorithm with eight TFs and three ML
classifiers, combining both FS algorithms.

To apply the DESFO algorithm to solve an FS problem,
a mapping function must change continuous values obtained
by the DESFO algorithm into binary values of either 0 or
1. These binary values represent the decision variables [24].
TFs [21] determine how quickly the decision variables (DV)
value ranges from 0 to 1 and vice versa.

In ML, k-nearest Neighbor (k-NN), Random Forest
(RF), and Support Vector Machine (SVM) are commonly
used ML classification algorithms. This study uses DESFO
as an optimizer to identify the considerable appropriate
attributes. As fitness evaluators, it employs k-NN, RF, and
SVM. Using these evaluators, a new wrapper FS method is
composed [24].

Metaheuristics have been quite successful in FS. How-
ever, many existing methods have focused solely on the k-
NN classifier while neglecting the SVM in several instances.
The Random Forest (RF) technique has received minimal
focus, even though SVM and RF generally produce superior
results compared to k-NN in various classification tasks
[25].

B. Contribution
This paper proposes applying the DESFO algorithm,

Transfer Functions (TFs), and three ML classifiers. It in-
troduces innovative contributions, which are summarized as
follows:

1) The DESFO algorithm is described by incorporating
and replicating DE and SFO.

2) The method utilizes eight TFs, specifically the V-
shaped and S-shaped to change the position values
into binary values.

3) The DESFO algorithm is used for wrapper FS.
4) The performance of DESFO with TFs and classifiers

is assessed using measures such as the mean of
fitness, accuracy, and the mean count of features
chosen.

5) The proposed DESFO algorithm’s performance is
evaluated using k-NN, RF, and SVM machine learn-
ing classifiers with the mentioned metrics.

International Journal of Computing and Digital Systems 3

C. Structure

Section 2 discusses the latest findings and critiques in
art and literature. Section 3 outlines the prior research
conducted. Section 4 describes the methods behind the
newly proposed DESFO algorithm, including using the
eight TFs and other related procedures. Section 5 showcases
the outcomes of experiments, comparing the performance of
the multi-variants of the DESFO algorithm with TFs and
ML classifiers. Finally, Section 6 encapsulates the study’s
conclusions.

2. RelatedWork

Sorour et al. [11] introduced an improved Binary Cray-
fish Optimization Algorithm (BCOA) to enhance FS in
supervised classification tasks. The study aimed to address
the challenge of selecting the most relevant features from
large datasets to improve the performance of machine
learning classifiers. By enhancing the BCOA, the authors
optimized FS, which reduced the number of features while
maintaining or improving classification accuracy. The pro-
posed algorithm was tested on various benchmark datasets,
demonstrating its effectiveness in lowering computational
costs and improving the efficiency of classifiers. Key ad-
vantages of this approach include its ability to handle high-
dimensional data and improve model performance by select-
ing the most significant features. However, the algorithm’s
complexity and the computational effort required for tuning
hyperparameters were noted as potential limitations. Over-
all, the study contributes to FS by offering an innovative
optimization algorithm for supervised classification.

Abdelkader et al. [14] proposed an efficient data mining
technique to assess the satisfaction levels of higher edu-
cation students with online learning during the COVID-19
pandemic. The study aimed to analyze large-scale online
learning data and extract meaningful patterns to under-
stand better the factors influencing student satisfaction.
The authors utilized various data mining algorithms to
evaluate student feedback and performance data, identifying
key variables that impacted satisfaction, such as course
design, technology infrastructure, and instructor interac-
tion. The proposed technique was tested on real-world
datasets, demonstrating its effectiveness in accurately pre-
dicting satisfaction levels and providing actionable insights
for improving online education. The advantages of the
study include its ability to process large amounts of data
efficiently and its practical implications for enhancing the
quality of online learning. However, one limitation noted
was the potential difficulty in generalizing the results to
all educational contexts due to technological access and
resource differences. This study provides a valuable tool
for academic institutions to improve student experiences in
online learning environments.

Hussien et al. [5] developed an improved Binary
Meerkat Optimization (BMO) algorithm to enhance FS

for supervised learning classification tasks. The study in-
troduced modifications to the original BMO algorithm
to improve its performance in selecting relevant features
from high-dimensional datasets, which is critical for in-
creasing the accuracy and efficiency of machine learning
classifiers. The authors evaluated their proposed approach
on various datasets and demonstrated that the improved
BMO algorithm effectively reduced the number of features
while maintaining or boosting classification accuracy. Key
advantages of this method include its ability to enhance
computational efficiency by reducing the feature set and
improving classifier performance. However, the study also
noted potential drawbacks, such as the complexity of the al-
gorithm and the computational resources required for larger
datasets. Overall, the work contributes to FS by providing
an innovative and effective optimization technique.

El-Mageed et al. [7] Utilized a refined Nuclear Reaction
Optimization (NRO) algorithm for targeted gene selection
in cancer classification within large-scale datasets. This
research aimed to address the challenges posed by the
vast number of gene features in cancer datasets, which can
hinder the performance of machine learning classifiers. By
enhancing the NRO algorithm, the authors optimized the
selection of relevant genes, thereby reducing the dimension-
ality of the data while preserving classification accuracy.
The method was applied to several gene expression datasets,
and the results indicated that the improved NRO algorithm
effectively enhanced cancer classification performance com-
pared to traditional techniques. The advantages of the
study include its ability to handle high-dimensional data
efficiently and its improvement in classification outcomes.
However, similar to other meta-heuristic approaches, the
complexity of tuning the algorithm and the computational
cost involved in real-world applications were noted as po-
tential drawbacks. This work provides a promising approach
to gene selection in the context of cancer classification.

Chen et al. [26] introduced an enhanced version of the
Dragonfly Algorithm. The approach improves the Dragonfly
Algorithm by incorporating a BDA-DDO that adjusts step
size adaptively and introduces a novel differential operator
for quicker convergence. It includes a directed variant
for targeted searches and an adaptive method to diversify
populations, tested successfully on 14 UCI datasets.

Chantar et al. [27] introduced an advanced binary Grey
Wolf Optimizer (GWO) incorporated into a wrapper FS
strategy for addressing issues in classifying Arabic texts.
This modified binary GWO is employed as a wrapper-based
FS method. The efficacy of this approach was evaluated
across different learning models, including decision trees,
K-nearest neighbors, Naive Bayes, and SVM classifiers.
Three public Arabic datasets were used for evaluation
to determine the performance of different BGWO-based
wrapper approaches.

Gafar et al. [4]focused on enhancing gene selection for

4 Ahmed Sabry Abolaban, et al.

cancer classification within high-dimensional datasets by
utilizing an improved African Vultures Algorithm (AVA).
The research aimed to tackle the challenge of selecting rel-
evant genes in cancer classification tasks, particularly with
complex, high-dimensional datasets. The authors introduced
an improved version of the AVA aimed at boosting the
performance of ML classifiers through the selection of the
most informative genes.. The methodology was tested on
various gene expression datasets, showing that the enhanced
AVA effectively reduced data dimensionality while main-
taining high classification accuracy. Key advantages of this
approach include its efficiency in processing large datasets
and improving classification results. However, the complex-
ity of the algorithm and the need for hyperparameter tuning
were identified as potential drawbacks. Overall, the study
presents an innovative solution to gene selection challenges
in cancer classification, offering significant improvements
in data handling and model performance.

Mosa et al. [3] focused on improving the credit card
fraud detection (CCFD) technique by leveraging the com-
bination of (MH) optimization techniques and (ML) algo-
rithms. The authors employed several meta-heuristic algo-
rithms, such as genetic algorithms and particle swarm opti-
mization, to enhance the performance of traditional machine
learning models. The study used a publicly available credit
card fraud dataset from Kaggle, containing over 280,000
transactions, including both fraudulent and non-fraudulent
instances. The results demonstrated that the proposed ap-
proach outperformed other baseline models regarding ac-
curacy, precision, recall, and F1 score, making it highly
efficient in detecting fraudulent transactions. The study’s
advantages included high performance in identifying fraud
with relatively low computational cost and effectively han-
dling the imbalanced dataset. However, one disadvantage
was the complexity of tuning the meta-heuristic algorithms,
which could be time-consuming and challenging to optimize
for real-world deployment. The study contributes to fraud
detection by proposing an innovative and effective hybrid
approach.

Fatahi et al. [28] introduced an improved version of the
Binary Quantum-based Avian Navigation Optimizer Algo-
rithm (IBQANA). IBQANA updates the Binary Quantum-
based Avian Navigation Optimizer for better Feature Subset
Selection in medical data, fixing past inefficiencies. It
introduces the Hybrid Binary Operator (HBO) for accurate
binary transitions of continuous values and the Distance-
based Binary Search Strategy (DBSS) for improved search
efficiency and faster convergence by blending exploration
and exploitation with a variable probability approach to
dodge local optima.

3. PreliminaryWork

A. DESFO Algorithm

The No Free Lunch Theorem (NFL) [29] indicates that
an algorithm capable of optimally solving all optimization
issues does not exist. An algorithm’s capability for FS varies
with the dataset, indicating a need for better metaheuristic
approaches to tackle FS challenges efficiently. The DESFO
algorithm introduced by Azzam et al. [30], which combines
Differential Evolution (DE) and Swarm Fish Optimization
(SFO), aims to improve FS and classification accuracy,
addressing an unmet need in current research.

1) DE Algorithm

Storn et al. [22] presented the DE algorithm, recognized
for its effectiveness among Evolutionary Algorithms and
is notable for quick convergence and simplicity. Utilizing
just three parameters: Population size (NP), Crossover rate
(Cr), and Scaling Factor (F), DE effectively solves a wide
array of optimization problems. It starts with an initial
solution set, generating new solutions by modifying existing
ones based on the weighted differences between pairs of
other solutions, also known as mutant solutions. The DE
algorithm has proven effective and embraced for addressing
optimization problems in diverse domains [31].

Mutation: In every iteration (t), Differential Evolution
(DE) uses a mutation operator to create a new donor
vector or mutant vector for each solution. This operator
specifies three potential solutions randomly, emphasizing
that a mutant or donor vector is made by multiplying the
difference between two vectors by a scale factor, followed
by adding this scaled difference to a third solution [22]:

Vi,G+1 = xr1,G + F · (xr2,G − xr3,G). (1)

Three unique integers r1, r2, and r3 are chosen ran-
domly, each lying within the range of 1 to NP, and NP is
an integer and positive, which is four or more. Moreover,
these integers’ values differ from the current index, denoted
as i. After that, the differential amplification (xr2,G − xr3,G)
is boosted by a static F factor , varying between [0, 2].

Crossover: Behind mutation, a new trial vector child is
created from the solution using a crossover search operator.
The exponential and binomial operators are commonly
employed as direct crossover search methods. This applies
to every decision variable denoted by j. If rand(j) ≤ Cr, as
shown in Equation 2:

ui, j,G =

{
ui, j,G if rand(j) ≤ Cr or j = jrand.

xi, j,G otherwise.
(2)

Where rand(j), denoted as the ” jth evaluation,” is randomly
chosen in the range of [0, 1]. This process guarantees a
minimum of one trial vector for the design variable (DV).
The Cr is the crossover rate, critical for determining the

International Journal of Computing and Digital Systems 5

variable count, and is sourced from the vector of the donor.
It is ensured that Vi,G+1 generates minimally one parameter
to ui, j,G.

Choosing: A choosing operator is used to identify the
best solution by comparing the child’s and parent’s objective
function values. If the child exhibits a decreased value for
objective function, it is retained for future iterations. Oth-
erwise, the parent vector remains in the current generation,
as shown in Equation 3:

xi,G+1 =

{
ui,G if f (ui,G) ≤ f (xi,G),
xi,G otherwise.

(3)

To decide whether to include it in the new generation (G
+ 1), xi,G+1, which is the trial vector, is compared to the
target vector xi,G by applying the greedy criterion. Should
the trial vector xi,G+1 yield a cost function value lower than
that of the target vector xi,G, then the trial vector xi,G+1 takes
the place of the target vector. Otherwise, the value of the
original target vector is maintained.

2) SFO Algorithm

Shadravan et al. [23] introduced an innovative algorithm
known as the Sailfish Optimizer (SFO), in which the injured
sardine that showcases the optimal fitness value is marked,
pinpointing its location by Pi

srdin j during the ith iteration.
With every iteration, the sardines’ and sailfish’s locations
are adjusted. For each iteration, the sailfish’s position is
updated by utilizing information from the named elite fish
PS l f besti and the injured sardine’s position according to a
predetermined criterion.

In each iteration, the locations of sailfish and sardines
are updated, and the new position is represented by i + 1.
The elite and the injured are responsible for adjusting the
sailfish’s position to a new one, represented by Pi+1

S l f , as
shown in Equation 4:

Pi+1
S l f = Pi

S l f best − σi

rnd ·

Pi
S l f best + Pi

srdin j

2
− Pi

S l f

 . (4)

Where rnd ∈ (0, 1) is determined randomly, and σi is a
coefficient derived by Equation 5:

σi = 3 · rand · PrD − PrD (5)

In every cycle, the prey density PrD, indicative of the
available prey count, is calculated using Equation 6. As
the prey count diminishes with group hunting activities, the
value accordingly decreases:

PrD = 1 −
NS l f

NS l f − Nsrd
. (6)

The numbers for sailfish and sardines are denoted by
NS l f and Nsrd, respectively, and can be determined using
Equation 7:

NS l f = Nsrd · Prcent. (7)

Where Prcent represents the population of sardines that
comprises the original sailfish population, the initial number
of sardines is assumed to be higher than the initial number
of sailfish.

In each iteration, the locations of the sardines are
adjusted following Equation 8:

Pi+1
S rd = rand · (Pi

S l f best − Pi
S rd + AT K). (8)

The old and new locations of the sardine are denoted by
Pi

S rd and Pi+1
S rd, respectively. Meanwhile, the representation

of the strength of the sailfish’s attack (ATK) at one-by-one
iteration is determined by Equation 9:

AT K = A · (1 − (2 · itr · k)). (9)

ATK plays a pivotal role in dictating how many sardines
adjust their positions and how far they move. Reducing ATK
can enable the search agents’ convergence. The determina-
tion of the sardines’ number by adjusting their positions and
the variables’ number related to the sardines are calculated
employing Equations 10 and 11:

γ = AT K · NS rd (10)

δ = AT K · v (11)

NS rd denotes the number of sardines, and v refers to
the variables. Whenever a sardine exceeds a sailfish fitness
level, the sailfish will change its location to pursue the sar-
dine. However, this results in the sardine being eliminated
from its population.

B. Transfer (Mapping) Functions (TFs)

The DESFO algorithm generates a solution consisting
of continuous values; it cannot be directly applied to an
FS problem without modifications. Therefore, mapping or
Transfer Functions (TFs) are required to convert continuous
values to binary format, i.e., 0 or 1. TFs [21] dictate
how decision variables transition between 0 and 1. When
choosing a TF for converting continuous values to binary,
several key factors need to be considered:

• Values derived from the TF should fall between 0
and 1, indicating the agent’s likelihood of altering its
present position.

• Should the alarm value fall below the safety threshold
(ST), the likelihood of the TF changing its current
position in the subsequent iteration should increase.
This is under the assumption that an agent with an
alarm value exceeding ST is likely veering too far
from the best solution.

• In case the alarm value is low, the TF should offer a
low likelihood of altering the current position.

6 Ahmed Sabry Abolaban, et al.

• As the alarm value approaches ST, the TF-induced
likelihood should increase, encouraging agents to cor-
rect their course and quickly return to their previous
best position in future iterations.

consider the important capability of (TFs) to transform
the current search process into a binary representation for
each Y , as described in Equation 12:

yt+1,bin
i, j =

−yt,bin

i, j if rnd < T F(yt+1
i, j) and TF is V-shaped,

yt,bin
i, j if rnd ≥ T F(yt+1

i, j) and TF is V-shaped,
0 if rnd < T F(yt+1

i, j) and TF is S-shaped,
1 if rnd ≥ T F(yt+1

i, j) and TF is S-shaped.
(12)

Where yt+1,bin
i, j represents the value in the j-th dimension

for individuals in the current iteration t + 1, and rnd is a
randomly chosen number from [0, 1]. T F(yt+1

i, j) represents
the probability value determined by employing a specific TF
to each continuous value of the j-th component of agent i.
According to Equation 12, two scenarios are encountered:
(first) if the TF has an S-shape and rnd is less than the
given probability value, the j-th dimension of the individual
is updated to 0; otherwise, it is updated to 1. If the TF is
V-shaped, if rnd is less than the provided probability value,
the value of the j-th dimension is inverted; otherwise, it
remains the same. Utilizing S-shaped and V-shaped TFs, as
detailed in Table I

Figure 1 displays the variants of these Transfer Func-
tions, categorizing them into two categories; S-shaped and
V-shaped TFs.

Figure 1. (V-shaped TF) and (S-shaped TF) families.

C. Machine Learning (ML) Classifiers

This study utilized three of the most effective ML clas-
sifiers for FS purposes: K-NN, SVM, and RF. Subsequent
subsections detail each of these methods.

1) K-Nearest Neighbor Classifier (k-NN)

The K-Nearest Neighbor (k-NN) classifier [32] is widely
recognized for its power in pattern recognition and ML
fields. Its ease of implementation makes it a preferred

choice over more complex supervised learning techniques
[33]. K-NN is widely used in fields such as healthcare,
forestry, image/video analysis, and finance for its ability to
classify patterns. It creates classification rules from training
data and assigns labels to unlabeled data in test sets based
on the nearest training samples. Choosing the right ”k” is
crucial for accuracy and is typically found through trial
and error. In the empirical studies conducted, the k-NN
classifier, utilizing a Euclidean distance metric, was tested
with a k value of 5 [34], [19], and the chosen feature subsets
were evaluated for their effectiveness.

2) Random Forest Classifier (RF)

The Random Forest (RF) classifier [35] is an ML clas-
sifier widely used in various computing tasks such as label
distribution learning, action recognition, detection, visual
tracking, facial expression analysis, image classification,
and time series forecasting. It consists of multiple decision
trees and is known for its robustness against data labeling
errors, ability to handle various classes, FS support, parallel
computation, minimalism in tuning parameters, and effi-
cient numerical and categorical data handling. RF remains
famous for its simplicity, interpretability, computational
efficiency, and its method of improving classification by
breaking down data into smaller subsets for optimized
learning [36], [37], [38].

The number of trees and their maximum depth affect
RF algorithm performance, particularly for real-time ap-
plications. A hyper-heuristic approach can optimize these
parameters, enhancing speed and accuracy. In tests, using
ten estimators with a maximum depth of 5 showed signifi-
cant improvements in classification accuracy. Despite some
drawbacks, the RF model’s capability to accurately model
complex relationships demonstrates its value.

3) Support Vector Machine Classifier (SVM)
The Support Vector Machine (SVM) algorithm [39]

stands as a prominent wrapper-based classifier utilized in
data science, known for effectively segregating multiple
classes. The technique relies on using hyper-planes to
separate different groups. A significant benefit of SVM is its
ability to provide reliable accuracy with low computational
effort. It achieves this by applying a non-linear function, ϕ,
to shift the original data into a higher dimensional space,
where it seeks to linearly divide the data along a hyper-
plane that maximizes separation margins between classes.
However, challenges include choosing the proper base
function and fine-tuning its parameters [40]. Finding the
optimal decision plane essentially becomes an optimization
problem, where a kernel function is tasked with determining
the most suitable higher-dimensional space for achieving
linear division of categories via a non-linear transformation.

4. Methodology of the proposed DESFO

This study introduces a method that combines eight
(TFs), including V-shaped and S-shaped families, with the

International Journal of Computing and Digital Systems 7

TABLE I. V-shaped and S-shaped Transfer Functions (TFs) [21]

V-shaped Family S-shaped Family

V1: T F(y) =
∣∣∣∣∣erf
(√
π

2 y
)∣∣∣∣∣ =
∣∣∣∣∣∣ √2
π

∫ √2π
y

0 e−t2
dt

∣∣∣∣∣∣ , S1: T F(y) = 1
1+e−2y ,

V2: T F(y) = |tanh(y)|, S2: T F(y) = 1
1+e−y ,

V3: T F(y) =
∣∣∣∣∣ y
√

1+y2

∣∣∣∣∣ , S3: T F(y) = 1
1+e−y/2 ,

V4: T F(y) =
∣∣∣∣ 2π arctan

(
π
2 y
)∣∣∣∣ . S4: T F(y) = 1

1+e−y/3 .

DESFO, merging the DE and SFO algorithms. This FS
approach uses K-NN, RF, and SVM in several steps: ini-
tialization, position updates, binary mapping or conversion,
and fitness assessment. The DESFO algorithm runs for 100
iterations, split among SFO and DE at 50 iterations for both.
Initially, DE takes the lead for the first 50 iterations, focus-
ing on optimizing to find the best solution, which is then
further refined by SFO to improve classification accuracy
by selecting relevant features. Each phase is described in
detail in subsequent sections.

A. Initial Population Generation

The initial stage of applying the DESFO algorithm
involves creating a starting set of Y positions, symbolizing
possible solutions within a space defined by D dimensions.
The size of this population is established based on a
particular formula as shown in Eq. 13:

Y = Round(2 ×
√

D + 10). (13)

Y represents the comprehensive count of positions,
whereas D symbolizes dimensionality. The matrix describ-
ing positions is defined as follows:

K =

k1,1 k1,2 . . . k1,p
k2,1 k2,2 . . . k2,p
...

...
. . .

...
kY,1 kY,2 . . . kY,p.

The initial population, symbolized by K, is created

within specific boundaries as follows in Eq. 14:

Ku
i = u(0, 1) × (UB − LB) + LB. (14)

B. Position Update in DESFO Algorithm

The position is updated according to the SFO and
DE techniques, as detailed in sections 3.1.1 and 3.1.2.
Following the update, the position is converted to binary
values, as outlined in section 4.3.

C. Converting Continuous Positional Values to Binary in
DESFO for FS

In the DESFO algorithm, converting continuous posi-
tional values to binary is crucial for effectively solving
FS problems. FS typically requires binary decision-making:
features are either selected, marked with a value of ‘1’,
or otherwise marked with a value of ‘0’. This binary
structure is necessary for evaluating subsets of features in
ML classification tasks.

1) Binary Representation in FS
In a typical FS problem, a binary vector represents the

selection of features:

• 1 indicates that a particular feature has been selected.

• 0 indicates that a particular feature has been excluded.

The length of the binary vector equals the number of
features in the dataset, meaning each element corresponds
to a feature. This binary representation allows for the
optimization of feature subset selection.

2) Role of Transfer Functions (TFs)

The DESFO algorithm, however, generates continuous
values as part of its optimization process. Therefore, TFs
convert these continuous positional values into binary values
(0 or 1). TFs are crucial in determining how decision vari-
ables (features) transition from 0 to 1 based on probabilistic
outcomes.

There are two main families of TFs utilized in DESFO:

1) S-shaped Transfer Functions: These TFs provide a
smooth probabilistic transition, pushing continuous
values closer to the boundary towards 0 or 1, favor-
ing generalization. The output of an S-shaped TF is
a probability between 0 and 1, which is compared to
a random number. If the number is smaller than the
TF output, the binary value is assigned a 0; if not,
it receives a 1.

2) V-shaped Transfer Functions: These TFs focus on
flipping binary values and are used for fine-tuned
adjustments during FS. For V-shaped TFs, in case
the rand number is smaller than the TF output, the

8 Ahmed Sabry Abolaban, et al.

binary value is inverted (0 becomes one and vice
versa); otherwise, the value remains unchanged.

3) Binary Conversion Process

In each iteration of DESFO, the continuous positions of
features are updated based on the evolutionary strategies of
DE and SFO. These continuous values are then converted
into binary form for FS evaluation. The steps for binary
conversion are as follows:

1) Apply the Transfer Function (TF): For each con-
tinuous value in the solution vector, the appropriate
TF (either S-shaped or V-shaped) is applied.

2) Random Number Comparison: A random number
is produced within the range of [0, 1], which com-
pared then to the TF output:
• For S-shaped TFs: in case the rand number is

smaller than the TF output, the binary value is
set to 0; otherwise, it is set to 1.

• For V-shaped TFs: in case the rand number
is smaller than the TF output, the current
binary value is inverted; otherwise, it remains
unchanged.

3) Binary Representation: The continuous values are
thus transformed into a binary vector, where each
element represents the selection or exclusion of a
corresponding feature.

4) Mathematical Representation of Binary Conversion
The binary conversion process for DESFO can be math-

ematically described as follows:

Pi
bin =

1, if rnd < TF(Pi) for S-shaped TFs,
0, otherwise,
−Pi

bin, if rnd < TF(Pi) for V-shaped TFs,
Pi

bin, otherwise.

Where:

• Pi
bin is the binary position for feature i.

• Pi is the continuous positional value for feature i.

• rnd is a randomly generated number in the range
[0, 1].

• TF(Pi) is the transfer function applied to the contin-
uous value Pi.

5) Impact on Feature Selection

The TF choice directly influences the exploration-
exploitation trade-off during FS. S-shaped TFs, due to their
smooth transition, are suited for tasks requiring broader
generalization and aggressive feature reduction. On the

other hand, V-shaped TFs enable fine-tuned adjustments,
making them ideal for refining smaller feature subsets.

By employing these TFs, the DESFO algorithm effec-
tively navigates the binary search space, leading to im-
proved classification accuracy and dimensionality reduction
by selecting only the most relevant features.

D. Fitness Evaluation

Balancing feature set size and accuracy is crucial. A
smaller feature set requires more precise classifiers like k-
NN, RF, and SVM but risks reducing accuracy due to fewer
features [40]. This implies a trade-off between the attribute
length and the selection of optimal attributes, indicating a
balance might be necessary between accuracy and feature
set magnitude.

When evaluating an algorithm’s performance, it’s im-
portant to consider the equilibrium between feature-length
and accuracy, as expressed in Eq. 15:

FIT = α1 × (1 − accuracy) + α2 ×
|D∗|
|D|
. (15)

The two coefficients, α1 and α2 represent the weight
coefficients, where α1 varies in the range from 0 to 1.
α2 is obtained by subtracting α1 from 1. The coefficients
were established after comprehensive experimentation. |D∗|
represents the selected features, while |D| signifies the
overall features in the initial dataset.

E. Flowchart of DESFO
Figure 2 shows the steps and procedures of the DESFO

algorithm.

F. Analysis of DESFO Computational Complexity for FS
Across Different Classifiers

The DESFO algorithm exhibits computational complex-
ity that scales with the dataset’s number of features and ML
classifier type used for FS. This subsection analyzes how
the computational cost of DESFO scales when applied to
different ML models (k-NN, RF, SVM), focusing on how
features (D) number and the dataset size affect the overall
complexity.

1) Overall Complexity of DESFO

The total computational complexity of the DESFO al-
gorithm consists of several main components: initialization,
DE steps, SFO updates, binary transformation, and fitness
evaluation using ML models. The overall complexity for all
generations (denoted as MaxGens) is given by:

MaxGens × (D × NP × 3 + NP × f (D)).

International Journal of Computing and Digital Systems 9

Figure 2. DESFO flowchart.

Where:

• D is the number of features in the dataset.

• NP is the population size.

• f (D) is the classifier’s computational complexity for
fitness evaluation.

• MaxGens represents the iterations num of the algo-
rithm.

2) Impact of Number of Features (D)

The computational complexity is highly sensitive to
the dataset’s number of features (D). As FS is central
to the DESFO algorithm, the number of features directly
influences the DE and SFO components and the binary
transformation process. Specifically:

• DE and SFO: Both the DE algorithm’s mutation and
crossover operations and the SFO algorithm’s position
adjustment steps involve evaluating D dimensions
for each individual in the population. Hence, the
complexity of these steps scales linearly with D,
resulting in a complexity of O(NP × D) for both
algorithms.

• Binary Conversion: Each continuous value in the
solution vector must be mapped to a binary value
using TFS, further contributing to a complexity of
O(NP × D).

• Fitness Evaluation: The computational complexity
of evaluating the fitness of the binary vector depends
on the chosen classifier and scales with D. Since
FS involves subsets of features, larger values of D
require more computational resources to assess the
fitness of each solution. The complexity of this step
is represented as O(f (D)) × NP, where f (D) is the
complexity of the classifier.

Thus, the total complexity scales linearly with D in the
DE and SFO phases, and the fitness evaluation complexity
depends on the specific classifier.

3) Impact of Dataset Size (Number of Instances)

The size of the dataset, represented by the number
of instances or samples, also affects the computational
complexity, particularly during the fitness evaluation step.
In FS, the fitness of each solution is evaluated based on
the accuracy of the classifier on a subset of features. Larger
datasets require more computational resources for training
and testing classifiers.

• k-NN Classifier: The complexity of the k-NN clas-
sifier is proportional to the number of instances N
in the dataset because it involves calculating the
distance between the test sample and every training
sample. The complexity of fitness evaluation with k-
NN is O(N × D). Hence, the overall complexity for
fitness evaluation in DESFO with k-NN scales as
O(N × NP × f (D)).

• Random Forest (RF) Classifier: The complexity
of Random Forest depends on trees numbers (T)
and the maximum depth of each tree (L). Each tree

10 Ahmed Sabry Abolaban, et al.

is built using a subset of features, and the fitness
evaluation with RF scales with O(T×N×log(N)). This
means that, while the number of instances influences
the computational complexity, Random Forest scales
more efficiently than k-NN.

• SVM Classifier: The complexity of SVM is primarily
influenced by the number of support vectors and the
kernel used. For linear kernels, the complexity scales
with O(N × D), while for non-linear kernels, the
complexity can be higher due to the kernel computa-
tion. Therefore, the fitness evaluation in DESFO with
SVM can range from O(N × D) for linear kernels to
O(N2 × D) for non-linear kernels, depending on the
dataset and kernel choice.

4) Scaling with Number of Features and Dataset Size

The complexity of the DESFO algorithm increases with
the number of feature (D) and instances in the dataset (N).
As shown:

• For k-NN, the complexity scales linearly with both
N and D, i.e., O(N × D × NP).

• For Random Forest, the complexity depends on the
number of trees and the size of the dataset, generally
scaling as O(T × N × log(N)).

• For SVM, the complexity ranges from O(N × D) for
linear kernels to O(N2 × D) for non-linear kernels,
making it the most computationally expensive clas-
sifier when applied to large datasets with non-linear
kernels.

5) Summary of Complexity Analysis
The overall computational complexity of the DESFO

algorithm, when applied to FS, is influenced by:

• (D) feature number, with linear scaling in the DE
and SFO components and the binary transformation
phase.

• (N) record number primarily affects the fitness eval-
uation based on the classifier used.

• The classifier’s inherent complexity, where k-NN, RF,
and SVM exhibit different computational character-
istics depending on the dataset size and number of
features.

Thus, for larger feature sets and datasets, the choice of
classifier significantly affects the overall computational cost
of DESFO in FS tasks.

5. Results and Analysis

The experiments and results analysis using the DESFO
algorithm are demonstrated in this section.

A. Datasets Overview

To thoroughly assess and confirm the effectiveness of
the methods introduced in this paper, we utilized 14 di-
verse datasets from the UCI ML repository [41], spanning
various domains (such as biology, politics, electromagnetic,
gaming, physics, chemistry, and artificial intelligence) in
all our experiments. These datasets play a crucial role in
effectively substantiating the techniques proposed in this
study, considering the varying numbers of instances and
features they contain. The specifics of these datasets are
presented in Table II.

B. Experimental Setup

This paper carefully selects the adopted model and
MHA configurations to ensure robust performance evalua-
tion. For the k-NN model, the Euclidean distance metric was
employed with a neighborhood size of k = f ive. The SVM
model used a polynomial kernel with a degree of d = two,
while the RF model consisted of n = ten estimators with
a maximum tree depth of d = f ive. Given the stochastic
nature of MHAs, each experiment was repeated thirty times,
and the average performance metrics were recorded across
all runs.

The proposed DESFO algorithm had the following set-
tings: a population size of ten and a maximum of one
hundred iterations. The feature count for each benchmark
determined the problem’s dimensionality. The continuous
search space was defined within the [−1, 1] domain, pro-
viding a sufficiently broad yet controlled exploration space.

The outcomes were validated using a cross-over strategy,
where each benchmark was randomly split, with 20%
allocated for testing and 80% for training. The documented
outcomes reflect the average values of the fitness, accuracy,
and the chosen attributes’ number over the thirty runs. The
remaining parameters for DESFO followed the standard
settings from prior studies, as outlined in Table III. All ex-
perimentations were performed utilizing Python on a high-
performance computing setup with a Dual Intel® Xeon®
Gold 5115 2.4 GHz CPU and 128 GB RAM running on
Microsoft Windows Server 2019.

C. Evaluation Metrics

The effectiveness of the DESFO algorithm is evaluated
using eight TFs, and three highly regarded ML classifiers:
K-NN, RF, and SVM. These evaluations were performed
individually across 30 trials for each benchmark. Specific
metrics are used to assess the FS approach.

1) Mean Accuracy

Conducting the procedure independently across 30 iter-
ations can establish the precise rate of data categorization
(µAcc).

International Journal of Computing and Digital Systems 11

TABLE II. Overview of the data collections utilized in our research.

Benchmark # Records # Features Domain
BreastCancer 699 9 Biology
BreastEW 569 30 Biology
Exactly2 1000 13 Biology
IonosphereEW 351 34 Electromagnetic
KrVsKpEW 3196 36 Game
Lymphography 148 18 Biology
M-of-n 1000 13 Biology
PenglungEW 73 325 Biology
SonarEW 208 60 Biology
Tic-tac-toe 958 9 Games
Vote 300 16 Politics
WaveformEW 5000 40 Physics
WineEW 178 13 Chemistry
Zoo 101 16 Artificial Intelligence

TABLE III. Parameter setup for the proposed algorithm.

Technique Coefficients

SFO Ratio between sailfish and sardines pp = 0.1
A = 1
ε = 0.0001

DE Crossover Rate (Cr)= 0.9
Scaling Factor (F)= 0.5

µAcc =
1

30
1
m

30∑
k=1

m∑
r=1

match(PLr,ALr). (16)

Where µAcc symbolizes the mean accuracy, whereas m
represents the overall number of samples within the testing
dataset. The symbol PLr denotes the predicted class label
for a given sample, while ALr represents the reference class
label. A specific function, named match (PLr, ALr), is used
to compare these two labels. If PLr matches ALr, the match
(PLr, ALr) function returns a value of 1; if they do not
match, the value is 0.

2) Mean Fitness

The µFit is utilized to assess the average outcomes of fit-
ness obtained by implementing the suggested method across
30 separate trials. The optimal outcome is represented by
the smallest value, which is determined by evaluating the
fitness as follows:

µFit =
1
30

30∑
i=1

f k
∗ . (17)

The symbol µFit denotes the average fitness value,
whereas f i

∗ signifies the optimal fitness obtained in each
iteration in the 30 i-th iterations.

3) Mean Selected Number of Features

The metric symbolized by µFeat stands for the mean
selected features, calculated independently The method was
applied 30 times as follows :

µFeat =
1

30

30∑
i=1

|di
∗|

|D|
. (18)

Where |di
∗| indicates the chosen attributes and the count

of attributes in the optimum solution for each of the i-th
iterations, with |D| representing the total features’ number
utilized from the datasets.

D. DESFO Behavior Assessment Utilizing Eight TFs

DESFO was initially developed for continuous optimiza-
tion and required adaptation for discrete space searches.
To address the FS problem, its effectiveness was evaluated
using eight different transformation functions on 14 bench-
mark datasets.

The various TFs underwent evaluation using DESFO
alongside K-NN, RF, and SVM classifiers, focusing on the
mean accuracy (µAcc), mean fitness value (µFit), and average
number of selected features (µFeat). The outcomes of these
evaluations are detailed in Tables IV through XII.

The methods were developed using eight transfer
functions (TFs), which are categorized into two groups:
four V-shaped TFs labeled as Vv1, Vv2, Vv3, and Vv4, and
four S-shaped TFs named Sv1, Sv2, Sv3, and Sv4. Thus,
in the subsequent discussions, the proposed techniques
are referred to as ”DESFO-TF,” with TF representing
any of the eight TFs mentioned. The abbreviations W,
T, and L found at the bottom of the tables denote the
number of times each method wins, ties, or loses compared
to the other competitors. Examining and comparing the

12 Ahmed Sabry Abolaban, et al.

results mentioned, the most suitable DESFO variant
for each classifier will be determined based on the TF
that shows the best performance for that particular classifier.

1) Evaluation of DESFO-TFs using the k-NN classifier

Table IV presents the µAcc of DESFO across eight
TFs, utilizing the k-NN classifier. DESFO-Vv4 signifi-
cantly outperformed in 8 of the 14 datasets, and DESFO-
Vv3, DESFO-Sv1, DESFO-Sv2, and DESFO-Vv1 followed
closely behind, excelling in 7, 7, 7, and 6 of 14 datasets,
respectively. As a result, when considering the mean accu-
racy, DESFO-Vv4 is ranked highest among the evaluated
methods.

Table V presents the mean Fitness Value µFit for DESFO
across eight TFs, utilizing the k-NN classifier. It was noted
that DESFO-Sv4 demonstrated notable performance in 7
out of the 14 datasets, and DESFO-Vv3, DESFO-Sv3, and
DESFO-Vv1 followed closely, showing significant results
in 6, 6, and 5 out of 14 datasets, respectively. Hence, when
considering the mean fitness values, DESFO-Sv4 is the top-
performing method among all the TFs methods.

Table VI presents the mean features selected µFeat
for DESFO across eight TFs, using the k-NN classifier
for analysis. DESFO-Sv1 and DESFO-Sv4 demonstrated
remarkable performance in 7 of the 14 datasets reviewed.
Following them closely were DESFO-Sv3 and DESFO-
Vv4, each showing significant outcomes in 6 and 5 out of
the 14 datasets, respectively. Therefore, based on the aver-
age features selected, DESFO-Sv1 and DESFO-Sv4 emerge
as the leading methods among all the TFs considered.

2) Evaluation of DESFO-TFs using the RF Classifier
Table VII presents the mean accuracy (µAcc) of DESFO

across eight TFs, utilizing the RF classifier. It was found
that DESFO-Vv4 significantly outperformed in 10 of the 14
datasets, with DESFO-Vv3 and DESFO-Sv4 closely behind,
excelling in 9 and 8 of the 14 datasets, respectively. As a
result, when considering the mean accuracy, DESFO-Vv4
is ranked highest among the evaluated methods.

Table VIII presents the mean Fitness Value (µFit) for
DESFO across eight TFs, utilizing the RF classifier. It was
noted that DESFO-Sv1 demonstrated notable performance
in 8 out of the 14 datasets, and DESFO-Vv3, DESFO-
Sv3, and DESFO-Sv4 followed closely, showing significant
results in 6, 6, and 5 out of 14 datasets, respectively. Hence,
when considering the mean fitness values, DESFO-Sv1 is
the top-performing method among all the TF methods.

Table IX presents the mean features selected (µFeat)
for DESFO across eight TFs, using the RF classifier
for analysis. DESFO-Sv1 demonstrated remarkable
performance in 8 out of the 14 datasets reviewed.
Following closely were DESFO-Sv3 and DESFO-Sv4,
each showing significant outcomes in 7 of the 14 datasets.

Therefore, based on the average features selected, DESFO-
Sv1 emerges as the leading method among all the TFs
considered.

3) Evaluation of DESFO-TFs using the SVM Classifier

Table X presents the mean accuracy (µAcc) of DESFO
across eight TFs utilizing the SVM classifier. It was found
that DESFO-Sv4 significantly outperformed in 10 out of the
14 datasets, with DESFO-Sv1 and DESFO-Sv3 closely be-
hind, excelling in 9 out of the 14 datasets for both of them.
As a result, when considering the mean accuracy, DESFO-
Sv4 is ranked highest among the evaluated methods.

Table XI presents the mean Fitness Value (µFit) for
DESFO across eight TFs, utilizing the SVM classifier. It
was noted that DESFO-Sv3 demonstrated notable perfor-
mance in 8 out of the 14 datasets, and DESFO-Sv4 and
DESFO-Sv2 followed closely, showing significant results
in 7 and 6 out of 14 datasets, respectively. Hence, when
considering the mean fitness values, DESFO-Sv3 is the top-
performing method among all the TF methods.

Table XII presents the mean features selected (µFeat)
for DESFO across eight TFs, using the SVM classifier for
analysis. Both DESFO-Sv2 and DESFO-Sv3 demonstrated
remarkable performance in 7 out of the 14 datasets for
both of them. Following closely were DESFO-Sv1 and
DESFO-Sv4, each showing significant outcomes in 5 and
6 of the 14 datasets. Therefore, based on the average
features selected, DESFO-Sv2 and DESFO-Sv3 emerge as
the leading methods among all the TFs considered.

E. The Overall Evaluation and Discussion

Table XIII shows the overall evaluation of the DESFO
behavior with the eight TFs and ML classifiers regarding
the best accuracy, fitness value, and selected feature results.

According to TableXIII, the optimal combinations of the
DESFO variant and the three classifiers alongside the eight
TFs have been identified, setting the stage for subsequent
experiments in this section. The models that emerged as
the most effective in terms of µAcc are DESFO-Vv4–RF
and DESFO-S-ve4–SVM. When considering µFit, the most
effective models identified are DESFO-S-ve1 and DESFO-
S-ve3. Furthermore, in terms of µFeat, DESFO-S-ve1 stands
out as the most effective model.

F. Impact of Feature Reduction on Performance and Effi-
ciency

FS often requires a trade-off between reducing the
number of selected features and maintaining classification
accuracy. This subsection examines scenarios where re-
duced feature sets lead to performance gains and highlights
the roles of V-shaped and S-shaped TFs in achieving these
outcomes. By balancing exploration and exploitation, these

International Journal of Computing and Digital Systems 13

transfer functions facilitate feature reduction strategies that
align with dataset characteristics and classifier require-
ments.

1) V-shaped Transfer Functions for Precision-Driven Fea-
ture Selection

V-shaped transfer functions excel in datasets where se-
lective feature retention is critical for classification accuracy.
By supporting incremental adjustments, these functions al-
low for fine-grained exploration in FS, leading to a compact
feature set without the unnecessary inclusion of redundant
features. This is particularly beneficial in high-dimensional
datasets where only a few features are highly informative.

For instance, in datasets like IonosphereEW and Wave-
formEW in Table XIV), DESFO with V-shaped transfer
functions achieved high accuracy while significantly re-
ducing feature counts. The precision-oriented nature of
V-shaped functions helps classifiers like SVM and k-NN
achieve optimal performance with a smaller, targeted subset
of features, avoiding overfitting and reducing computational
cost. This is especially advantageous when interpretability
and efficient model training are priorities.

2) S-shaped Transfer Functions for Aggressive Reduction
in Redundant Features

S-shaped transfer functions are designed for more ag-
gressive feature reduction, which is advantageous in datasets
with a high degree of feature redundancy. By pushing values
toward binary extremes (0 or 1), S-shaped functions favor
exploitation, leading to rapid convergence on a smaller
feature subset. This characteristic is particularly beneficial
for RF classifiers, which are resilient to feature count
variations but benefit from fewer features for faster training
and model simplicity.

In datasets like PenglungEW and KrVsKpEW, DESFO
with S-shaped transfer functions demonstrated a high de-
gree of feature elimination while maintaining competi-
tive accuracy. This approach is useful in high-dimensional
datasets, where reducing features minimizes computational
load without compromising classifier performance, making
it ideal for applications requiring fast processing or real-
time analysis.

3) Balancing Exploration and Exploitation for Optimal
Feature Subsets

The choice of V-shaped or S-shaped TFs highlights
different strengths in FS, underscoring the need to align
function selection with dataset and classifier characteristics.
V-shaped functions offer controlled exploration for precise
selection in complex feature spaces, while S-shaped func-
tions enable decisive feature elimination for efficient model
performance. By modulating the exploration-exploitation
balance, DESFO adapts to varying data complexities and
optimizes FS across multiple classifiers.

Table XIV illustrates the performance impact of V-
shaped and S-shaped TFs on selected datasets, showcasing
their roles in balancing accuracy and feature reduction.

As shown in Table XIV, DESFO with V-shaped transfer
functions achieved high accuracy with a minimal feature
set in IonosphereEW and WaveformEW, supporting preci-
sion in datasets with high feature variability. Conversely,
DESFO with S-shaped functions enabled substantial feature
reduction in PenglungEW and KrVsKpEW, underscoring
the advantage of the aggressive reduction in datasets with
significant redundancy.

6. Discussion

This study underscores the effectiveness of the DESFO
algorithm as an advanced FS method when paired with
various TFs and ML classifiers. Through extensive testing
on benchmark datasets, the results indicate that DESFO
optimizes both classification accuracy and computational ef-
ficiency, with performance highly influenced by the specific
TF and classifier combinations used.

A. Influence of Transfer Functions and Classifiers on Per-
formance

The results show that DESFO’s performance in FS and
classification accuracy varies significantly depending on the
type of TF and classifier. V-shaped TFs, particularly Vv4,
demonstrated strong performance with the k-NN and RF
classifiers, often yielding the highest accuracy on high-
dimensional datasets. This suggests that the V-shaped func-
tions support DESFO in making fine-grained adjustments
to feature subsets, enhancing precision in tasks that demand
accurate, selective feature inclusion.

Conversely, S-shaped TFs, notably Sv4 and Sv3, showed
superior outcomes when used with the SVM classifier. The
smooth, probabilistic nature of S-shaped TFs, combined
with SVM’s kernel-based capabilities, resulted in both high
accuracy and effective feature reduction. These TFs facil-
itated gradual changes in FS, allowing DESFO to explore
broadly while converging efficiently. This finding highlights
the adaptability of S-shaped TFs, making them particularly
well-suited for tasks requiring broad generalization, such as
complex, multidimensional data classification.

B. Dimensionality Reduction and Computational Efficiency

DESFO proved effective at dimensionality reduction
across diverse datasets. Notably, Sv1 and Sv4 achieved the
highest feature reduction in most benchmarks, especially
with the RF classifier. This capacity to reduce the number of
selected features while maintaining high accuracy is critical
in enhancing computational efficiency and model inter-
pretability, both of which are essential for high-dimensional
applications.

The computational complexity analysis further con-
firms DESFO’s suitability for handling complex datasets.

14 Ahmed Sabry Abolaban, et al.

TABLE IV. The mean accuracy µAcc results using the eight TFs and K-NN with DESFO

Benchmarks Eval-Metric V-ve1 V-ve2 V-ve3 V-ve4 S-ve1 S-ve2 S-ve3 S-ve4
BreastCancer µAcc 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857

BreastEW µAcc 0.9649 0.9649 0.9649 0.9649 0.9649 0.9649 0.9658 0.9649
Exactly2 µAcc 0.7970 0.7935 0.7880 0.7935 0.7880 0.7945 0.7870 0.7865

IonosphereEW µAcc 0.9310 0.9310 0.9324 0.9324 0.9563 0.9493 0.9493 0.9535
KrVsKpEW µAcc 0.9803 0.9788 0.9803 0.9822 0.9789 0.9819 0.9803 0.9814

Lymphography µAcc 0.8333 0.8367 0.8433 0.8400 0.8333 0.8367 0.8400 0.8333
M-of-n µAcc 0.9995 1.0000 1.0000 1.0000 0.9995 1.0000 0.9995 1.0000

PenglungEW µAcc 0.6533 0.6533 0.6600 0.6533 0.7333 0.7067 0.6867 0.7200
SonarEW µAcc 0.9786 0.9929 0.9857 0.9857 0.9857 0.9857 0.9952 0.9857
Tic-tac-toe µAcc 0.8542 0.8542 0.8542 0.8542 0.8542 0.8542 0.8542 0.8542

Vote µAcc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
WaveformEW µAcc 0.8445 0.8448 0.8454 0.8480 0.8436 0.8449 0.8453 0.8443

WineEW µAcc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Zoo µAcc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Score (W/T/L) 1/5/8 0/6/8 1/6/7 1/7/6 2/5/7 0/6/8 2/5/7 0/6/8

TABLE V. The mean fitness µFit results using the eight TFs and K-NN with DESFO

Benchmarks Eval-Metric V-ve1 V-ve2 V-ve3 V-ve4 S-ve1 S-ve2 S-ve3 S-ve4
BreastCancer µFit 0.0201 0.0201 0.0201 0.0201 0.0201 0.0204 0.0201 0.0201

BreastEW µFit 0.0366 0.0369 0.0366 0.0368 0.0355 0.0359 0.0356 0.0356
Exactly2 µFit 0.2062 0.2097 0.2154 0.2093 0.2150 0.2084 0.2155 0.2161

IonosphereEW µFit 0.0710 0.0714 0.0698 0.0698 0.0443 0.0516 0.0519 0.0472
KrVsKpEW µFit 0.0254 0.0270 0.0256 0.0232 0.0267 0.0239 0.0256 0.0250

Lymphography µFit 0.1691 0.1659 0.1593 0.1631 0.1694 0.1662 0.1625 0.1691
M-of-n µFit 0.0053 0.0048 0.0049 0.0047 0.0054 0.0050 0.0055 0.0050

PenglungEW µFit 0.3468 0.3466 0.3400 0.3465 0.2646 0.2920 0.3127 0.2777
SonarEW µFit 0.0248 0.0109 0.0177 0.0181 0.0174 0.0173 0.0082 0.0172
Tic-tac-toe µFit 0.1544 0.1544 0.1544 0.1544 0.1544 0.1544 0.1544 0.1544

Vote µFit 0.0022 0.0023 0.0023 0.0026 0.0019 0.0019 0.0019 0.0019
WaveformEW µFit 0.1596 0.1592 0.1591 0.1563 0.1607 0.1594 0.1590 0.1600

WineEW µFit 0.0032 0.0032 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031
Zoo µFit 0.0033 0.0033 0.0034 0.0033 0.0032 0.0033 0.0032 0.0032

Score W/T/L 1/2/11 0/2/12 1/3/10 3/3/8 3/4/7 0/3/11 1/5/8 0/5/9

The dual-stage optimization strategy—where DE handles
initial exploration and SFO fine-tunes through exploita-
tion—enables DESFO to achieve a balance between com-
prehensive search and rapid convergence. This balance
mitigates the risk of premature convergence while allowing
a thorough exploration of feature subsets, which is partic-
ularly beneficial for high-dimensional FS tasks. DESFO’s
effectiveness in handling this balance is also evident in its
ability to outperform other FS methods on a wide range of
datasets.

C. Practical Implications and Applicability

The outcomes of this study have substantial implica-
tions for applications requiring robust feature selection.
In fields like bioinformatics, where high-dimensional gene
expression data are prevalent, DESFO’s ability to identify
key features without compromising accuracy is particularly
valuable. Additionally, the successful pairing of S-shaped

TFs with SVM for tasks requiring generalization suggests
DESFO’s potential in fields like text classification and
medical diagnostics, where data complexity often requires
broader generalization capabilities.

The versatility in DESFO’s performance across different
TF and classifier combinations suggests that practitioners
can tailor the algorithm to specific data characteristics
and performance objectives. For instance, precision-focused
applications may benefit from V-shaped TFs with RF
classifiers, while tasks needing generalization might lean
towards S-shaped TFs with SVM. This flexibility allows
for customization, optimizing DESFO’s effectiveness across
various ML domains.

D. Limitations and Future Research Directions

Despite the promising results, this study identifies some
limitations. The computational complexity associated with

International Journal of Computing and Digital Systems 15

TABLE VI. The mean features’ number µFeat results using the eight TFs and K-NN with DESFO

Benchmarks Eval-Metric V-ve1 V-ve2 V-ve3 V-ve4 S-ve1 S-ve2 S-ve3 S-ve4
BreastCancer µFeat 6.000 6.000 6.000 6.000 6.000 6.300 6.000 6.000

BreastEW µFeat 5.700 6.500 5.500 6.300 2.400 3.600 5.100 2.500
Exactly2 µFeat 6.800 6.900 7.200 6.300 6.600 6.500 6.000 6.100

IonosphereEW µFeat 9.000 10.40 9.700 9.700 3.500 4.600 5.900 4.000
KrVsKpEW µFeat 21.40 21.50 22.00 20.10 20.80 21.40 21.90 23.80

Lymphography µFeat 7.300 7.500 7.600 8.500 7.900 8.100 7.400 7.300
M-of-n µFeat 6.200 6.300 6.400 6.100 6.400 6.500 6.500 6.500

PenglungEW µFeat 116.2 110.0 112.0 108.2 20.00 52.30 80.60 17.10
SonarEW µFeat 21.80 23.10 21.10 23.60 19.40 18.70 20.90 18.50
Tic-tac-toe µFeat 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00

Vote µFeat 3.500 3.700 3.600 4.100 3.000 3.100 3.000 3.100
WaveformEW µFeat 22.80 22.10 24.00 23.20 23.40 23.50 23.20 23.30

WineEW µFeat 4.100 4.100 4.000 4.000 4.000 4.000 4.000 4.000
Zoo µFeat 5.200 5.300 5.400 5.200 5.100 5.200 5.100 5.100

Score W/T/L 0/3/11 1/2/11 0/3/11 2/3/9 2/5/7 0/2/12 1/5/8 2/5/7

TABLE VII. The mean Accuracy µAcc results using the eight TFs and RF with DESFO

Benchmarks Eval-Metric V-ve1 V-ve2 V-ve3 V-ve4 S-ve1 S-ve2 S-ve3 S-ve4
BreastCancer µAcc 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857

BreastEW µAcc 0.9974 0.9956 0.9930 0.9947 0.9939 0.9939 0.9956 0.9930
Exactly2 µAcc 0.7650 0.7650 0.7650 0.7650 0.7650 0.7645 0.7650 0.7650

IonosphereEW µAcc 0.9704 0.9732 0.9704 0.9732 0.9718 0.9704 0.9704 0.9676
KrVsKpEW µAcc 0.9486 0.9469 0.9494 0.9487 0.9467 0.9483 0.9470 0.9484

Lymphography µAcc 0.8900 0.8833 0.8933 0.8933 0.8733 0.8833 0.8900 0.8767
M-of-n µAcc 0.9935 0.9935 0.9950 0.9950 0.9825 0.9925 0.9870 0.9840

PenglungEW µAcc 0.7533 0.7600 0.7467 0.7667 0.7667 0.7533 0.7600 0.7933
SonarEW µAcc 0.9167 0.9238 0.9190 0.9286 0.9310 0.9286 0.9238 0.9333
Tic-tac-toe µAcc 0.8698 0.8698 0.8698 0.8698 0.8698 0.8698 0.8698 0.8698

Vote µAcc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
WaveformEW µAcc 0.8174 0.8176 0.8181 0.8197 0.8163 0.8196 0.8193 0.8193

WineEW µAcc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Zoo µAcc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
score W/T/L 0/7/7 0/7/7 1/8/5 0/10/4 0/6/8 0/5/9 0/6/8 0/8/6

TABLE VIII. The mean fitness µFit results using the eight TFs and RF with DESFO

Benchmarks Eval-Metric V-ve1 V-ve2 V-ve3 V-ve4 S-ve1 S-ve2 S-ve3 S-ve4
BreastCancer µFit 0.0201 0.0201 0.0201 0.0201 0.0201 0.0204 0.0201 0.0201

BreastEW µFit 0.0366 0.0369 0.0366 0.0368 0.0355 0.0359 0.0356 0.0356
Exactly2 µFit 0.2062 0.2097 0.2154 0.2093 0.2150 0.2084 0.2155 0.2161

IonosphereEW µFit 0.0710 0.0714 0.0698 0.0698 0.0443 0.0516 0.0519 0.0472
KrVsKpEW µFit 0.0254 0.0270 0.0256 0.0232 0.0267 0.0239 0.0256 0.0250

Lymphography µFit 0.1691 0.1659 0.1593 0.1631 0.1694 0.1662 0.1625 0.1691
M-of-n µFit 0.0053 0.0048 0.0049 0.0047 0.0054 0.0050 0.0055 0.0050

PenglungEW µFit 0.3468 0.3466 0.3400 0.3465 0.2646 0.2920 0.3127 0.2777
SonarEW µFit 0.0248 0.0109 0.0177 0.0181 0.0174 0.0173 0.0082 0.0172
Tic-tac-toe µFit 0.1544 0.1544 0.1544 0.1544 0.1544 0.1544 0.1544 0.1544

Vote µFit 0.0022 0.0023 0.0023 0.0026 0.0019 0.0019 0.0019 0.0019
WaveformEW µFit 0.1596 0.1592 0.1591 0.1563 0.1607 0.1594 0.1590 0.1600

WineEW µFit 0.0032 0.0032 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031
Zoo µFit 0.0033 0.0033 0.0034 0.0033 0.0032 0.0033 0.0032 0.0032

Score (W/T/L) 1/2/11 0/2/12 1/3/10 3/3/8 3/5/6 0/3/11 1/5/8 0/5/9

16 Ahmed Sabry Abolaban, et al.

TABLE IX. The mean features’ number µFeat results using the eight TFs and RF with DESFO

Benchmarks Eval-Metric V-ve1 V-ve2 V-ve3 V-ve4 S-ve1 S-ve2 S-ve3 S-ve4
BreastCancer µFeat 5.000 5.000 5.000 5.100 5.000 5.000 5.000 5.200

BreastEW µFeat 12.70 12.80 12.000 12.20 10.00 9.400 11.10 9.000
Exactly2 µFeat 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

IonosphereEW µFeat 15.10 16.00 14.500 14.60 10.50 9.000 14.30 8.900
KrVsKpEW µFeat 15.50 17.90 17.700 17.10 15.90 14.50 15.80 15.20

Lymphography µFeat 9.000 8.500 9.300 9.100 7.300 8.600 8.700 7.700
M-of-n µFeat 6.400 6.400 6.500 6.300 7.000 6.300 6.500 6.700

PenglungEW µFeat 156.2 150.2 142.20 155.6 43.60 81.80 105.5 39.50
SonarEW µFeat 30.20 29.20 29.300 27.60 24.80 17.40 22.90 23.70
Tic-tac-toe µFeat 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000

Vote µFeat 3.200 3.200 3.500 3.200 2.000 2.100 2.200 2.000
WaveformEW µFeat 18.70 18.80 18.500 20.90 16.90 17.90 19.30 19.80

WineEW µFeat 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
Zoo µFeat 4.500 4.700 4.600 4.500 4.000 4.200 4.100 4.100

Score (W/T/L) 0/4/10 0/4/10 0/4/10 0/4/10 1/7/6 1/6/7 0/4/10 3/4/7

TABLE X. The mean Accuracy µAcc results using the eight TFs and SVM with DESFO

Benchmarks Eval-Metric V-ve1 V-ve2 V-ve3 V-ve4 S-ve1 S-ve2 S-ve3 S-ve4
BreastCancer µAcc 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786

BreastEW µAcc 0.9474 0.9474 0.9474 0.9474 0.9544 0.9500 0.9491 0.9526
Exactly2 µAcc 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500

IonosphereEW µAcc 0.9662 0.9648 0.9676 0.9662 0.9648 0.9648 0.9676 0.9620
KrVsKpEW µAcc 0.9820 0.9833 0.9842 0.9831 0.9847 0.9833 0.9808 0.9850

Lymphography µAcc 0.8533 0.8467 0.8533 0.8533 0.8467 0.8500 0.8633 0.8500
M-of-n µAcc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

PenglungEW µAcc 0.8200 0.8267 0.8400 0.8400 0.9267 0.9000 0.8733 0.9200
SonarEW µAcc 0.9476 0.9500 0.9452 0.9429 0.9429 0.9429 0.9429 0.9548
Tic-tac-toe µAcc 0.9062 0.9062 0.9062 0.9062 0.9062 0.9062 0.9062 0.9062

Vote µAcc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
WaveformEW µAcc 0.8767 0.8773 0.8778 0.8768 0.8765 0.8761 0.8777 0.8785

WineEW µAcc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Zoo µAcc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Score (W/T/L) 0/7/7 0/7/7 0/8/6 0/7/7 2/7/5 0/7/7 1/8/5 3/7/4

TABLE XI. The mean Fitness value µFit results using the eight TFs and SVM with DESFO

Benchmarks Eval-Metric V-ve1 V-ve2 V-ve3 V-ve4 S-ve1 S-ve2 S-ve3 S-ve4
BreastCancer µFit 0.0262 0.0262 0.0262 0.0262 0.0262 0.0262 0.0262 0.0262

BreastEW µFit 0.0548 0.0551 0.0550 0.0548 0.0459 0.0504 0.0518 0.0476
Exactly2 µFit 0.2483 0.2483 0.2483 0.2483 0.2483 0.2483 0.2483 0.2483

IonosphereEW µFit 0.0370 0.0384 0.0361 0.0371 0.0380 0.0378 0.0357 0.0409
KrVsKpEW µFit 0.0241 0.0227 0.0220 0.0230 0.0218 0.0229 0.0246 0.0211

Lymphography µFit 0.1495 0.1557 0.1495 0.1493 0.1562 0.1525 0.1397 0.1530
M-of-n µFit 0.0051 0.0048 0.0050 0.0049 0.0051 0.0049 0.0050 0.0052

PenglungEW µFit 0.1812 0.1746 0.1616 0.1616 0.0734 0.1004 0.1275 0.0801
SonarEW µFit 0.0558 0.0536 0.0581 0.0605 0.0602 0.0598 0.0599 0.0487
Tic-tac-toe µFit 0.1017 0.1017 0.1017 0.1017 0.1018 0.1017 0.1017 0.1017

Vote µFit 0.0022 0.0026 0.0020 0.0021 0.0019 0.0019 0.0019 0.0019
WaveformEW µFit 0.1280 0.1271 0.1269 0.1281 0.1284 0.1286 0.1273 0.1272

WineEW µFit 0.0018 0.0018 0.0015 0.0018 0.0015 0.0015 0.0015 0.0015
Zoo µFit 0.0033 0.0033 0.0034 0.0032 0.0033 0.0032 0.0031 0.0032

Score (W/T/L) 0/3/11 1/3/10 1/4/9 0/3/11 2/4/8 0/5/9 3/5/6 2/5/7

International Journal of Computing and Digital Systems 17

TABLE XII. The mean selected Features µFeat results using
the eight TFs and SVM with DESFO

Benchmarks Eval-Metric V-ve1 V-ve2 V-ve3 V-ve4 S-ve1 S-ve2 S-ve3 S-ve4
BreastCancer µFeat 5.000 8.000 5.000 5.000 5.000 5.000 5.000 5.000

BreastEW µFeat 8.200 3.500 8.700 8.000 2.300 2.700 4.200 2.200
Exactly2 µFeat 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

IonosphereEW µFeat 12.10 11.90 13.80 12.40 10.700 10.00 12.40 10.90
KrVsKpEW µFeat 22.70 22.00 22.90 22.60 24.000 22.70 20.10 22.40

Lymphography µFeat 7.800 7.100 7.800 7.400 8.000 7.200 7.900 8.100
M-of-n µFeat 6.600 6.200 6.500 6.400 6.600 6.400 6.500 6.700

PenglungEW µFeat 97.00 98.70 103.2 102.4 26.400 44.600 68.20 30.30
SonarEW µFeat 23.90 24.70 23.30 23.50 21.700 19.50 19.90 23.20
Tic-tac-toe µFeat 8.000 8.000 8.000 8.000 8.100 8.000 8.000 8.000

Vote µFeat 3.500 4.200 3.200 3.300 3.000 3.000 3.000 3.000
WaveformEW µFeat 23.70 22.50 23.60 24.70 24.500 23.90 24.70 22.50

WineEW µFeat 2.400 2.300 2.000 2.300 2.000 2.000 2.000 2.000
Zoo µFeat 5.200 5.300 5.500 5.100 5.200 5.100 5.000 5.100

Score (W/T/L) 0/3/11 3/2/9 0/4/10 0/3/11 1/4/9 2/5/7 2/5/7 1/5/8

TABLE XIII. The three primary classifiers and their respective top-performing binary
versions in the suggested DESFO algorithm

Classifier Metric Best-performing TF # of Superiority Benchmarks
K-NN µAcc DESFO-V-ve4 8

µFit DESFO-S-ve1 7
µFeat DESFO-S-ve1 and DESFO-S-ve4 7

RF µAcc DESFO-V-ve4 10
µFit DESFO-S-ve1 8
µFeat DESFO-S-ve1 8

SVM µAcc DESFO-S-ve4 10
µFit DESFO-S-ve3 8
µFeat DESFO-S-ve2 and S-ve3 7

TABLE XIV. Accuracy and Feature Reduction Achieved by V-shaped and S-shaped
Transfer Functions Across Selected Datasets

Dataset Classifier TF ACC (%) Selected Total
IonosphereEW SVM Vv4 97.2 9 34
WaveformEW k-NN Vv3 85.4 12 40
PenglungEW RF Sv1 76.7 30 325
KrVsKpEW RF Sv3 94.7 15 36

18 Ahmed Sabry Abolaban, et al.

larger datasets, combined with the need for careful TF
and classifier tuning, presents challenges. Future research
could explore adaptive techniques that dynamically select
the optimal TF-classifier combination, reducing the need
for manual tuning and enhancing algorithm efficiency. Ad-
ditionally, investigating DESFO’s performance with other
metaheuristic algorithms and classifiers could yield insights
into it.

7. Conclusions and FutureWork

In the study, the behavior of the DESFO algorithm
is introduced, merging the DE and SFO algorithms with
eight (TFs) divided into two categories: V-shaped and
S-shaped. This merger was aimed at improving (FS)
strategies. Classifiers such as K-NN, RF, and SVM were
employed to assess the efficacy of the selected feature
groups and determine classification accuracy. This study
tested benchmarks featuring multi-scale features and
multi-records to prove its success. Results from the three
classifiers were juxtaposed against the performances of the
eight V-shaped and S-shaped (TFs). Evaluation metrics
included average fitness, accuracy, and the number of
attributes chosen. The results revealed that considering
mean accuracy, the DESFO algorithm, when paired with
the RF classifier and V-shaped V4 (TFs), as well as with the
SVM classifier and S-shaped V4 (TFs), performed better
than all other configurations on 10 out of 14 benchmarks
analyzed. For mean fitness functions, the DESFO technique
performed best with the RF classifier and V-shaped V1
(TFs) and with the SVM classifier and S-shaped V3,
leading in 8 of the 14 benchmarks. Additionally, regarding
the average of chosen attributes, the DESFO algorithm,
combined with the RF classifier and equipped with the
S-shaped V1, was the standout performer in 8 out of the
14 benchmarks. Further exploration into the effectiveness
of DESFO for (FS), utilizing various ML algorithms like
Naive Bayes, Logistic Regression, Decision Trees (DT),
and more, is warranted. Due to its established prowess in
selecting features, the DESFO holds significant potential
across multiple domains, including Engineering, software
cost estimation, networking security, and healthcare.

Conflict of Interest

The authors assure that there are no conflicts of interest
or personal relationships that might appear to affect the
research presented in this study.

References
[1] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,

pp. 34–37, 1966.

[2] B. Remeseiro and V. Bolon-Canedo, “A review of feature selec-
tion methods in medical applications,” Computers in Biology and
Medicine, vol. 112, p. 103375, 2019.

[3] D. T. Mosa, S. E. Sorour, A. A. Abohany, and F. A. Maghraby,
“Ccfd: Efficient credit card fraud detection using meta-heuristic
techniques and machine learning algorithms,” Mathematics, vol. 12,
no. 14, p. 2250, 2024.

[4] M. G. Gafar, A. A. Abohany, A. E. Elkhouli, and A. A. A. El-
Mageed, “Optimization of gene selection for cancer classification
in high-dimensional data using an improved african vultures algo-
rithm,” Algorithms, vol. 17, no. 8, p. 342, 2024.

[5] R. M. Hussien, A. A. Abohany, A. A. Abd El-Mageed, and
K. M. Hosny, “Improved binary meerkat optimization algorithm
for efficient feature selection of supervised learning classification,”
Knowledge-Based Systems, vol. 292, p. 111616, 2024.

[6] V. F. Rodriguez-Galiano, J. A. Luque-Espinar, M. Chica-Olmo,
and M. P. Mendes, “Feature selection approaches for predictive
modelling of groundwater nitrate pollution: An evaluation of filters,
embedded and wrapper methods,” Science of the Total Environment,
vol. 624, pp. 661–672, 2018.

[7] A. A. A. El-Mageed, A. E. Elkhouli, A. A. Abohany, and M. Gafar,
“Gene selection via improved nuclear reaction optimization algo-
rithm for cancer classification in high-dimensional data,” Journal of
Big Data, vol. 11, no. 1, p. 46, 2024.

[8] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[9] A. A. Abd El-Mageed, A. G. Gad, K. M. Sallam, K. Munasinghe,
and A. A. Abohany, “Improved binary adaptive wind driven opti-
mization algorithm-based dimensionality reduction for supervised
classification,” Computers & Industrial Engineering, vol. 167, p.
107904, 2022.

[10] S. E. Abdallah, W. M. Elmessery, W. Z. Hassan, N. S. Al-Sattary,
A. A. Abohany, and A. Elashry, “Appropriate and optimal classifier
for beef quality discrimination by a low-cost optical apparatus,”
2023.

[11] S. E. Sorour, L. Hassan, A. A. Abohany, and R. M. Hussien,
“An improved binary crayfish optimization algorithm for handling
feature selection task in supervised classification,” Mathematics,
vol. 12, no. 15, p. 2364, 2024.

[12] M. Abedi, G. H. Norouzi, and A. Bahroudi, “Support vector machine
for multi-classification of mineral prospectivity areas,” Computers
& Geosciences, vol. 46, pp. 272–283, 2012.

[13] A. A. Zhigljavsky, Theory of Global Random Search (Mathematics
and its Applications). Springer, 1991.

[14] H. E. Abdelkader, A. G. Gad, A. A. Abohany, and S. E. Sorour, “An
efficient data mining technique for assessing satisfaction level with
online learning for higher education students during the covid-19,”
IEEE Access, vol. 10, pp. 6286–6303, 2022.

[15] A. H. Salem, S. M. Azzam, O. Emam, and A. A. Abohany,
“Advancing cybersecurity: a comprehensive review of ai-driven
detection techniques,” Journal of Big Data, vol. 11, no. 1, p. 105,
2024.

[16] K. M. Sallam, A. A. Abohany, and R. M. Rizk-Allah, “An enhanced
multi-operator differential evolution algorithm for tackling knapsack
optimization problem,” Neural Computing and Applications, vol. 35,
no. 18, pp. 13 359–13 386, 2023.

International Journal of Computing and Digital Systems 19

[17] E. El-shafeiy, K. M. Sallam, R. K. Chakrabortty, and A. A. Abohany,
“A clustering based swarm intelligence optimization technique for
the internet of medical things,” Expert Systems with Applications,
vol. 173, p. 114648, 2021.

[18] A. A. Abd El-Mageed, A. A. Abohany, and A. Elashry, “Effective
feature selection strategy for supervised classification based on an
improved binary aquila optimization algorithm,” Computers and
Industrial Engineering, vol. 181, p. 109300, 2023.

[19] M. Mafarja et al., “Binary dragonfly optimization for feature se-
lection using time-varying transfer functions,” Knowledge-Based
Systems, vol. 161, pp. 185–204, 2018.

[20] J. C. Bansal and K. Deep, “A modified binary particle swarm
optimization for knapsack problems,” Applied Mathematics and
Computation, vol. 218, no. 22, pp. 11 042–11 061, 2012.

[21] S. Mirjalili and A. Lewis, “S-shaped versus v-shaped transfer
functions for binary particle swarm optimization,” Swarm and
Evolutionary Computation, vol. 9, pp. 1–14, 2013.

[22] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal
of Global Optimization, vol. 11, pp. 341–359, 1997.

[23] S. Shadravan, H. R. Naji, and V. K. Bardsiri, “The sailfish opti-
mizer: A novel nature-inspired metaheuristic algorithm for solving
constrained engineering optimization problems,” Engineering Appli-
cations of Artificial Intelligence, vol. 80, pp. 20–34, 2019.

[24] A. G. Gad, K. M. Sallam, R. K. Chakrabortty, M. J. Ryan, and A. A.
Abohany, An improved binary sparrow search algorithm for feature
selection in data classification. Springer London, 2022, vol. 34.

[25] I. Klyueva, L. Demidova, and A. Pylkin, “Hybrid approach to
improving the results of the svm classification using the random
forest algorithm,” in Procedia Computer Science, vol. 150, 2019,
pp. 455–461.

[26] Y. Chen et al., “A hybrid binary dragonfly algorithm with an
adaptive directed differential operator for feature selection,” Remote
Sensing, vol. 15, no. 16, p. 3980, 2023.

[27] H. Chantar et al., “Feature selection using binary grey wolf op-
timizer with elite-based crossover for arabic text classification,”
Neural Computing and Applications, vol. 32, pp. 12 201–12 220,
2020.

[28] A. Fatahi, M. H. Nadimi-Shahraki, and H. Zamani, “An improved
binary quantum-based avian navigation optimizer algorithm to select
effective feature subset from medical data: A covid-19 case study,”
Journal of Bionic Engineering, vol. 21, no. 1, pp. 426–446, 2024.

[29] D. H. Wolpert and W. G. Macready, “No free lunch theorems
for optimization,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 67–82, 1997.

[30] S. M. Azzam, O. E. Emam, and A. S. Abolaban, “An improved
differential evolution with sailfish optimizer (desfo) for handling
feature selection problem,” Scientific Reports, vol. 14, no. 1, p.
13517, 2024.

[31] A. A. Samir, A. R. Rashwan, K. M. Sallam, R. K. Chakrabortty,
M. J. Ryan, and A. A. Abohany, “Evolutionary algorithm-based con-
volutional neural network for predicting heart diseases,” Computers
& Industrial Engineering, vol. 161, p. 107651, 2021.

[32] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[33] Y. Wu, K. Ianakiev, and V. Govindaraju, “Improved k-nearest
neighbor classification,” Pattern Recognition, vol. 35, no. 10, pp.
2311–2318, 2002.

[34] M. Mafarja and S. Mirjalili, “Whale optimization approaches for
wrapper feature selection,” Applied Soft Computing, vol. 62, pp.
441–453, 2018.

[35] M. J. Zaki and W. Meira, Data mining and analysis: fundamental
concepts and algorithms. Cambridge University Press, 2014.

[36] R. Katuwal, P. N. Suganthan, and L. Zhang, “An ensemble of
decision trees with random vector functional link networks for multi-
class classification,” Applied Soft Computing, vol. 70, pp. 1146–
1153, 2018.

[37] H. Cao, S. Bernard, R. Sabourin, and L. Heutte, “Random forest
dissimilarity based multi-view learning for radiomics application,”
Pattern Recognition, vol. 88, pp. 185–197, 2019.

[38] A. Criminisi, J. Shotton, and E. Konukoglu, “Decision forests: A
unified framework for classification, regression, density estimation,
manifold learning and semi-supervised learning,” Foundations and
Trends in Computer Graphics and Vision, vol. 7, no. 2–3, pp. 81–
227, 2012.

[39] V. Vapnik, The nature of statistical learning theory. Springer
Science & Business Media, 2013.

[40] A. Tharwat, A. E. Hassanien, and B. E. Elnaghi, “A ba-based
algorithm for parameter optimization of support vector machine,”
Pattern Recognition Letters, vol. 93, pp. 13–22, 2017.

[41] A. Frank, “Uci machine learning repository,” 2010. [Online].
Available: http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml

	Introduction
	Motivation
	Contribution
	Structure

	Related Work
	Preliminary Work
	DESFO Algorithm
	DE Algorithm
	SFO Algorithm

	Transfer (Mapping) Functions (TFs)
	Machine Learning (ML) Classifiers
	K-Nearest Neighbor Classifier (k-NN)
	Random Forest Classifier (RF)
	Support Vector Machine Classifier (SVM)

	Methodology of the proposed DESFO
	Initial Population Generation
	Position Update in DESFO Algorithm
	Converting Continuous Positional Values to Binary in DESFO for FS
	Binary Representation in FS
	Role of Transfer Functions (TFs)
	Binary Conversion Process
	Mathematical Representation of Binary Conversion
	Impact on Feature Selection

	Fitness Evaluation
	Flowchart of DESFO
	Analysis of DESFO Computational Complexity for FS Across Different Classifiers
	Overall Complexity of DESFO
	Impact of Number of Features (D)
	Impact of Dataset Size (Number of Instances)
	Scaling with Number of Features and Dataset Size
	Summary of Complexity Analysis

	Results and Analysis
	Datasets Overview
	Experimental Setup
	Evaluation Metrics
	Mean Accuracy
	Mean Fitness
	Mean Selected Number of Features

	DESFO Behavior Assessment Utilizing Eight TFs
	Evaluation of DESFO-TFs using the k-NN classifier
	Evaluation of DESFO-TFs using the RF Classifier
	Evaluation of DESFO-TFs using the SVM Classifier

	The Overall Evaluation and Discussion
	Impact of Feature Reduction on Performance and Efficiency
	V-shaped Transfer Functions for Precision-Driven Feature Selection
	S-shaped Transfer Functions for Aggressive Reduction in Redundant Features
	Balancing Exploration and Exploitation for Optimal Feature Subsets

	Discussion
	Influence of Transfer Functions and Classifiers on Performance
	Dimensionality Reduction and Computational Efficiency
	Practical Implications and Applicability
	Limitations and Future Research Directions

	Conclusions and Future Work
	References

