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Abstract: Missing data is a pervasive challenge in diverse datasets accross various domains. It is often resulting from human error,
system faults, and respondent non-response. Failing to address missing data can lead to inaccurate results during data analysis, as
incomplete data sequences introduce biases and compromise the distribution of the synthesized data, and cause a negative impact
on the decision-making process. Over the past decade, deep learning methods, particularly Recurrent Neural Network (RNN), have
been employed to tackle the problem. This study aims to comprehensively evaluate recent RNN methods for missing data imputation,
focusing on their strengths and weaknesses to provide a detailed understanding of the current landscape. A systematic literature review
was conducted on RNN-based data imputation methods, covering research articles from 2013 to 2023 that were identified in the
SCOPUS database. Out of 362 relevant studies, 70 were selected as primary articles. The findings highlight that Long Short-Term
Memory (LSTM) is the most adopted RNN method for data imputation due to its adaptability in processing data of varying lengths as
compared to Gated Recurrent Units (GRU) and other hybrid methods. Performance metrics such as Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Area Under the Receiver Operating Characteristic Curve (AU-ROC), Mean Squared Error (MSE), and
Mean Relative Error (MRE) are commonly used to evaluate these models. Future development of a more robust RNN-based imputation
methods that integrate optimization algorithms, such as Particle Swarm Optimization (PSO) and Stochastic Gradient Descent (SGD)
will further enhance the imputation accuracy and reliability.
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1. Introduction
Grasping the complexities of data quality presents a sig-

nificant challenge owing to its reliance on specific contexts
and domains. The definition of data quality often revolves
around its capability to fulfill user needs and its appropri-
ateness for its designated purpose. These criteria resonate
with established quality management principles [1], which
underscore the criticality of defining and upholding quality
standards to meet exacting consumer demands. Despite its
paramount importance, the attainment of high data quality
poses a formidable challenge due to the diverse quality
dimensions of data across various applications.

Data completeness, within the framework of data quality
dimensions, denotes the quantity of accessible data in a
given dataset [2], assessed by the ratio of available data
to total records [3]. An examination of data completeness
underscores the critical challenge posed by missing data,
a mainly noteworthy issue in real-world datasets, particu-
larly those involving time-series data. Time-series models
in machine learning are prone to encountering missing

data owing to a range of factors, including human errors
during data collection, system malfunctions, respondents’
refusal to answer specific questions, withdrawal from study
participation, and the inadvertent merging of disparate data
sources [4].

Due to the various causes of missing data, it is an
unavoidable issue in real-world scenarios. Missing data
poses significant challenges in data analysis, leading to
a degradation of accuracy and negatively impacting the
decision-making process. This paper aims to achieve the
following objectives which are to identify recent trends
in data imputation using recurrent neural networks, eval-
uate the effectiveness of existing methods, highlight their
strengths and weaknesses in addressing missing data, and
provide insights for future research directions.

Missing mechanisms significantly impact on the efficacy
and validity of imputation methods, [5] as a successful
of the imputation method often depends on the underly-
ing mechanism [6]. Many current imputation methods are
developed under the assumption that missing data occurs
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based on Missing at Random (MAR) pattern [7]. While
assuming that data is Missing Completely at Random
(MCAR) provides a simple starting point for imputation
analysis, this assumption is typically impractical for real-
world scenarios, as missing data often arise from complex
relationships among observed variables and may also be
influenced by unobserved factors [5].

There are three types of missingness mechanism, which
are MCAR, MAR and Missing Not Completely at Random
(MNAR) [8]. MCAR occurs when the missingness has
no connection to either observed or unobserved variables.
MAR occurs when missingness is still random but is
influenced by observed variables. In the case of MNAR,
missingness depends on the unobserved value of the missing
element itself [9].

Forecasting and classification tasks often experience a
degradation in performance due to the influence of missing
data within time-series datasets. The presence of missing
data may introduce bias in parameter estimation and reduce
the representativeness of the sample data [10], leading to
disruptions in statistical analysis and hindering effective
decision-making [11]. A 2015 diabetes management pro-
gram in Australia serves as an illustration of these chal-
lenges, particularly in predictive analytics within healthcare.
According to Liu et al. [12], the initiative aimed to enhance
care for diabetic patients across 36 clinics by linking daily
electronic medical record data and employing a centralized
statistical engine to predict patients at risk of developing
diabetes. However, incomplete data entry at the clinics
ultimately led to the program’s failure.

Therefore, the imperative of addressing missing data
emerges as a critical consideration one that is frequently
underestimated in the construction of a resilient time-series
machine learning model [13]. Basic approaches like deletion
can disturb the chronological continuity of the time-series
dataset, leading to information loss and bias. Conversely,
imputation entails more intricate procedures aimed at sub-
stituting missing data to uphold the integrity of the entire
sequence.

Imputation method presents a means to fill in missing
data within a dataset with the most pertinent value, poten-
tially minimizing errors in subsequent time-series analyses.
Recognizing that imputation has inherent limitations, it
necessitates meticulous consideration due to the risk of
introducing biases and inaccuracies, thereby compromising
the credibility of data analysis results. The selection of
an imputation method requires a data-driven assessment
of factors such as the mechanism of missingness, data
distribution characteristics, and research objectives [14].

Conventional approaches to time-series imputation using
machine learning often rely on feature extraction prior to
making predictions. However, this approach is limited in its
ability to fully exploit the valuable information inherent in
raw time sequence data [13]. An example of this challenge

can be seen in the complexities of implementing imputation
with K-Nearest Neighbors (KNN). Although KNN is a
popular method for handling missing data, it is susceptible
to drawbacks such as reduced accuracy and the potential in-
troduction of spurious correlations, particularly in scenarios
lacking genuine correlations [4].

Furthermore, conventional methods for addressing miss-
ing data in time-series datasets face substantial challenges
when confronted with datasets characterized by a multitude
of features or variables. Li et al. [15] argue that conven-
tional imputation methods, such as KNN, begin to exhibit
diminished performance and accuracy in high-dimensional
data scenarios, particularly those involving datasets with a
substantial number of columns or attributes. This empha-
sizes the necessity for more sophisticated methods that can
directly harness the richness of unprocessed time-series data
to improve predictive precision and reliability.

Numerous studies have explored a paradigmatic shift
that integrates the imputation and prediction (I&P) pro-
cesses within a unified imputation framework using Recur-
rent Neural Network (RNN). This progressive approach is
exemplified by models such as AJ-RNN and LIME-RNN,
which strive to concurrently tackle imputation and predic-
tion tasks. Nevertheless, it is important to note that these
methods often disregard horizontal correlations present
within the time-series datasets. They primarily focus on the
associations between an incomplete value and its nearest
neighbors [16], overlooking the broader interrelationships
among various variables at the same timestamp.

This study presents a critical examination of the recent
landscape of RNN-based imputation methods for missing
data in time-series datasets. The central focus of this eval-
uation is to illuminate the existing gaps by highlighting
the strengths demonstrated by recent RNN-based impu-
tation methods, while also addressing their limitations in
handling missing data for time-series datasets. Through a
comprehensive investigation, the objective is to provide a
detailed understanding of the current landscape of RNN-
based methods for missing data imputation in time-series
datasets and contribute insights for advancing this field
further.

The paper adopts a structured approach. Section 2 pro-
vides a review of related research to enhance comprehension
of the field. Section 3 delineates the research methodology,
offering a detailed overview of the study’s execution. In
Section 4, the empirical findings derived from the study are
presented. Section 5 consolidates the research outcomes and
suggests potential avenues for future exploration. Finally,
Section 6 offers a robust summary, encapsulating the key
insights and implications gleaned from the study.

2. RelatedWorks
Liu et al. [17] conducted a rigorous analysis of diverse

methodologies employed for data imputation within health-
care environments. The study meticulously assessed how
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different data features exert a substantial influence on the
selection and efficacy of the imputation algorithms. The
effectiveness of imputation method is intricately linked to
the degree of correlation among variables, highlighting the
nuanced interplay between data structure and imputation
performance. Deep learning imputation method such as
RNN improve the ability to handle missing data specifically
the imputation accuracy, time consumed and the computa-
tional cost [18].

On the other hand, RNNs are susceptible to the van-
ishing gradient problem, a phenomenon that hinders its
ability to effectively learn long-term dependencies during
the imputation process. To address this limitation, a more
advanced method known as the Long Short-Term Memory
(LSTM) has been adopted in RNN. The LSTM method
enhances the RNN architecture by incorporating memory
cells, enabling it to better capture and retain sequential
information over extended periods, thus mitigating the van-
ishing gradient issue in time-series imputation. Cui et al.
[19] introduced an innovative stacked model that combines
bidirectional and unidirectional LSTM networks to predict
the state of network-wide traffic. This hybrid LSTM model
markedly enhanced prediction accuracy compared to tradi-
tional recurrent neural networks (RNNs), demonstrating its
superior capability in capturing complex traffic patterns and
dependencies. Shen et al. [20] proposed a graph attention
recurrent neural network (GARNN), an LSTM-based impu-
tation unit specifically designed for handling missing values
in spatial-temporal data and outperformed other RNN-based
imputation methods.

Mesquita et al. [21] conducted a literature survey on
deep learning-based imputation methods for multivariate
time series, emphasizing their importance in fields like
healthcare and industry. The study highlights challenges
posed by missing data which significantly impact forecast-
ing and classification tasks. While various imputation tech-
niques exist, comparative analysis across different missing
data rates has been lacking. To address this gap, the study
evaluates five deep learning-based imputation methods such
as MRNN, US-GAN, GP-VAE, SAITS, and BRITS by
using the Physionet Challenge 2012 dataset. The findings
reveal that SAITS achieved the lowest average imputation
error, whereas BRITS demonstrated lower error dispersion,
underscoring the strengths of these approaches in handling
missing MTS data.

Sun et al. [5] review the performance of deep learning
imputation methods in comparison to conventional ma-
chine learning imputation methods such as MissForest and
Multiple Imputation by Chained Equations (MICE). The
study concludes that deep learning approaches demonstrate
superior accuracy for imputing data with high proportions
of missing values. Furthermore, deep learning imputation
methods are adept at handling both temporal and spatial
missing data, offering a more robust solution for complex
imputation tasks. In contrast, conventional imputation meth-

ods are preferable for imputation in datasets with small
sample sizes.

Kazijevs and Samad [22] conducted a comprehensive
survey of deep learning approach for imputing missing
values in time-series data. The study indicates that deep
learning imputation methods, particularly LSTM, signif-
icantly enhance imputation performance for time-series
datasets. Despite being more computationally demanding
than conventional methods, LSTM-based imputation offers
superior accuracy and robustness, making it a valuable tool
for handling complex temporal data with missing values.

Deep learning based imputation methods, particularly
RNN and LSTM, outperform traditional techniques in accu-
racy and robustness, especially for time-series and spatial-
temporal data. Advanced architectures like hybrid LSTM
and attention-based networks further enhance imputation
performance. However, these methods are computation-
ally intensive and require large datasets, while traditional
methods remain preferable for smaller datasets and lower-
resource settings.

This study builds on prior work by providing a struc-
tured comparison of deep learning imputation method,
specifically RNN and give insight of the suitable method
based on dataset characteristics to perform data imputation.

3. Methodology
Following the established methodology for systematic

literature reviews as outlined by Kitchenham et al. [23],
this study adopts a rigorous and transparent approach to
critically evaluate the relevant literature. This comprehen-
sive approach involves eight distinct stages, each metic-
ulously designed to ensure thoroughness and reliability.
These stages are summarized and illustrated in Figure 1,
providing a clear framework for the review process.

Figure 1. Framework for Review Process

The initial stage involves formulating research ques-
tions. These questions serve as the lens through which
relevant data will be extracted and analyzed from the chosen
primary studies throughout the review process. The subse-
quent stage revolves around developing a search strategy,
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encompassing two key elements: identifying study-related
keywords and selecting reputable and esteemed research
resources, such as journals and conference proceedings, to
serve as sources for the relevant studies. Logical operators
will also be employed to facilitate the search process.

The third stage entails establishing criteria for inclu-
sion and non-inclusion, ensuring that only pertinent studies
are selected. The fourth stage entails defining criteria for
evaluating study quality. By adhering to this criterion, it
ensures that selected studies have the requisite information
to address the research question and minimize potential
biases.

The fifth stage involves selecting the primary studies,
initially by examining their titles and abstracts to ascertain
alignment with the outlined criteria before proceeding to a
full-text evaluation. The subsequent stage entails extracting
all essential data, which will then be subjected to analysis
and synthesis to address all research inquiries. The final
stage encompasses evaluating all selected primary studies
against established quality standards. This systematic eval-
uation ensures adherence to predetermined standards and
assigns dedicated marks to each criterion, ultimately leading
to an overall quality evaluation for each study.

A. Research Question
This study provides a comprehensive review and eval-

uation of the adoption of RNN for imputing missing data
in time-series datasets. The primary objective is to analyze
and synthesize the effectiveness of RNN in addressing
the challenges associated with missing data imputation.
Emphasis is placed on identifying key performance metrics
that contribute to achieving optimal imputation results. This
systematic literature review aims to bridge existing research
gaps by addressing the following research questions:

RQ1 How have RNN imputation methods evolved in the
last decade?

RQ2 What are the most popular variants employed in
RNN for handling missing data imputation?

RQ3 What are the features of the datasets utilized in
RNN data imputation?

RQ4 What performance metrics are utilized for evalu-
ating RNN imputation method?

RQ5 What are the advantages and potential drawbacks
of the proposed RNN imputation method?

RQ1 explores the emerging trends in the adoption of
RNNs for imputing missing values, highlighting the fre-
quency and prevalence of RNN usage compared to other
imputation methods. RQ2 examines the implementation
processes and categorizes the various RNN imputation
methods employed. RQ3 aims to analyze the features of
the dataset used for RNN imputation. RQ4 investigates
the metrics used to evaluate the performance of RNN

imputation methods, providing insights into the key metrics
that are essential for assessing their effectiveness. RQ5
focuses on identifying the strengths and limitations inherent
in RNN methods, offering valuable guidance for future
research and applications, particularly in the context of data
imputation using RNNs.

B. Search Strategy
The search strategy is developed based on two primary

components: the identification of relevant keywords and the
selection of esteemed research resources. The selection of
classifications and keywords for the search process is de-
rived from a thorough examination of abstracts and research
titles of sample literature deemed pertinent to the research
questions. This study employs two primary classifications:
”missing values” and ”RNN” which ensure a focused and
efficient search, capturing the most relevant studies for the
review.

Table I provides a detailed categorization of the primary
classifications used in this study, along with their associated
keywords. To refine the search strategy, keywords related to
‘RNN’ are included, acknowledging that ’RNN’ may not
be explicitly mentioned in all research titles and abstracts.
Recognizing the diverse applications of RNN across various
studies, a thorough identification of specific keywords rele-
vant to missing data is conducted. This thorough approach
allowed for the precise extraction of data from pertinent
studies, thereby ensuring a comprehensive and focused
analysis of literature.

TABLE I. Primary classification and associated keywords

Number Classification Associated Keywords

PC01 RNN ‘RNN’, ‘recurrent
neural network’, ‘GRU’,
‘Gated Recurrent
Unit’, ‘Long Short-
Term Memory’,
‘LSTM’, ‘time-series’,
‘sequential.’

PC02 Missing data ‘missing data’, ‘data
missingness’, ‘missing
value’, ‘imputation’,
‘incomplete’

The decision to utilize the SCOPUS database as the pri-
mary source for the reviewed articles was based on several
key considerations. Firstly, SCOPUS is a widely recognized
database known for its wider journal coverage compared
to Web of Science [24] that has extensive collection of
peer-reviewed research articles, ensuring a comprehensive
and reliable source of information [25]. Secondly, articles
indexed in SCOPUS are considered to meet high-quality
standards, having undergone rigorous quality assessments.
Moreover, SCOPUS offers advanced search capabilities,
including the use of logical operators such as OR and AND,
which facilitated the refinement of search criteria by the
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researchers. SCOPUS provides robust filtering features that
allow for the narrowing down of search outcomes according
to publication date, further enhancing the precision and
relevance of the literature review.

C. Inclusion and Exclusion Criteria
A two-step process was thoroughly employed to identify

relevant studies from the research database outlined in
Table II.

TABLE II. Research database selection

Number Database Web Address

RN01 SCOPUS https://www.scopus.com

The search process encompassed articles published be-
tween 2013 and 2023. Initially, a comprehensive search was
conducted using predefined keywords and logical operators
to ensure the inclusion of all potentially relevant articles.
Subsequently, the titles and abstracts of these articles were
meticulously screened and filtered to select studies that
aligned with this research objectives. In the second itera-
tion, full-text articles were reviewed in detail, and specific
inclusion and exclusion criteria were applied to ensure a
rigorous final selection of studies. This methodical approach
significantly enhanced the validity and reliability of the
research findings.

Inclusion criteria:

a. The study must have been published exclusively
between January 1, 2013, and December 31, 2023.

b. The study’s primary objective should revolve around
resolving the problem of missing data within a dataset.

c. The proposed RNN method must be evaluated against
other machine learning imputation methods.

d. The study must be composed in English to ensure
clarity and accessibility for the research team.

e. The study must be published in a journal or confer-
ence proceedings indexed in SCOPUS, ensuring that it has
undergone a rigorous peer-review process.

Non-inclusion criteria:

a) The study must not be a conference abstract or
editorial, as these formats typically lack the comprehensive
detail and rigorous methodology necessary for in-depth
research analysis.

b) The study must refrain from prioritizing conventional
imputation methods over RNN-based imputation.

c) The study’s primary objective must be to improve
data imputation performance, not to enhance other factors.

d) The study must focus on imputing missing values,

not predicting a particular case.

This study employed a systematic search strategy to
identify relevant articles for review. Table III delineates a
comprehensive search query particularly crafted to harness
the advanced search capabilities of the selected database.
These queries were designed to incorporate relevant key-
words and logical operators, thereby optimizing the search
process to yield a precise and comprehensive selection of
articles aligned with the research objectives.

TABLE III. Selected database search query

Database Name Search Query

SCOPUS (”missing data” OR “missing value”
OR “data missingness” OR incom-
plete OR “imputation”) AND (”re-
current neural network” OR “RNN”
OR “GRU” OR “Gated Recurrent
Unit” OR “Long Short-Term Mem-
ory” OR “LSTM”) AND (“time-
series”, “sequential”)

D. Quality Criteria
Prior to delving into the research questions, this section

systematically evaluates the selected studies to confirm the
requisite depth and detail of the selected articles for a
thorough analysis. Each evaluation criterion is denoted by
the abbreviation ’QAC’, which indicates Quality Assess-
ment Criteria. These criteria encompass a set of evaluation
questions outlined as follows:

QAC1 Does the study implement RNN method for
missing data imputation?

QAC2 Does the study clearly explicate their methodol-
ogy and research purpose?

QAC3 Is the recurrent neural network approach as-
sessed through comparisons against other RNN or machine
learning-based methods?

QAC4 Are the performance metrics employed in the
study clarified and explained by the researcher?

QAC5 Does the study elaborate on the comparative
strengths and weaknesses of the recurrent neural network
approaches employed?

E. Identification of Primary Articles Collection
The automated search conducted on the SCOPUS online

database yielded a total of 362 articles centered on the
application of RNN for missing value imputation. After a
thorough assessment of their titles and abstracts, only 89 ar-
ticles were considered pertinent during the initial screening.
The remaining 19 studies were excluded due to their lack
of relevance to the current investigation. Adhering strictly
to the predetermined inclusion and exclusion criteria, a final

https://www.scopus.com
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selection of 70 articles was made to specifically address the
research inquiries, as depicted in Figure 2.

Figure 2. Primary Studies Screening Process

F. Data Extraction
The process of selecting pertinent articles involved an

intensive search across various platforms including selected
online database, reputable journal publishers, and relevant
conference proceedings. Each article identified underwent
a stringent evaluation process, following the categorization
and subcategorization framework delineated in Table IV.
These categories were derived from the research questions
to ensure harmonization with the study’s primary objectives.
The data extraction process employed a blend of automated
and manual search techniques, emphasizing a comprehen-
sive and thorough approach to gather relevant information
from the selected articles.

TABLE IV. Category and subcategory framework

Category Sub-category RQ

Paper information Article’s title RQ1
Published year
Author
Publisher

Research focus Objective RQ2
Methodology

RNN method Proposed method RQ2
Selection method

Dataset Number of dataset RQ3
Dataset sources
Type of missing mecha-
nism

Performance eval-
uation

Evaluation metrics RQ4

Evaluation methods

Findings Limitation RQ5
Strength
Future work

The data extracted under the “Paper information” cat-
egory was instrumental in addressing RQ1, which aimed
to ascertain whether the articles were published within the
past decade. This categorization, based on the publication
year, offered valuable insights into the current trends and ad-
vancements in RNN-based missing data imputation, thereby
significantly contributing to the resolution of RQ1. Moving
on to the “Research focus” and “RNN method” category,
a detailed examination of the specific RNN methods em-
ployed in the articles was conducted. Through the analysis
of subcategories within this category, RQ2, which sought to
identify the predominant RNN methods utilized for missing
data imputation, could be effectively addressed, enriching
the study’s overall findings.

The ’Dataset’ category aims to analyze the features of
each dataset used in the primary studies. This approach
provides a deeper understanding of how RNN imputa-
tion methods are applied to different datasets, representing
the adoption of these methods in real-world scenarios,
addressing RQ3. The ”Performance evaluation” category
played a pivotal role in addressing RQ4 by evaluating the
metrics used to assess the effectiveness of the proposed
RNN methods. This critical assessment of performance
factors contributed significantly to understand the efficacy
and reliability of RNN-based methods in handling missing
data, aligning with the objectives of RQ4.

Lastly, the ”Findings” category provided a comprehen-
sive overview of the strengths and limitations of the pro-
posed methods. These insights were crucial in addressing
RQ5, which aimed to identify research gaps and potential
avenues for future work in the domain of missing data im-
putation using RNNs. By pinpointing these gaps, the study
not only contributed to the existing body of knowledge but
also provided valuable guidance for researchers looking to
advance this field further.

G. Data Synthesis
In the data synthesis phase, the extracted data from the

preceding stages are combined to provide a comprehensive
analysis. This integration employs two distinct approaches:
quantitative descriptive analysis (QDA) and narrative syn-
thesis. QDA is utilized to present a deeper understanding
to research questions 1, 2, 3 and 4. In contrast, RQ5 is
addressed through a narrative synthesis approach, which
involves summarizing and integrating insights from various
articles.

H. Data Quality Assessment
After applying rigorous inclusion and exclusion criteria,

each article selected for inclusion underwent a compre-
hensive assessment using QAC. This step ensured that the
selected articles aligned with the research questions and
that any low-quality articles, which might introduce bias
into the results, were systematically excluded [26]. This
quality scoring framework assigned numerical values from
0 to 1 to assess the sufficiency of information available to
address key domains outlined in the QAC: A marks of 1
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suggest that an article completely fulfilled the criteria in
question and provided abundant salient details; 0.5 denoted
that the article only partially met the criteria or omitted
some relevant information; and 0 signified that the article
failed to address the criteria or research considerations
at all. By tallying the quality scores achieved across all
QAC dimensions, an aggregated quality benchmark could
be calculated for each selected source.

Once evaluation of quality is performed, it can be
observed that the total score for each QAC is predominantly
greater than or equal to 80%, as illustrated in Figure 3.
This signifies that the chosen relevant articles sufficiently
cover the necessary information regarding the imputation
of missing values using RNN.

Figure 3. Total Score for Each QAC

4. Result and Discussion
This study places particular emphasis on articles con-

cerning missing data imputation using the RNN method.
Each selected article underwent a thorough analysis and
data synthesis process, as detailed in the preceding section.
The findings from this systematic literature review will
be summarized to provide comprehensive answers to the
research questions that are previously identified.

A. RQ1. How Have RNN Imputation Methods Evolved in
The Last Decade?
Figure 4 depicts the annual publication count of research

articles employing RNNs for missing value imputation. In-
terestingly, between 2013 and 2017, research remained very
low and stable, with publication counts hovering between
0 and 1 paper per year. However, from 2018 to 2021,
a remarkable increase was observed from 2018 to 2021,
reaching 22 papers in 2021. As deep learning continues
to gain traction, so does the adoption of RNNs for data
imputation, with research in this area seeing a significant
surge. The rise in deep learning research can be attributed,
in part, to the emergence of high-level neural network Ap-
plication Programming Interfaces (APIs) like TensorFlow
and Keras. These user-friendly interfaces have addressed
the computational hurdles of training deep learning models,
as outlined by Ma et al. [27]. Their functionalities, such as
automatic differentiation and efficient memory management,
align with recommendations for optimizing training, in-
cluding learning rate scheduling [28] and high-performance

computing (HPC) communication techniques. In support
of this, a SCOPUS database search reveals a substantial
increase in studies in 2018 mentioning TensorFlow and
Keras which are 500 and 111 articles respectively. Yet, the
count has dipped slightly to less than 22 articles in 2022
and 2023, raising questions about the recent shift.

Figure 4. Year of Publication of Using RNN for Data Imputation

A large number of articles across 27 countries reveal a
growing interest in RNNs for data imputation. As illustrated
in Figure 5, the top five contributing nations stand out:
China spearheads the field with 28 published journal articles
and conference papers, closely followed by the United
States with 23 articles. Australia and South Korea have
8 and 7 articles respectively, while Canada contributes 4
articles. This geographically diverse landscape of research
underscores the increased popularity and efficacy of RNNs
as a data imputation method, capturing the attention of
researchers worldwide.

Figure 5. Top 5 Countries in RNN Data Imputation Research

Figure 6 illustrates the distribution of article types
among research exploring missing data imputation using
RNNs. Journal articles and conference papers emerge as
the most prevalent form of publication, both accounting
for 34 papers (49%) of the analyzed articles. Conference
reviews and Review articles constitute a smaller portion,
with 1 paper (1%) and 1 paper (1%), respectively. Figure 7
offers a more granular view, detailing the annual distribution
of each document type.

Figure 7 illustrates the distribution of article types over
the past decade for the RNN data imputation method. The
data shows that prior to 2017, only conference articles
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Figure 6. Document Type of the Primary Studies

were published, and in very low numbers. From 2018 to
2020, the number of conference articles increased and was
higher than journal articles. However, starting in 2021, the
number of journal articles has equaled or exceeded that
of conference articles. This shift aligns with the findings
from surveys conducted by Saydam et al. [29] revealing
that researchers prioritize submitting to journal publications
due to perceived reputation, prestige, and the assurance
of undergoing a peer-review process—a crucial element in
upholding research quality standards. Despite the abundance
of articles and conference papers on this topic, there is a
notable shortage of review papers. Only one review paper
has been published, indicating a gap in the synthesized
understanding of the existing literature.

Figure 8 depicts the top 5 subject areas (out of a total
of 18) that encompass articles employing RNNs for data
imputation. Within these top 5, computer science emerges
as the predominant field, comprising 66 documents of
the analyzed articles. Engineering follows with a substan-
tial 32 articles, while mathematics contributes 20 articles.
Medicine and decision sciences, with 14 articles and 11
articles respectively, round out the top 5.

B. RQ2.What are the Most Popular Variants Employed in
RNN for Handling Missing Data Imputation?
Figure 9 illustrates the distribution of RNN variants

employed for missing data imputation. LSTM variant dom-
inates, accounting for 42% of utilized RNN variants across
30 articles. Following closely are GRU, commanding 35%
of the landscape, represented by 25 articles. Twenty-three
percent (16 papers) are categorized as hybrid, that combines
two or more types of RNN variants [30] including Saad et
al. [31] which utilized LSTM and GRU for missing data
imputation. It is noteworthy that LSTM is the most popular
variant in missing data imputation using RNN as it can
handle data with varying length [32]. Although GRU has a
simpler architecture with fewer gates than LSTM, making
it faster to train, it is deemed suitable primarily for small
datasets [33].

Table V shows the distribution of 14 articles that in-
corporate bidirectional RNN approach. Bidirectional RNNs
is able to analyze temporal dependencies in both direc-
tions and grant them an advantage in handling sequential

Figure 7. Document Type Trends of the Primary Studies

data, enabling them to effectively impute missing data by
considering the broader context of the surrounding data
points. This advantage is particularly beneficial compared
to unidirectional RNNs, which only consider context from
one direction. This trend is reflected in several recent
studies employing bidirectional LSTMs for imputation tasks
[34], [35], [19], [36], [37], [38], [39]. Bidirectional GRU
architectures have also gained traction, as evidenced by
several research [15], [40], [41], [42]. In line with Yang et
al. [33], bidirectional approaches hold potential for accurate
data imputation due to their ability to capture long-range
context in sequential data.
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Figure 8. Top 5 Subject Area of Data Imputation Using RNN

Figure 9. Prevalence of RNN Variants in Missing Data Imputation

C. RQ3.What are The Features of The Datasets Utilized in
RNN Data Imputation?
The number of datasets used in each study is illustrated

in Figure 10. The dataset counts range from 1 to 10. The
most commonly used number of datasets per study is one
or two, with each category comprising 22 studies. These
datasets vary between synthetic and real-world data. A
smaller proportion of studies, 12 studies utilized five or
more datasets. Additionally, some studies did not specify
the dataset count shown in the ’N/A’ category.

Figure 11 illustrates the distribution of dataset domains
used in primary studies on data imputation using RNN.
The healthcare domain is the most frequently studied,
accounting for 40% of the total, with data from 32 studies.
This indicates a strong focus on healthcare data imputation

TABLE V. Number of bidirectional approach used in each type of
RNN

RNN Variants Number of Bidirectional Approaches

LSTM 7
GRU 4
Hybrid 3

Figure 10. Total Number of Datasets Used in Primary Studies

in RNN research. The second most common domain is the
environment, which makes up 20% of the studies, involving
data from 16 studies. 21% of the datasets come from various
other domains, also comprising 17 studies in total. The
traffic domain follows, contributing 13% with 10 studies.
Finally, 6% of the studies, representing 5 studies, did not
specify the domain of their datasets, shown as ”N/A” in the
chart.

Figure 11. Distribution of Dataset Domains Used in Primary Studies

Table VI provides an insight of variety of dataset sources
or repositories used in the primary studies of imputation
using RNN. The most frequently used repositories are
PhysioNet, which contains 10 studies. Followed by ADNI
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and MIMIC, with 9 studies utilizing datasets from each,
respectively. UCI repository was referenced in 5 studies.
In addition, 27 studies used datasets from other sources,
categorized as ”Others.” Finally, 15 studies did not specify
the origin of their datasets, marked as ”N/A.”

TABLE VI. Total number of studies of dataset sources or repositories
used in the primary studies

Dataset Repository Number of Studies

Others 29
N/A 15
PhysioNet 10
ADNI 9
MIMIC 9
UCI 5

Most datasets in the primary studies do not explicitly
categorize the missing mechanism. Instead, the missing
mechanism is often assumed. For instance, the study by Shi
et al. [43], which uses the MIMIC-III dataset, assumes that
electronic health reocrd data follows MAR. Several other
studies [7], [20] also assume MAR for their data. Con-
versely, a study involving microbiome data [44] assumes
MNAR and MAR, even though the current experiment
itself considers the MCAR, reflecting the impracticality of
MCAR for longitudinal data. Similarly, Shen et al. [20]
consider only MCAR and MAR, while studies [9], [45]
assume their data is MCAR.

D. RQ4.What Performance Metrics are Utilized for Evalu-
ating RNN Imputation Method?
Figure 12 provides a visual representation of the top

5 performance metrics employed in evaluating the effec-
tiveness of the proposed RNN-based imputation method.
Among these metrics, Mean Absolute Error (MAE), recog-
nized as a widely adopted criterion for quantifying predic-
tion error [46], emerged as the most prevalent, utilized in
over 50% of the articles (n=38). Following MAE, the Root
Mean Squared Error (RMSE), utilized to assess the vari-
ability of error [46], was employed in 24 articles. Addition-
ally, the Area Under the Receiver Operating Characteristic
Curve (AU-ROC) was identified in 14 articles, particularly
in tasks involving classification. Other commonly utilized
performance metrics include Mean Relative Error (MRE),
featured in 12 articles, and Mean Squared Error (MSE),
utilized to gauge the accuracy of the proposed method [46],
found in 9 articles. It is worth noting that in the evaluation
of RNN-based data imputation methods, error metrics such
as MAE, RMSE, MRE, and MSE are frequently employed
to quantify the reliability and accuracy of the imputed data.

Table VII provides an intricate breakdown of each article
and its corresponding performance metrics, encompassing
a diverse range of categorizations such as error metrics
and classification metrics. Within the error metrics category,
examples include MAE, RMSE, MSE, MRE, Mean Abso-
lute Percentage Error (MAPE), Symmetric Mean Absolute

Figure 12. Top 5 Performance Metrics Used in Proposed RNN
Method

Percentage Error (SMAPE), R-squared (R2), Absolute Dif-
ference Error (ADE), Final Displacement Error (FDE), Me-
dian Absolute Error (MEDAE), Normalized Mean Squared
Error (NMSE), Normalized Root Mean Squared Deviation
(NRMSD), and Root Mean Square (RMS). Conversely,
classification metrics encompass metrics like Accuracy, AU-
ROC, Area Under the Precision-Recall Curve (AUPRC), F1
score, Recall, and Precision.

Studies conducted by [34], [43], [84] exclusively utilized
classification metrics such as F1 score, Recall, Precision,
Accuracy, and AU-ROC for their evaluations, focusing
on assessing imputation methods beyond just RNN and
LSTM for handling missing data. In contrast, Li et al.
[15] opted for an error-based evaluation approach to assess
the effectiveness of their proposed RNN-based data impu-
tation method. The proposed method aimed at evaluating
the recovery of missing data by measuring the similarity
difference between imputed values and true values. This
distinction highlights the importance of aligning evaluation
metrics with the specific objectives and focus areas of
the respective research, ensuring a robust and relevant
assessment framework tailored to the research goals.

Metrics like ROC-AUC, F-measure, and accuracy are
not limited to evaluating data imputation. For instance,
Vivar et al. [7] employed these metrics for their classifica-
tion results while using RMSE to evaluate their imputation
results. Additionally, in ablation experiments designed to
assess the overall performance of a proposed method, AUC,
F-measure, and accuracy were utilized. These examples
demonstrate the versatility and importance of selecting
appropriate metrics based on the specific evaluation context,
whether for imputation accuracy or downstream tasks like
classification.

To further analyze how these evaluation metrics are
used, the MAE scores from studies that employed the
MIMIC-III dataset are summarized. Table VIII presents the
performance of different imputation methods at different
percentages of missing in the MIMIC-III dataset, evaluated
using MAE.

At lower missing rates, the method proposed by Mulyadi
et al. [54] achieves the best performance with an MAE
of 0.333 ± 0.005 at 5% missingness. Similarly, at 10%
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TABLE VII. Performance metrics used in studies

Performance
Metric

Total Used
in Studies

References

MAE 38 [15], [16], [20], [31], [35],
[19], [36], [37], [38], [39],
[41], [42], [44], [47], [48],
[49], [50], [51], [52], [53],
[54], [55], [56], [57], [58],
[59], [60], [61], [62], [63],
[64], [65], [66], [67], [68],
[69], [70], [71]

RMSE 24 [7], [15], [20], [31], [19],
[41], [45], [50], [53], [56],
[57], [63], [64], [65], [66],
[67], [72], [73], [74], [75],
[76], [77], [78], [79]

AU-ROC 13 [7], [34], [37], [43], [45],
[49], [54], [58], [60], [72],
[77], [79], [80]

MRE 12 [16], [35], [37], [38], [42],
[54], [57], [59], [60], [62],
[69], [71]

MSE 9 [42], [54], [59], [68], [69],
[80], [81], [82], [83]

MAPE 6 [20], [19], [65], [66], [73],
[78]

Accuracy 5 [7], [9], [34], [72], [84]
AUPRC 5 [54], [58], [60], [77], [79]
F1 3 [7], [34], [84]
Recall and
Precision

3 [34], [43], [84]

R2 2 [66], [67]
ADE 1 [85]
FDE 1 [85]
MEDAE 1 [78]
NMSE 1 [66]
NRMSD 1 [86]
RMS 1 [87]
SMAPE 1 [15]

missing data, Zhou et al. [16] outperforms other methods
with an MAE of 0.2706. As the missingness increases to
20% and 30%, Ni et al. [41] obtain MAEs of 6.26 ±
0.28 and 6.27 ± 0.17, respectively, reflecting the challenges
faced when imputation methods handle greater missingness.
Overall, this analysis shows that the percentage of missing
data significantly affects the MAE metric, highlighting the
challenges posed by increased missingness. Furthermore,
MAE provides a clear indication of the average error
magnitude in the imputed values, expressed in the same
units as the data, which makes it easier to understand [88].

E. RQ5. What are the Advantages and Potential Drawbacks
of the Proposed RNN Imputation Method?
One notable strength of the RNN-based data imputa-

tion method is its capability to generate highly accurate

results, as highlighted in several scholarly articles [16],
[52], [66], [72], [75], [79], [80], [81], [89]. Previous studies
have also indicated that the variance of RNN-based data
imputation methods, such as LSTM and GRU, consistently
outperforms the baseline established by conventional RNN
and machine learning imputation methods, as evidenced
in works by researchers [9], [15], [34], [36], [67], [69],
[84]. For instance, Li et al. [15] reported in the study that
their attention-based RNN method surpassed other machine
learning models, including ARIMA and KNN, achieving
notably lower average MAE values of 0.083, 0.171, 0.055,
and 0.105 across various real-world time-series datasets.
This superior performance not only highlights the efficacy
of RNN-based methods but also underscores their adapt-
ability in handling diverse data types and imputation tasks,
consistently delivering reliable imputation results across a
spectrum of datasets.

Prior studies have delved into the realm of optimiza-
tion algorithms to bolster the performance of RNNs for
missing data imputation. For instance, Liang et al. [61]
introduced a dynamic task weighting scheme grounded in
dynamic gradient magnitude adjustments. This innovative
approach aims to autonomously achieve balanced training
across tasks, thereby addressing the challenges posed by
the multi-task learning paradigm. Similarly, Li et al. [74]
advocated for a smoothing regularization term to optimize
the selection of hyperparameters in the RNN model. The
integration of such optimization algorithms has led to a
significant enhancement in the performance of RNN-based
imputation methods, showcasing tangible improvements in
their efficacy and accuracy.

A remarkable limitation observed in many proposed
RNN-based imputation methods is their substantial com-
putational cost, as evidenced by articles such as [47],
[50], [54], [66], [70], [89]. Furthermore, several RNN-
based imputation methods encounter limitations due to their
inherent model complexity, as indicated in articles [16],
[20], [34], [44], [47], [61], [79], [80]. For instance, Zhou
et al. [16] bi-directional recurrent structure, characterized
by a multitude of parameters, significantly increases the
model’s complexity, resulting in extended training times
and potentially restricting its applicability to large-scale
datasets. Additionally, it is noteworthy that a majority of
the articles included in this study primarily focus their
evaluation on a single problem domain and dataset. Only
a limited number of studies, [15], [35], [44], [45], [50],
[59], [69], [76], [80], have conducted robust evaluations
of their proposed RNN-based imputation methods using
multiple datasets from different problem domains. This de-
lineation underscores the need for broader and more diverse
evaluations to comprehensively assess the generalizability
and robustness of RNN-based imputation methods across
various contexts and datasets.
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TABLE VIII. MAE result of imputation methods at different missing percentage

Study 5% Missing 10% Missing 20% Missing 30% Missing

[16] N/A 0.2706 N/A N/A
[54] 0.333±0.005 0.311±0.006 N/A N/A
[41] N/A 5.42±0.2 6.26±0.28 6.27±0.17
[58] 0.497±0.012 0.503±0.011 N/A N/A
[62] N/A 7.97±5.89 N/A N/A

5. Findings
In this section, a comprehensive examination of the

findings and analyses presented in the preceding section is
undertaken. Our aim is to provide a detailed discussion on
the current landscape surrounding the utilization of RNNs
for the purpose of missing data imputation.

The surge in the adoption of RNNs since 2018 signifies a
significant shift in the data analysis landscape, particularly
in addressing the challenges posed by missing data. This
trend is not merely a fleeting phenomenon but rather a
reflection of the inherent capabilities and adaptability of
RNNs in handling complex data scenarios. One of the key
strengths of RNNs lies in their ability to capture temporal
dependencies and sequential patterns, making them partic-
ularly well-suited for imputing missing data within time-
series datasets. This capability has garnered considerable
attention from both academic researchers and industry prac-
titioners, leading to a notable uptick in RNN utilization.

The concurrent advancements in deep learning APIs,
such as TensorFlow and Keras, have played a pivotal role
in fueling the surge in RNN adoption. These robust frame-
works have democratized the implementation of RNN-based
solutions, making them more accessible and feasible for
a broader range of applications. Moreover, the symbiotic
relationship between the surge in RNN adoption and the
availability of deep learning APIs is evident in their col-
laborative impact on research and practical applications.
These APIs have not only streamlined the integration of
RNNs into existing data analysis pipelines but have also
catalyzed research by enabling researchers to explore novel
methodologies and architectures.

The versatility of RNNs extends beyond mere data
imputation; they have proven instrumental in a myriad of
tasks, including natural language processing, time-series
forecasting, and pattern recognition. This multifaceted util-
ity positions RNNs as a cornerstone technology in the arse-
nal of deep learning tools, heralding a new era in data-driven
decision-making and predictive modelling across diverse
domains. However, it’s crucial to note that the dominance
of specific RNN variants, such as LSTM, in the realm of
missing data imputation is also a result of their inherent
advantages, notably their adaptability to data with varying
lengths and their proficiency in capturing long-range de-
pendencies within sequences. On the other hand, while the
GRU presents simpler architecture and faster training times

on smaller datasets, its limitations become apparent when
dealing with larger and more complex datasets, highlighting
the nuanced trade-offs inherent in selecting an appropriate
RNN variant for specific missing data scenarios.

Determining the underlying missing mechanism is chal-
lenging, as different variables within the same dataset may
follow different mechanisms. For example, one variable
might exhibit MAR, while another could follow MNAR
or a combination of mechanisms. This complexity is com-
pounded by the fact that the missing mechanism is in-
dependent of the variable’s role in the analysis. Whether
the variable is an outcome or a covariate, the mechanism
depends solely on the nature of the missingness itself [6].
Therefore, successful imputation requires not only a robust
model like RNN but also an understanding of the missing-
ness patterns across variables. While RNN has shown great
promise, accurately identifying the missingness mechanism
for all variables in large and complex datasets remains an
ongoing challenge.

In evaluating the performance of RNN-based imputation
methods, the selection and utilization of error metrics like
RMSE, MAE, MSE, and MRE, along with classification
metrics such as AU-ROC, are contingent upon the spe-
cific objectives and focus of the research at hand. These
metrics serve as crucial tools for quantifying the accu-
racy, reliability, and effectiveness of RNN-based imputation
methods, providing researchers with valuable insights into
the strengths, limitations, and overall performance of these
methods tailored to the research objectives. By strategically
selecting and integrating these metrics into the evaluation
framework, researchers can gain comprehensive insights
into the performance and utility of RNN-based imputation
methods across various missing data scenarios.

A. Future Research Directions
Drawing upon the insights gleaned from this study,

several promising avenues for future research in the domain
of RNN-based data imputation emerge.

1) Developing and Testing New RNN-Based Imputation
Method: Future research could focus on designing RNN-
based architectures specifically with the aim to enhance
missing data imputation across various types of datasets.
It focus on creating and testing flexible architectures or
hybrid RNN techniques that adapt to diverse domains and
missing data mechanisms. By developing another RNN-
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based methods, the research can contribute to improving
data completeness, ultimately making RNN-based imputa-
tion methods more robust in real-world applications.

2) Investigating the Effectiveness of Different RNN
Architecture: The effectiveness of different RNN architec-
tures for imputing missing values across diverse types of
datasets is a crucial area for future exploration. While RNNs
contribute to enhancing data quality by addressing the
data completeness dimension, understanding the strengths
and limitations of each architecture becomes paramount
when dealing with varied datasets characterized by distinct
domains and missing mechanisms. This necessitates the
development of more flexible RNN models capable of
handling missing values more effectively.

3) Adopting Optimization Algorithm in RNN-Based
Data Imputation Method: The utilization of optimization
algorithms such as Particle Swarm Optimization (PSO) and
stochastic gradient descent (SGD) within the framework
of RNNs presents a promising avenue for addressing the
challenges associated with missing data imputation. While
previous research has highlighted the potential of opti-
mization, further exploration is required to fully exploit
its capabilities. Investigating the impact of these optimiza-
tion algorithm on model convergence, generalization, and
computational efficiency, future research contributes to the
development of more robust and effective RNN-based data
imputation methods for handling missing data in various do-
mains. Additionally, simplifying RNN architectures, such as
reducing the number of trainable parameters and performing
hyperparameter optimization with the help of these opti-
mization algorithms, could help improve training efficiency
and manage model complexity. To reduce computational
costs and allow for broader use in resource-constrained
settings, distributed methods of training and the use of
hardware accelerations, like graphics processing unit or
tensor processing unit, could also be explored.

4) Increased Diversity of Datasets and Domains: This
study’s scope is limited to RNN-based imputation methods,
with experiments conducted on a few specific domains.
Future research should aim to investigate a wider range of
datasets from diverse domains to evaluate the generalizabil-
ity and robustness of the method. Expanding this approach
across various types of time-series datasets could enhance
the versatility and applicability of RNN-based imputation
for broader, real-world use.

6. Conclusion
The primary objective in this study was to critically

analyse the recent landscape of RNN-based imputation
methods for missing data in time-series datasets. The central
focus of this evaluation is to illuminate the existing gaps
by highlighting the strengths demonstrated by recent RNN-
based imputation methods, while also addressing their limi-
tations in handling missing data for time-series datasets. The
analysis started with 362 articles from SCOPUS database
and reduced to 70 articles after implementing the inclusion

and exclusion criteria. In the review, RNN or its variant
including LSTM and GRU is used to impute missing data
in the dataset.

While the review provides valuable insights, it is es-
sential to acknowledge a limitation. The study focuses
primarily on time-series datasets, and the findings may
not be directly applicable to datasets in other domains,
such as cross-sectional or spatial data. Additionally, the
absence of explicit analysis on datasets and the chosen
evaluation metrics in relation to their specific domains
for data imputation using the RNN method is a notable
gap. Although dataset features have been addressed, further
exploration is needed to examine how these features, along
with the selected evaluation metrics within the context of
RNN-based imputation techniques.

The prominence of LSTM in the reviewed studies under-
scores its popularity and effectiveness in handling missing
values. However, the comparison between LSTM and GRU
variants may not fully account for the impact of different hy-
perparameters or variations in dataset size and complexity,
which can influence performance outcomes. Nevertheless,
the review highlights a need for further advancements
in RNN methodologies to enhance their capabilities in
addressing the complexities associated with missing data.

In conclusion, the research on data imputation methods,
particularly RNNs, is vital for mitigating challenges posed
by missing values in datasets. This review serves as a
foundation for future studies to refine and extend RNN-
based approaches, ultimately contributing to the continuous
improvement of data imputation techniques.
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