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Abstract: Deep learning played a vital role in the seizure prediction challenge. However, most studies used generic architectures that fail
to consider the distinct characteristics of multivariate time-series Electroencephalography signals. Additionally, many suggested methods
depend on inadequate EEG segmentation techniques, resulting in unreliable results. This study presents an in-depth architectural design
of a Convolutional Neural Network specifically tailored to extract features from wavelet-transformed EEG signals using Wavelet packet
decomposition (WPD). In addition, the chosen testing strategy and data segmentation methodology ensures accurate, trustworthy, and
reproducible performance results. This study introduces a data segmentation method to generate distinct intervals effectively capturing
more temporal dynamics of the time-series data. The proposed model evaluation utilized 12 subjects’ EEG data from the CHB-MIT
dataset in a subject-specific manner, employing a Leave-One-Out cross-validation technique. The proposed architecture outperformed
five reproduced state-of-the-art CNN models in the segment-based evaluation metrics. The proposed model achieved 78.00% accuracy,
65.17% sensitivity, and a high 90.83% specificity rate. Evaluation using the more straightforward KFold cross-validation technique
demonstrated robust performance, achieving 96.68% accuracy, 97.41% sensitivity, and 95.95% specificity. The significant improvement
in the model’s specificity rates indicates a substantial reduction in false alarms, making the proposed model a reliable tool for seizure
prediction.
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1. INTRODUCTION
The brain is the central organ of the nervous system,

orchestrating our thoughts, emotions, and actions. The
phrase ”I think, therefore I am” is the first and most
popular principle in the philosophy of René Descartes. This
quote underscores the very essence of human existence,
emphasizing the importance of the brain in shaping our
reality. One’s mental health and physical well-being are
deeply tied to the brain’s health. Any deviation from the
brain’s natural functioning can heavily impact what life we
can have.

Epilepsy is a brain illness characterized by unprovoked,
recurrent, and spontaneous seizure events that disrupt nor-
mal brain functioning and affect patients’ lives. The un-
predictable nature of seizures can drastically degrade the
quality of life and can be life-threatening directly or in-
directly owing to drowning and other accidents [1]. The
World Health Organization (WHO) reported that Epilepsy
has affected more than 50 million individuals around the
world. The burden of Epilepsy is compounded by the fact

that 30% of individuals exhibit resistance to anti-epileptic
drugs [2]. This burden highlights the imperative need for
innovative strategies to predict, detect, and prevent seizures
[3].

Electroencephalography (EEG) is a commonly used tool
for monitoring the brain’s electric activity and studying
Epilepsy [4]. The states of an epileptic brain can be one
of four: inter-ictal (normal interval between seizure events),
pre-ictal (interval immediately preceding a seizure event),
ictal (period of a seizure), and post-ictal (interval immedi-
ately following a seizure). At its core, seizure prediction
is a task of detecting the presence of the pre-ictal state.
However, most studies depict seizure prediction as a binary
classification task between the pre-ictal and inter-ictal states
[5].

Seizure prediction utilizing the electric activity of an
epileptic brain is a challenging research problem that has
attracted more attention in recent years [6], [7], [8], [5].
The ability to issue warnings before seizures onset may lead
to developing novel diagnostic methods and therapies [9],
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[10]. Moreover, the focus on the algorithmic prediction of
seizures might offer valuable insights into the mechanics of
a seizure event. However, little to no attention has been paid
to extracting meaningful and comprehensible characteristics
about seizures and their dynamics [11].

EEG signals are complex, non-stationary, and require
advanced signal processing and feature extraction to help
provide meaningful interpretation [12]. Advances in deep
learning have shown great promise in its capacity to learn
good representations of EEG signals. Deep learning differs
from traditional machine learning; it does not require exten-
sive domain expertise or operator feedback on the feature
extraction process. Nevertheless, deep learning models are
prone to weak generalization and deliver less human com-
prehensible features [13].

Deep learning approaches offer a potential answer to
developing a reliable seizure prediction system. However,
the clinical adoption of deep learning models mandates
a certain degree of model explainability. Although deep
learning is considered a black box, it is possible to build
human-comprehensible interpretations on the internals of
deep learning models [14], [11]. Nevertheless, most studies
utilized deep learning methods with generic architectural
designs solely for accurate predictions. Such design choices
greatly complicated the interpretation of model decisions.
Another concern involving numerous studies is the potential
for data bias in the data pre-processing and model evalua-
tion techniques [15].

The following points highlight the key contributions of
this study:

• A novel EEG time-series data framing and sampling
technique to address the highly imbalanced class ratio
of the two epileptic states. The proposed technique
can also reduce the information loss due to the
sampling process and maintain as much temporal
span as possible. Furthermore, the sampling process is
proven to be deterministic and avoids the uncertainty
of other random sampling techniques.

• A wavelet transform that can reveal the frequency
(spectral) information of the EEG data without caus-
ing redundancy or increasing the dimensionality of
the data. The model’s compactness relies on exploit-
ing the Wavelet Packet Decomposition (WPD) to en-
hance the data without increasing the dimensionality
or redundancy.

• A specialized Convolutional Neural Network (CNN)
architecture designed to deal with the nature of multi-
channel EEG time-series data. The design also ac-
counts for compactness, simplicity, and easier un-
derstanding. The CNN architecture utilizes separable
convolutions to reduce the number of learned param-
eters.

• Reproducing five state-of-the-art CNN-based models
and their associated pre-processing pipelines from
recent seizure prediction studies. The motive behind
this objective is to contribute a head-to-head unbiased
comparison using the same conditions. Furthermore,
evaluating the proposed architecture performance em-
ployed multiple test sets generated by the Leave-One-
Out Cross-Validation, also named Leave-One-Group-
Out (LOGO).

The remainder of this manuscript is organized as fol-
lows: Section 2 gives a concise overview of recent state-
of-the-art methods. Section 3 describes the data and ma-
terials used in this research, including the pre-processing
techniques. Additionally, Section 3 lists and details the
components of the proposed architecture, and presents the
model training strategy and evaluation metrics. Section 4
delivers the performance results, while Section 5 thoroughly
examines the comparisons of the reproduced methods. Sec-
tion 6 encloses the manuscript with the study conclusions
and discusses potential future works.

2. RELATED WORKS
The literature on seizure prediction has explored numer-

ous manual feature extraction techniques [16], [17], [18].
However, the findings revealed no success in identifying the
ideal set of features and the appropriate classifier to yield
reliable prediction performance. As a concrete example,
the winning study of the Melbourne University seizure
prediction contest employed 11 classifiers and more than
3000 handcrafted features [19]. Thus, recent state-of-the-
art methods utilized automated feature extraction, taking
advantage of deep learning methods.

Tsiouris et al. [18] used the most common features,
including the time domain, frequency domain, correlation,
and graph theory features, to generate (643 × 1) feature
vectors for each 5-second long EEG segment. The Long
Short-Term Memory (LSTM) network was employed as
the classifier for its inherent advantage in processing the
sequential EEG time series. They also tested the LSTM
network using raw EEG segments as the input in a feature
extraction scenario. However, the feature extraction model
was unable to achieve comparable results. The primary
cause for this low performance observed while using raw
EEG data was the model’s low capacity and limited com-
puting hardware capability, which prevented any attempt to
increase the model size.

Khan et al. [20] designed a CNN architecture to
extract features from the time-frequency domain of the
EEG signals. The time-frequency domain was generated
using the Continuous Wavelet Transform (CWT) of 1-
second raw EEG segments. They argued that using wavelet-
transformed EEG segments to include the frequency infor-
mation achieves deeper feature extraction without additional
model capacity. They used the Mexican-hat mother wavelet
and nine dyadic scales to add the geometric frequency range
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of 0.25 to 128 Hz in the frequency dimension. On the
other hand, Truong et al. [21] operated the Short Time
Fourier Transform (STFT) to transform the 30-second raw
EEG segments into the time-frequency domain. The STFT
generated segments that encompassed frequencies ranging
from 1 to 128 Hz at the cost of losing information in
the time dimension. The information loss occurs since
STFT uses sliding windows of fixed lengths to generate
the amplitude or power spectra.

Daoud and Bayoumi [22] conducted experiments us-
ing various deep learning architectures trained on raw
EEG data without pre-processing except for the 5-second
segmentation process. Their best-performing architecture
with the least number of trainable parameters is a Con-
volutional Auto-encoder (CAE) for feature extraction and
a Bidirectional LSTM (Bi-LSTM) for classification. The
CAE architecture trains without supervision using data from
several subjects to find lower-dimensional representations of
the raw EEG data. The Bi-LSTM uses the learned features
from the encoder component of the CAE to carry out the
ultimate classification task.

Similarly, Xu et al. [23], and Jana and Mukherjee [24]
introduced end-to-end deep learning models that directly
learn from raw EEG data as input. Jana and Mukherjee
[24] used 8-second long EEG segments and developed a
CNN architecture with (3 × 3) convolution kernel size and
a combination of (1 × 3) and (2 × 3) max-pooling kernel
sizes. Different max-pooling kernel sizes are used because
the input EEG segments have more temporal than spatial
resolution. On the other hand, Xu et al. [23] used 1D convo-
lution kernels having sizes of (1×20) and (1×10) for the first
three blocks. Each of these blocks are followed by (1× 10)
and (1×5) 1D max-pooling operations. The extended kernel
lengths can capture longer local temporal dependencies with
an increased receptive field. The final two convolutional
blocks have standard 2D convolution kernels with (3 × 3)
size to capture spatial and temporal characteristics. Xu et al.
[23] configured the EEG segmenting window size to be
20 seconds long to cover the extended temporal down-
sampling.

An alternative method for expanding the receptive field
of the convolution process involves using dilated kernels.
Hussein et al. [25], Wang et al. [26], and Gao et al.
[27] incorporated a dilation rate larger than one to enlarge
the kernel length while avoiding increasing the number of
weights within a kernel. Hussein et al. [25] divided the
EEG data into segments, each having 30 seconds in length.
Then, each segment is transformed into time-frequency
representations using CWT with 100 scales. However, the
wavelet mother and the distribution of the scales were not
reported in this study. The illustrated time-frequency images
indicated that the utilized scales produce a frequency range
of 0.1 to 100 Hz. The suggested model consisted of 30
convolution layers arranged in parallel paths with varying
dilation rates and a kernel size of (3 × 3) or (5 × 5). While

using 30 convolution layers, the network is constructed
to be only three convolution blocks deep. The suggested
CNN architecture was created with numerous learnable
parameters, requiring several hours of training for a single
patient. Wang et al. [26] used STFT instead of CWT to
transform the 30-second-long EEG segments. Additionally,
they used 3D convolution kernels instead of 2D but did not
report the number of kernels in each layer.

Lawhern et al. [28] constructed an EEG-specific archi-
tecture, called EEGNet, replicating the well-known Filter-
Bank Common Spatial Pattern (FBCSP) feature extraction
process. FPCSP performs separate spatial filtering on sev-
eral frequency sub-bands to compute features with maximal
variance to optimally discriminate between two classes [29].
Zhang et al. [30] utilized FBCSP to generate 2D images
and reached cutting-edge performance using a simple CNN
architecture. In contrast, EEGNet utilized raw EEG data to
learn both temporal (frequency-related) and spatial features
using a CNN directly instead of FPCSP. The EEGNet
architecture incorporates a 1D temporal convolution layer
with a kernel size of (1×64), followed by spatial depthwise
convolution layers with a kernel size of (N × 1) where N is
the number of channels in the input EEG signal.

However, the EEGNet architecture designed by Lawh-
ern et al. [28] was not specifically trained for a seizure
prediction task. Jemal et al. [31] made minor adjustments
to the EEGNet architecture and trained the model to predict
seizures from 20-second-long raw EEG segments. The
temporal kernel size is (1 × 128) to extract frequency
features starting at 2 Hz from an EEG segment with a 256
Hz sampling rate. The architecture additionally included
average-pooling layers having a 1D kernel length of (1×16)
following both temporal convolution layers to enlarge the
receptive field of the model. However, this study failed to
report the number of kernels utilized in each stage of the
proposed architecture.

Understanding is key when designing a model, even
for a complex task. Otherwise, the internals of the deep
learning model remain deeply vague, preventing the com-
prehensibility of the recognized patterns. Still, recent studies
tend to develop complex architecture exclusively to gain
more accuracy. Lu et al. [32] and Xu et al. [33] are
example studies that yielded impressive results but raised
the concern of interpretability and reproducibility of their
models. Lu et al. [32] integrated the attention mechanism
into a CNN architecture comprising six convolution layers.
What elevated the complexity of the model is that they made
their CNN architecture recursive by implementing the Bi-
Directional LSTM (Bi-LSTM) as the final classifier.

The motive of this study was originally to explore
whether simpler architectural designs can achieve similar
or better performance compared to more complex ones. We
believe that the seizure prediction field must strike a balance
between accuracy and other practical considerations such
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as efficiency and explanation. The EEGNet architecture,
with its 1D convolution processes, inspired us to build a
more robust architecture yet holds the same compactness
and simplicity.

3. MATERIALS AND METHODS
A. Dataset

The proposed CNN architecture is trained using a subset
of the CHB-MIT scalp EEG dataset gathered at the Chil-
dren’s Hospital Boston [34], [35]. The dataset comprises
664 recordings, grouped into 23 cases from 22 pediatric
patients. Each case is denoted by the code chbi, where i
refers to the case ID. Each case has a summary .txt file
that specifies the start and end timings, the EEG montage
used for each recording, the number of seizure events, and
their timing relative to the recording. Each case consists
of recordings ranging from 9 to 42. Each recording has
10 minutes up to 4 hours of EEG data duration sampled
at 256 Hz. This dataset utilized the international 10-20
EEG electrode placement system with bipolar montage. The
proposed method uses only 18 channels common among
subjects from the overall 23 EEG channels. The selected
EEG channels and their corresponding electrode placements
are depicted in Figure 1.

Nasion

Inion

Cz

Fz

Pz

C3 C4T7 T8

F4F3

P4P3

F8F7

P8P7

Fp1Fp2

O2O1

Figure 1. The montage of the 18 common EEG channels among the
CHB-MIT subjects.

B. Data Segmentation
The proposed seizure prediction system employs the

pre-ictal and inter-ictal states to perform a binary classi-
fication task. Performing binary classification on long con-
tinuous EEG data mandates establishing three parameters
to extract the EEG samples (frames) and label them as one
of the epileptic states:

• The pre-ictal period, which is immediately before a
seizure. For this investigation, a 35-minute pre-ictal
period length is extracted. Furthermore, seizure events
with 30 minutes or less pre-ictal data are excluded to

ensure non-misleading validation results when testing
on a limited amount of EEG samples.

• The inter-ictal distance refers to the duration between
a seizure onset and the inter-ictal data. This period
is excluded from the inter-ictal span to reduce the
similarity between pre-ictal and inter-ictal states in
the training phase. The proposed system uses two
hours as the inter-ictal period distance, resulting in
an hour and 25 minutes gap between the pre-ictal
and inter-ictal periods.

• The post-ictal period is the interval immediately after
a seizure that is not categorized as a pre-ictal or inter-
ictal state. In this study, two hours of post-ictal period
are excluded from the training set.

The inter-ictal distance ensures a sufficient temporal
gap between the inter-ictal and pre-ictal states. Thus, the
inter-class variance is uplifted, allowing for better temporal
separation between these epileptic states. The motive of this
procedure is due to the indefinite and subject-specific shift
from the inter-ictal to the pre-ictal state. In conclusion,
a clear temporal separation between the two states can
enhance the model training [10]. Figure 2 shows a 150-
minute EEG sample from subject chb01 preceding the
seizure of chb01 15.edf file.

The intervention time, also known as the Seizure Pre-
diction Horizon (SPH) [10], is another essential parame-
ter required to specify the timings of extracted periods.
However, this parameter is only crucial in the event-based
prediction (inference stage). For instance, a five-minute
intervention time indicates that alarms induced in the five
minutes immediately before a seizure are false alarms.
Nevertheless, the intervention period is still considered pre-
ictal; any alarm during this interval is a false warning since
there should be enough time to intervene [10], [8].

A 35-minute pre-ictal duration to predict incoming
seizures 30 minutes before the intervention interval yields
a 30-minute Seizure Occurrence Period (SOP). A Seizure
event must be preceded by at least a 2-hour (post-ictal)
and 35 minutes (pre-ictal) of EEG data from the previous
seizure termination. Otherwise, seizure events may overlap,
and the pre-ictal period is short or non-existent. Only cases
with three seizures or more that meet the aforementioned
conditions are used to evaluate the proposed and replicated
architectures.

Table I displays the final subset of EEG data obtained
from the CHB-MIT dataset. The table presents the number
of seizure events, the overall length of the EEG data, the
interictal and preictal data length, and the imbalance ratio
between the two classes. The trainable seizures are the
number of seizures used in the training process. As shown
in Table I, the inter-ictal data are often long, and the pre-
ictal data are limited by the pre-ictal length and number
of seizure events. The number of inter-ictal EEG samples
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Figure 2. A 150 minutes of EEG data preceding a seizure event from subject chb01.

outnumbering the pre-ictal EEG samples causes data imbal-
ance. To solve the imbalance issue, most studies employed
random under-sampling techniques [20], [36], [22], [37],
[38], [23], [24], [27]. Consequently, the certainty of these
methods is prone to data bias due to randomly selecting
a subset of the inter-ictal data. This study introduces a
sampling technique that is formulated as below:

Let the subset of all extracted periods and their annota-
tions from a single case be:

S = {(xt,g, yt,g)|t = 0, 1, ...,Ng − L, g = 0, 1, ...,G} (1)

where xt,g is the EEG segment starting at time t and ending
at time t + L in group g, L is the selected window size
of the EEG segment. yt,g ∈ {0, 1} is the binary class label
of the corresponding EEG segment. Ng is the total number
of EEG time points in group g. G is the total number of
groups, where each group represents data associated with
a seizure event. While seizure events that met the selection
criteria have pre-ictal data of no less than 30 minutes, the
seizure events is not necessarily preceded by inter-ictal data.
Therefore, inter-ictal recordings are evenly divided among
seizure events. In this study, the segmentation window size
(L) is set to 4 seconds. The window size of 4 seconds
resulted in a slightly better accuracy than that of 1, 2, and
8 seconds. Now let the majority class (inter-ictal class) and
the minority class (pre-ictal class) be represented as follows:

S 0,g = {(xt,g, yt,g)|yt,g = 0} (2)

S 1,g = {(xt,g, yt,g)|yt,g = 1} (3)

where S 0,g is the inter-ictal set and S 1,g is the pre-ictal
set. The complete set S represents all unique segments
by hopping only one sample at a time. Truong et al. [21]
employed a variable overlapping factor through a different
hopping size for every subject. Using a large overlapping
percentage increases the number of samples in the minority
class. However, it does not add new information to the
dataset and increases the training’s computational cost.
Thus, this study used a fixed overlap of 50%.

S
′

1,g = {(xt,g, yt,g)|yt,g = 1, t = 0, n, 2n, ...,Ng − L} (4)

where n = 0.5 ∗ L is an integer defining the hop size
and equals half the segment size. In order to under-sample
the majority class, we used a variable under-lapping factor.
In contrast to random sampling, this strategy ensures that
the chosen subset of the majority class contains as much
temporal information as possible. The under-lapping hop
size calculation is as follows:

k = ⌊
S 0,g

S ′1,g
⌋ (5)

Where ⌊·⌋ is the floor function. The final under-sampled
majority class is:

S
′

0,g = {(xt,g, yt,g)|yt,g = 0, t = 0, k, 2k, ...,Ng − L} (6)
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TABLE I. Summary of the CHB-MIT dataset.

Subject Num. of Seizures (Trainable) Overall Length (minutes) Interictal (minutes) Preictal (minutes) Imbalance (inter:pre)

chb01 7 (3) 2433 1296 104 12.5
chb02 3 (2) 2115 1564 69 22.7
chb03 7 (1) 2280 1643 33 49.8
chb04 4 (2) 9363 8509 70 121.6
chb05 5 (4) 2340 1233 139 8.9
chb06 10 (6) 4004 2363 209 11.3
chb07 3 (3) 4023 3437 105 32.7
chb08 5 (4) 1200 313 139 2.3
chb09 4 (3) 4072 3360 105 32.0
chb10 7 (5) 3001 1896 175 10.8
chb11 3 (1) 2087 1919 35 54.8
chb12 27 (3) 1241 73 100 0.7
chb13 12 (3) 1980 1202 104 11.6
chb14 8 (4) 1560 584 135 4.3
chb15 20 (8) 2400 428 279 1.5
chb16 10 (2) 1140 458 69 6.6
chb17 3 (2) 1260 907 70 13.0
chb18 6 (3) 2138 1738 104 16.7
chb19 3 (2) 1795 1620 70 23.1
chb20 8 (1) 1656 1202 34 35.4
chb21 4 (2) 1969 1465 68 21.5
chb22 3 (2) 1860 1258 70 18.0
chb23 7 (1) 1593 853 35 24.4

C. Wavelet Packet Decomposition
Wavelet-based and other frequency-time transformations

can effectively analyze the non-stationary EEG signals [17],
[39]. Both Wavelet Packet Decomposition (WPD) and Dis-
crete Wavelet Transform (DWT) decompose the input signal
into a pair of coefficients that reflect the low-frequency
(approximation) and high-frequency (detail) components of
the signal [40]. The distinction is that DWT uses only
the approximation to generate the next-level approximation
and detail decompositions. In contrast, WPD decomposes
both previous level’s approximation and detail components
into four new components. Hence, DWT generates (l + 1)
coefficients whereas WPD produces (2l) coefficients.

DWT and WPD transformations do not add to the
redundancy of the input signal due to the down-sampling
process at each level. However, WPD coefficients have
equal lengths due to undergoing the same number of down-
sampling operations. Conversely, DWT has different time
points between the approximation and detail coefficients
because of the multi-level process. Hence, the equal-length
coefficients generated by WPD are more appropriate for
input to a CNN architecture. Figure 3 illustrates a 3-level
WPD tree on a single channel of an EEG segment.

Let the chosen segment length be L = 4 seconds, where
the number of time points in the segment would be L× fs =
4×256 = 1024 time points. Applying a 4-level WPD using
Daubechies 4 (db4) wavelet to the segment gives:

wpd : R18×1024 → R16×18×70

where the number of generated coefficients for each channel
is 24 = 16. The down-sampling process at each level reduces
the number of time points to 70. Note that 1024/24 =

64 , 70 because the db4 filter has a length of 8 points,
causing the addition of 7 points to each level in the filtering
process. Therefore, the down-sampling process of 4-level
WPD yields the following sequence of coefficient lengths
for each level:

1024→
1024 + 7

2
= 515→ 261→ 134→ 70

The proposed seizure prediction model employs the
WPD technique as the pre-processing pipeline. The WPD
pipeline supplies the following feature extraction and clas-
sification processes with frequency information-rich EEG
samples. WPD, with its frequency sub-bands separating ca-
pability, enhances the EEG data representation. Eventually,
the proposed CNN architecture can extract deeper features
with fewer parameters and less training time.

D. The Proposed CNN Architecture
Recently, one-dimensional (1D) CNN architectures have

demonstrated exceptional performance in various signal
processing applications, including the analysis of uni-variate
signals such as ECG [41] or multivariate data such as EEG
[28]. A significant advantage is the simplified interpretation
of features extracted using 1D kernels on time-series data.
For instance, employing a 2D kernel in an image classifi-
cation task can be visually explained using basic geometry
concepts such as edges and diagonal lines [42].

Similarly, 1D kernels can be interpreted in terms of
temporal patterns or frequency information when utilized
to extract features from a time series. Additionally, a 1D
convolution along the channel axis of a multi-channel
signal can indicate the channel that contributes the most
to the extracted feature map. Hence, the developed CNN
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Figure 3. An example of 3-level WPD tree on a single channel of an EEG segment.

architecture comprises only 1D kernels using separable and
depthwise convolutions. The proposed CNN architecture
accepts as input a 3D matrix of the shape (D×C×T ), where
the first dimension (D) represents the stacking of wavelet
coefficients, (C) denotes the stacked EEG channels, and T
denotes the number of points in the time domain. Figure 4a
shows an example of a 6-channel 4-coefficient sample.

1) Spectral Convolutional Branch
The first convolution block, termed Spectral Convolu-

tion Block, applies a 1D kernel along the wavelet nodes
of each channel separately, without interference between
different channels. Each kernel generates different weighted
combinations of the wavelet approximation and details
coefficients. The spectral convolution process has a kernel
size of (D×1×1) with no padding. Therefore, the output of
the spectral convolution block has the shape of (C×T ×F),
where F denotes the number of feature maps (number of
filters). Figure 4b visually explain the process of the spectral
convolution block.

The second layer, named Temporal Convolution, per-
forms a separable convolution on the generated feature
maps to extract deeper frequency-related information. The
separable convolution comprises a 1D kernel that is one
second long to extract frequency details at 1 Hz and above.
A level 5 WPD generates an approximation coefficient with
a bandwidth of 1 Hz up to 128/24 = 4 Hz. However,
the first convolution block aggregate wavelet details with
different band-pass frequencies to include the frequency
information from the overall 1-128 Hz bandwidth. In this
sense, the temporal kernel receptive field spans a duration
of 1 second and can extract frequency information of the
range (1-128 Hz) while consisting of only (16) samples.

The second part of the temporal convolution performs a
pointwise convolution to aggregate the extracted temporal
features from different wavelet coefficient combinations and
generate the final feature maps.

Until now, the network has not included any convolution
across individual channels to extract the spatial information.
The depthwise convolution block applies a 1D kernel along
the channel dimension C left after the spectral convolution
block. In the depthwise convolution, the network uses a 1D
kernel of size (C, 1) that only slides along the temporal di-
mension T . The depthwise layer learns a frequency-specific
spatial filter for each feature map produced by the spectral
convolution block. The depthwise convolution block has
a parameter called depth multiplier. The depth multiplier
controls how many channels the depthwise convolution
produces. We set the depth multiplier to 4 to learn four
spatial filters for each feature map separately. An average
pooling layer of kernel size (1×1×2) follows the depthwise
convolution to reduce the temporal dimension further.

2) Spatial Convolution Branch
The proposed architecture has a second branch that starts

with a channel-wise convolution. The channel-wise convo-
lution block, named Spatial Convolution Block, performs a
1D convolution operation across EEG channels, ensuring
no interference between frequency bands. The interference
between wavelet coefficients is prevented by applying a 1D
kernel with a (1,C, 1). The spatial convolution block learns
a spatial filter across different frequency bands to generate
feature maps of shape (D× T × F). The spatial convolution
branch consists of layers similar to the spectral convolution
branch layers, except that the depthwise convolution has
a kernel size of (D, 1) in the spatial branch. The second
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across individual channels. (c) The spatial convolution block, where the kernel slides over individual channels. The packet (aa), (ad), (da), and (dd)
represent the equally divided low-to-high frequency sub-bands of 4-level WPD, respectively.

branch is concatenated with the first branch to form the final
feature map. Figure 4c explains the process of the spatial
convolution block.

Ultimately, the network applies a 1D temporal convolu-
tion to allow the accumulation of concepts learned across
the temporal dimension with a kernel half the size of
the previous temporal kernel. The final feature map then
passes through two dense layers with units equal to 32
and 1, respectively. The network’s output is derived using
a sigmoid activation function, resulting in a single scalar
value representing the predicted class probability. Figure 5
presents complete configuration details of utilized layers of
the proposed CNN architecture developed in this study.

E. Training Strategy
The proposed CNN architecture is trained in a subject-

specific scheme. The EEG recordings are z-score normal-
ized before the segmentation process. The EEG data of
a subject is divided into groups, as discussed in section
3-B, where each group involves the data related to a
seizure event. The designed CNN architecture was trained
and tested using the Leave-One-Group-Out (LOGO) cross-
validation. In this testing strategy, the EEG data of one
group is used as a test set, leaving the rest of the groups
as a training set. If the subject has N seizure events, N
models are trained using (N − 1) seizure events data and
tested on the remaining seizure event data. Ultimately, the
LOGO cross-validation for the test data split provides robust
evaluations of the model generalization to unseen data.
Figure 6 illustrates the LOGO test data split method. On
the contrary, the K-Fold cross-validation divides the whole
set into K groups randomly. The randomization in the split
process causes the model to be evaluated on a mixture of
EEG samples from different seizure events.

The training set is additionally split into training and
validation sets. While most studies employed a randomly
chosen holdout validation set, we used an ordered selection
of the validation set. The validation set uses every fifth
segment within a class from the training set to construct

the 20% validation set. Compared to the random selection
of validation samples, the proposed split method ensures
that the training and validation sets hold samples with
similar temporal characteristics. Additionally, the ordered
selection delivers deterministic results, and the training
process becomes repeatable.

The holdout validation set prevents the model from
overfitting using an early stopping condition. The parameter
validation patience is configured to 25, which halts the
training if the validation loss shows no improvement after
25 epochs. The model training utilizes an Adam optimizer
with a 0.001 learning rate and a 512 batch size. The model is
trained for 500 epochs or until violating the early stopping
criteria. Additionally, the model with the best parameters
before halting the training process was restored to provide
the evaluations on the test set. Given that data labels are
binary, the training phase employs the binary cross-entropy
loss term. This study discusses only the segment-based
results, as the event-based results can be easily derived
by applying any post-processing method. The accuracy,
sensitivity, and specificity metrics were used to assess the
model’s performance compared to the replicated models.

4. RESULTS
The designed CNN architecture and the developed EEG

segmentation and sampling method were tested using EEG
data of 67 seizure events from 12 patients subset of the
CHB-MIT dataset. We compared the designed CNN archi-
tecture against five models replicated from the studies of
Khan et al. [20], Truong et al. [21], Lawhern et al. [28],
Xu et al. [23], and Jemal et al. [31]. We closely replicated
the same architectures, their pre-processing pipelines, and
the related hyperparameters as the original studies. Never-
theless, there are still some differences that were not taken
into account. For instance, Khan et al. [20] incorporated the
ictal class to train the model in a multi-class classification
task.

Our replication process is conducted to deliver a fair
comparison using the same data segmentation and cross-
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Figure 5. The proposed CNN architecture.

validation techniques presented in this study. Using the
same cross-validation method ensures that the results are
comparable and that the data selection does not bias the
model performance. Table II presents the comparison results
of the proposed architecture and the replicated models. The
table presents the number of epochs, the elapsed time,
and the models’ performance metrics using the KFold
and LOGO cross-validation techniques. We set K = 5 to
estimate the results of each model across five folds of K-
Fold.

Subject Data

Group 0Data Groups Group 1 Group 2 Group 3

Group 0Fold 0

Test Data

Group 1 Group 2 Group 3

Group 0Fold 1 Group 1

Test Data

Group 2 Group 3

Group 0Fold 2 Group 1 Group 2

Test Data

Group 3

Group 0Fold 3 Group 1 Group 2 Group 3

Test Data

inter-ictal pre-ictal Ictal

Figure 6. Grouping and test data split using the Leave-One-Group-
Out cross-validation method.

The fastest converging method was the CNN model
of Truong et al. [21], where the proposed architecture
is three convolution layers deep. Our proposed CNN ar-
chitecture has the 2nd fastest convergence training time.
The table also presents the performance metrics in two
cross-validation methods: Random data splitting using K-
Fold cross-validation and the robust LOGO cross-validation
methods. In the K-Fold cross-validation, the proposed ar-
chitecture achieved an accuracy, sensitivity, and specificity
of 96.68%, 97.41% and 95.95%, respectively. However,
the randomness of the data splitting may introduce bias in
the model performance and does not provide deterministic
results. The replicated methods’ accuracy dropped down
to around 60% in the LOGO cross-validation. The highest
performance drop was observed in the sensitivity metric,
where the seizure events are from intervals with distinct
temporal characteristics. The designed CNN architecture
offered significant improvement over other models in the
LOGO cross-validation method. Our specialized architec-
ture achieved an accuracy of 78.00%, sensitivity of 65.17%,
and specificity of 90.83%. Khan et al [20] CNN model
achieved the 2nd highest sensitivity of 47.97%.

5. DISCUSSION
Sensitivity quantifies the model’s potential to detect a

pre-ictal segment accurately, whereas specificity measures
the model’s accuracy in classifying inter-ictal segments.
Therefore, it is crucial to enhance sensitivity to improve the
ability to predict a seizure occurrence. However, enhancing
the specificity is essential to avoid inaccurate pre-ictal
classifications, which might lead to false alarms. Our model
successfully predicted all seizure occurrences in LOGO
cross-validation in subjects chb01, chb06, chb08, chb12,
and chb14, with a sensitivity of 94%± 1.5%. Nevertheless,
the gain in model performance is driven by the fact that
our model is reaching a specificity of 90.83% ± 1.6%
besides yielding comparable or higher sensitivity rates.
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TABLE II. The results of the proposed method compared to the replicated architectures.

Author Avg. training
time (seconds)

KFold CV LOGO CV

Acc Sen Spec Acc Sen Spec

Khan et al. [20] 243 80.02 82.00 78.05 60.80 47.97 73.62
Truong et al. [21] 229 92.91 93.84 91.98 59.98 39.71 80.25
Lawhern et al. [28] 487 86.94 85.93 87.95 65.24 47.85 82.62
Xu et al. [23] 470 93.06 96.49 89.64 59.62 37.97 81.28
Jemal et al. [31] 332 90.38 90.71 90.04 61.64 41.95 81.34
This study 233 96.68 97.41 95.95 78.00 65.17 90.83

Except for subject chb14, which has the lowest specificity of
73.89±5.6%, the proposed architecture consistently reached
a specificity of 94.13% ± 0.9%. The only downside of this
architecture requiring further investigation is subject chb18,
which has a 0% sensitivity. Figure 7 showcases the subject-
specific performance metrics obtained using the LOGO
cross-validation technique to examine the performance of
the proposed architecture.
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Figure 7. The subject-specific accuracy, sensitivity and specificity
metrics of the proposed architecture using LOGO cross-validation.
The error bars denote the metrics’ standard error.

A. Systematic data sampling
The proposed sampling approach contributes to the reli-

ability and consistency of the results, ensuring reproducible
and deterministic evaluations. Otherwise, the model perfor-
mance may be biased due to inaccurate data selection or
grouping. The proposed approach removed any randomness
in extracting the EEG segments from the continuous EEG
recordings. Moreover, the sampling method offers a practi-
cal solution to the data imbalance issue. The practicality
and effectiveness are attributed to the systematic nature
of over-sampling the majority class and under-sampling
the minority class compared to other techniques. Figure
8 presents the results of the proposed approach compared
to two sampling methods: Random sampling and Synthetic
Minority Oversampling Technique (SMOTE).
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Figure 8. The classification performance comparison between differ-
ent sampling methods.

B. architectural design choices
The replicated methods were selected based on two

factors:

• The availability of the architecture design details.

• The reproducibility of the pre-processing technique.

The reproduced models employed various pre-processing
techniques to compare the performance of WPD with dif-
ferent transformation methods. For instance, Khan et al.
[20] utilized CWT to extract the frequency-related features,
whereas Truong et al. [21] used STFT. The CNN archi-
tectures of these studies employed the EEG channels as
a feature map channel dimension. Hence, the first layer’s
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kernel of these models must have as many channels as the
EEG input segment, resulting in a wide spatial receptive
field. The configured kernel sizes are either (3 × 3) or
(5 × 5), resulting in a low receptive field in the frequency
and temporal dimensions. Truong et al. [21] used an FFT
window hop size of around 133 samples to down-sample
(30×256 = 7680) time points in the original 30-second EEG
segment to only 59 time points in the temporal dimension.
The down-sampling of STFT leads to an expansion of the
temporal receptive field of the model. However, this trade-
off causes a substantial loss of temporal information to
accommodate the frequency dimension.

Xu et al. [23] utilized unprocessed EEG segments di-
rectly as the input for their model. The model architec-
ture utilized lengthy 1D max-pooling kernels in the last
convolution layer, with a cumulative temporal divisor of
1000. Using large max-pooling kernel sizes, specifically
(1 × 10), expanded the temporal receptive field. However,
this came at the expense of sacrificing the temporal resolu-
tion. The model underwent training using EEG segments of
20 seconds in length. Therefore, the last convolution layer
achieved a temporal receptive field of 12 seconds, using a
kernel size of (3 × 3). However, the spatial receptive field
was not adequately developed since there was no pooling in
the channel dimension, except in the last two convolution
layers. Jemal et al. [31] utilized a max-pooling kernel size
of (1 × 16) after the leading two convolution processes.
The EEGNet architecture utilized a depthwise convolution
kernel of (18× 1) kernel size to extract the spatial features.
Hence, the spatial receptive field equals the number of
channels in the EEG segment.

Our model employs the decompositions of the WPD to
further extract the frequency-related information. Further-
more, WPD down-samples the time domain of the EEG
segment without losing any temporal information. This
concept is embedded in the fact that WPD is lossless
and can fully reconstruct the original signal from the
coefficients. Hence, WPD enhances the representation of
the EEG segments, isolates the frequency sub-bands in the
segments, and reduces the temporal dimension. To address
the limitations of replicated CNN designs, the proposed
CNN architecture has 1D kernels with large receptive fields
along the temporal, frequency sub-bands (spectral), and
channel dimensions.

The proposed architecture consists of two branches
that carry out distinct aggregation of features. The first
branch extracts temporal features aggregated from enhanced
coefficients across the channels. In contrast, the second
branch extracts temporal features aggregated from enhanced
channels utilizing the coefficients. The third layer of the
architecture uses a depthwise kernel to further extract the
spatial features in the first branch and coefficient features
from the second branch. Thus, this design allows the model
to have a receptive field equal to the number of coefficients
and channels. Moreover, the down-sampling process of

WPD enables the model to have an extended temporal
receptive field using small kernel sizes without reducing the
temporal resolution of the input segment. Table III presents
the architecture and its employed input dimensionality of
the replicated model and our proposed model. The table
also presents the number of parameters in the CNN model,
the pre-processing method, the segmentation window size,
and the input shape of the EEG segment.

C. Performance comparison
Our proposed model achieved slightly higher or com-

parable performance for several subjects. Nevertheless,
our model achieved significantly higher AUC values for
subjects chb05, chb06, chb07, chb09, chb14, and chb15.
Additionally, we can observe that for subject chb01, chb13,
chb14, only the original EEGNet could deliver comparable
results to our model. The only limitation of our proposed
architecture is the inability to classify any pre-ictal segments
of subject chb18. This limitation could be due to the large
gap between the recordings (around 50 hours of missing
EEG data from the 90 hours of the subject session). Figure 9
presents the AUC metric values of the proposed architecture
and the replicated models using the LOGO cross-validation
technique.

The seizure prediction task is highly challenging due
to the high similarity between the pre- and inter-ictal
segments. Additionally, it has been observed that the longer
the temporal distance between the training and testing data
result in a decrease in the model’s performance. Therefore,
the accuracy drop in the specificity is lower than that of the
sensitivity. Using an under-lapping factor to under-sample
the longer inter-ictal data segments improved the model’s
performance by including more temporal characteristics.
However, this holds true only for the inter-ictal class where
there are much longer periods available in the subject’s data.
Therefore, to increase the seizure prediction performance,
the model should be trained on longer periods of pre-ictal
data.

6. CONCLUSION AND FUTURE WORK
This study presented a novel wavelet-based 1D CNN

architecture to build a segment-based seizure prediction
model. Concerning the nature of EEG signals, the proposed
model employed Wavelet Packet Decomposition to enhance
the representation of the EEG signals. Additionally, WPD
can extract frequency-related details without increasing the
complexity or redundancy of the EEG data. Moreover, the
WPD pre-processing technique can reduce the temporal
dimension in a lossless manner. Therefore, it is possi-
ble to enlarge the receptive field of the model of small-
sized kernels without sacrificing the resolution when using
traditional down-sampling techniques such as pooling or
kernel dilation. The proposed model utilized separable and
depthwise convolution layers to further enhance and extract
deeper features from the wavelet packets.

We replicated five state-of-the-art CNN-based models
from recent studies to establish a head-to-head comparison.
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TABLE III. The results of the proposed method compared to the replicated architectures.

Author Num. of Params. Pre-process Segment Input shape

Khan et al. [20] 188K CWT 1s 10 × 128 × 18
Truong et al. [21] 195K STFT 30s 115 × 59 × 18
Lawhern et al. [28] 2.1K Raw 1s 18 × 256
Xu et al. [23] 942K Raw 20s 18 × 5120
Jemal et al. [31] 2.8K Raw 5s 18 × 1280
This study 160K Raw 4s 288 × 70
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Figure 9. The subject-specific AUC values of the proposed architecture and the replicated methods using LOGO cross-validation. The error bars
represent the standard error of the AUC values.

Analysis of these replicated models’ architectural limita-
tions motivated the development of the proposed model.
The proposed design outperformed the replicated mod-
els, significantly improving the seizure prediction ability.
We trained and evaluated these models using two cross-
validation methods: Random K-fold and Leave-One-Group-
Out. While K-Fold delivers nondeterministic results, the
LOGO cross-validation technique showcases a practical
testing situation and assesses the model’s generalization
ability. The CHB-MIT dataset is utilized to benchmark the
proposed model and the replicated methods. The proposed
model outperformed the replicated models, proving the
robustness and reliability of the proposed architecture.

The EEG data typically contains long intervals of inter-
ictal data, while seizure events with valid pre-ictal periods
are rare, leading to a high data imbalance. Most studies uti-
lized random under-sampling techniques to reduce the quan-
tity of inter-ictal samples. This study introduced an under-
lapping factor to under-sample the inter-ictal data samples
while maximizing the incorporation of temporal charac-
teristics. The suggested under-sampling method improved
the certainty of the model’s performance and increased the
specificity of the model, resulting in infrequent false alarms.

However, this under-sampling technique only applies to the
inter-ictal class, where the data is abundant. To further boost
the model’s sensitivity and overall performance, the model’s
training requires more pre-ictal samples.

The configured event-related parameters constrain the
model training. These fixed parameters include the pre-ictal
duration, inter-ictal distance, and post-ictal length. Incorrect
parameter settings may lead to training on incorrectly
labeled data. Therefore, a more accurate definition of the
epileptic states involves utilizing a continuous variable in-
stead of discrete labels. In this sense, the seizure prediction
problem can be considered as a regression task instead of
a classification task. An example of a continuous variable
can be the temporal distance between the processed EEG
sample and the impending seizure event. This viewpoint
may deliver more insights into the difference between the
two epileptic states and how a seizure develops.

A medical application of seizure prediction models
requires a high level of explainability and interpretability.
While the proposed architecture has an explainable design,
further investigation using explainable AI techniques is
required to shed light on the model’s internals and interpret
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its decision-making process. Further design enhancements
require integrating the attention mechanism to amplify the
most informative parts of the wavelet-transformed EEG
signals. The attention module can also deliver a degree of
explainability to the model’s predictions.
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