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Abstract: This paper proposes a multimodal graph-based recommendation system using a hybrid filtering approach. The proposed
approach uses various sources of data and advanced graph-based deep learning algorithms to provide more accurate and personalized
recommendations to users. Our framework captures user and item attributes using text, images, videos, and metadata. We incorporate these
attributes into the graph of user-item interactions using collaborative filtering and content-based filtering. Graph convolutional networks
(GCNs) help us to identify collaborative filtering attributes. The intrinsic characteristics of items can be better understood and utilized
with graph-based content based filtering. The proposed model initially classifies related users and items into groups using unsupervised
clustering, then refines its recommendations using a cross-attention approach. In addition, we use a Variational Graph Autoencoder
(VGAE) approach that encodes intricate interactions inside a hidden space, hence enabling precise predictions of links. Experimental
results show that the proposed model provides more accurate and personalized recommendations than existing models. We conduct
comprehensive experiments using the publicly accessible datasets such as Movielens 1M, TikTok, MovieLens 10M, and MicroVideo
1.7M. Our proposed model demonstrates superior effectiveness compared to the state-of-the-art multimedia recommender systems in
various evaluation parameters such as precision, accuracy, recall, Normalized Discounted Cumulative Gain (NDCG), F1-score and RMSE.

Keywords: Content, collaborative, hybrid filtering, multimdodal, cluster similarity, graph convolutional network, variational
graph autoencoder, link prediction

1. Introduction
The existing web services are starting to employ recom-

mendation algorithms more frequently [1]. Such algorithms
almost always adjust their recommendations to meet the
user’s requirements. Utilizing these technologies, media
streaming platforms and e-commerce sites [2] help users
navigate massive information landscapes, which in turn
assists consumers in finding new, relevant material. During
the initial stages of the business, the primary focus was on
developing online shopping recommendation systems [3].
These systems used simple algorithms to analyze customer
purchase histories. Powerful recommendation systems that
employ machine learning algorithms have become increas-
ingly popular in recent years, emerging on a wide range of
websites and platforms [4]. To improve the precision and
accuracy of their product suggestions, e-commerce busi-
nesses are experimenting with recommendation systems.
Individualized recommendations for media such as articles,
books, songs, and movies are among the many services
offered by these systems [5].

There are two main ways that recommender systems
sift through data: collaborative filtering (CF) and content-
based filtering (CBF). Collaborative filtering recommends
similar users’ preferences [6]. This sort of recommendation
system classifies users into clusters of similar types and
recommends to each user based on its cluster’s preferences
[7]. We divide it into two categories: item-based and user-
based CF. Item-based CF compares items for similarity [8].
User-based CF recommends items based on the similarity
between users [9]. Collaborative filtering has some issues;
without enough data for new users or items, the cold start
problem [10] is a major concern. Collaborative filtering
systems often struggle with data sparsity [11]. When ratings
are low in relation to users and items, recommendations are
less reliable. CBF matches items to users’ tastes based on
their contents [12]. It uses client profiles, item summaries,
and previous purchases to make suggestions. Content-based
filtering can propose items after analyzing what users have
done and what they like, but it can’t offer very distinct
items. Both CF and CBF encounter certain limitations,
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which led to the creation of hybrid recommendation systems
[13][14]. These systems incorporate multiple recommenda-
tion methods to mitigate their shortcomings and optimize
their strengths. A hybrid system might use CF to find
items or users that are similar and then use CBF to
make suggestions that are specific to each user based on
their own traits. Hybrid recommendation systems can make
suggestions more varied and accurate at the same time.
They are especially effective at addressing data sparsity and
the cold start problem due to their inherent traits. We can
combine different approaches to integrate collaborative and
content-based methods. Within these methods are arithmetic
mixtures, meta-level models, and feature augmentation.
However, these systems primarily focus on integrating text
data and user-item interactions.

In the digital world we live in now, we can access all
kinds of information, like text, images, movies, and music.
For example, users who shop online can watch videos and
read visual reviews of products. Social networking site posts
allow users to include text, images, and videos, and users
also interact with these posts. Using this multimodal data
lets us understand user tastes and product qualities better,
which could lead to better recommendation algorithms.
Visual information is a beneficial way to show contextual
and semantic information, while textual data can show how
users feel about a material and its meaning [15]. For person-
alized recommendations, these systems utilize multimodal
data intended to offer insight into the user’s preferences.
However, the assimilation is challenging in the absence of
significant data, such as text, images, video, and music.
Combining data from multiple modalities efficiently re-
quires complex algorithms and considerable computational
cost [16]. Multimodal recommendation systems are scarce,
complicating the issue. Problems with real-time applications
are becoming harder to solve [17]. The complexity of
multimodal data is increasing. We must handle multimodal
datasets without overloading performance, ensuring that the
load matches the capacity.

The proposed model has broad applications beyond
multimedia recommendations. It can enhance personal-
ized shopping experiences in e-commerce, assist healthcare
providers in tailoring treatment plans, recommend person-
alized learning materials in education, and improve content
discovery on social media. Its adaptable architecture using
multimodal data can significantly impact various industries,
improving user satisfaction and decision-making. The study
aims to design and evaluate a hybrid recommender model,
MGRS-HFA, using multiple datasets. The experimental
results demonstrate that the MGRS-HFA model outperforms
various baseline models. This study’s primary contributions
are:

• The study utilizes deep learning to capture and utilize
multiple data modalities for individualized sugges-
tions. It combines graph-based collaborative filtering
with cluster-based content-based filtering.

• The study investigates the effectiveness of graph
structures in representing connections between users
and items for collaborative filtering. It also explores
clustering techniques to enhance content-based filter-
ing and improve recommendation accuracy, especially
for complex user-item interactions.

• The study conducts extensive experiments using four
datasets. The experimental results provide new in-
sights into the potential of the MGRS-HFA model.

The rest of the study is structured as follows: Section 2
reviews related works and highlights gaps in existing ap-
proaches. Section 3 discusses the design and construction of
the proposed MGRS-HFA model, including its architecture
and how it uses both graph-based collaborative filtering and
cluster-based content-based filtering. Section 4 outlines the
datasets, evaluation metrics, and baseline models used in the
study and presents a detailed discussion of the experimental
results. Finally, Section 5 concludes the study.

2. RelatedWork
The predecessors of today’s recommendation systems

relied on clear interactions between the user and an item.
More complex systems that utilize multimodal data and
advanced machine learning have replaced these. Earlier
systems widely used both content-based filtering (CBF) and
collaborative filtering (CF), each with its own pros and cons.
Sparsity and cold-start issues in CF can hinder user engage-
ment with items. To address these limitations, integrating
CF and CBF methods with graph-based approaches has
gained traction. The approach focuses on relevant feature
matrices by dynamically integrating user and item domain
information via cross-attention methods. This hybrid tech-
nique uses user behavior and item features to make more
accurate and personalized recommendations [18]. Recent
advances in multimodal learning allow feature extraction
and integration from text, images, videos, and metadata.
For instance, models like RoBERTa [19] for textual data,
EfficientNet-V2 [20] for images, and Video Transformer
[21] for videos generate rich representations that can be
integrated into recommendation engines. These multimodal
techniques provide a comprehensive understanding of user
preferences and item characteristics, enhancing the ability
of recommendation systems to capture complex user-item
interactions [22].

User-item feature encoding helps recommendation sys-
tems work by converting raw data into model-friendly
representations. Earlier techniques, such as matrix factor-
ization approaches, a type of latent feature encoding, were
often used to make CF better by using low-dimensional
user-item relationship matrix representations [23]. However,
neural network-based embeddings, such as graph-based
embeddings, have simplified recording complex interactions
between users and items by turning high-dimensional data
into dense, low-dimensional vectors [24]. Moreover, unsu-
pervised clustering approaches such as hierarchical and k-
means are used in recommendation systems to find hidden
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user and item data structures [25]. These techniques use
features to cluster users and items, to identify communities,
and pinpoint similarities in content. Using user and item
cluster relationships, cluster similarity-based graphs make
facilitate for the system to show relevant items without users
having to explicitly interact with the system. Semantic clus-
tering, using NLP, has emerged as a powerful technique to
group items or users according to semantic similarity. This
method uses contextual information in written descriptions,
reviews, and other content. Word embeddings and deep
learning models use clustered items of semantic content to
improve content-based recommendations. Semantic cluster-
ing and collaborative filtering improve suggestion relevancy
by integrating content similarity and user behavior patterns.

Graph-based recommendation systems, particularly
those using bipartite networks, have become foundational
in representing nodes for users and items. This framework
structures user-item interactions, such as ratings and clicks.
Bipartite graphs enable graph-based algorithms to uncover
latent links and enhance recommendation accuracy. Graph
Convolutional Networks (GCNs) transmit data across the
bipartite graph to detect patterns of higher-order connec-
tions [26]. Graph autoencoders can learn the structure of
user-item interactions from bipartite networks, improving
recommendation performance [27]. Due to their ability
to capture complex user-item relationships, graph-based
recommendation systems have gained popularity. User-item
bipartite graphs express interactions, making graph neural
networks (GNNs) for collaborative filtering easier. Graph
Convolutional Networks (GCNs) and GraphSAGE are well-
known for their ability to combine data from nearby nodes,
enhancing embeddings better for both users and items
[28]. VGAEs provide a powerful foundation for graph link
prediction, helping recommendation systems [29]. They
address user-item interaction uncertainty and variability
by learning probabilistic distributions over latent variables.
VGAEs can understand complex relationships and predict
how users and items will interact over time using GCNs in
the encoder and a probabilistic decoder. This makes VGAEs
well-suited for personalized recommendations.

In the domain of link prediction, advancements in
graph-based techniques have significantly impacted social
networks, biological networks, and recommender systems.
Traditional methods use network topology and similarity
measures such as Jaccard coefficients, common neighbors,
and preferential attachment [30]. Bayesian, stochastic block,
and matrix factorization approaches like Singular Value
Decomposition (SVD) improve prediction accuracy [31].
Supervised learning methods that use link prediction as a bi-
nary classification task show promise by capturing complex
network patterns. Unsupervised methods, such as node em-
beddings, DeepWalk, and Node2Vec, enhance predictions,
and by using graph structures, deep learning developments
like GNNs and GCNs have revolutionized link prediction
[32]. Graph Attention Networks (GATs) dynamically weigh
neighbor significance to improve predictions [33]. Model

performance is often evaluated using AUC, accuracy, recall,
and F1-score [34]. This multidisciplinary approach shows
the evolution of link prediction methods.

The hybrid approach that combines CF and CBF with
graph-based techniques is better at personalizing items as
it considers both user behavior and item attributes. Mul-
timodal data integration incorporates item attributes and
user preferences for richer representation. Traditional CF
approaches are less attractive to users due to challenges
associated with sparsity and cold start. Adding graph-
based methods and multimodal data can increase system
complexity, making it challenging to handle large-scale data
and ensure efficient computing using complex approaches.
Our approach dynamically incorporates user and item do-
main information to address sparsity and cold-start issues,
effectively mitigating these shortcomings. Simplifying and
managing the system efficiently is crucial for its optimal
performance and future scalability. This can be done by
better integrating multimodal data and graph-based meth-
ods.

3. ProposedModel
As shown in Figure 1, our proposed model uses deep

learning and multimodal data preprocessing. The model
integrates user and item attributes into the recommendation
system, merges data, trains the model, and improves user
score prediction over cutting-edge techniques.

3.1 Algorithm: Multimodal Graph-based Recommendation
System using Hybrid Filtering Approach (MGRS-HFA)
A. Multimodal Feature Extraction, Fusion, and User-Item

Bipartite Graph Generation
1) Gather different modalities (text, image, video, and

metadata) from various sources.
2) After resizing and normalizing the image, use Effi-

cientNet V2 to extract image features.
3) Preprocess video and extract features using Video

Transformer.
4) Split the corpus, remove stop words and punctuation,

lemmatize, and tokenize text using RoBERTa.
5) RoBERTa normalizes continuous Prompt Generation

metadata variables and encodes categorical informa-
tion into numerical vectors.

6) The user-item feature encoder integrates all modality
features.

7) Construct a user-item bipartite graph.

B. Collaborative Filtering with GraphSAGE
Input: User and Item feature matrix (XU , XI)
Output: Processed feature matrices HU , HI

1) Calculate user and item similarity for each user pair
(ui, u j) and item pair (ii, i j), and also compute the
similarity-based coefficient for both pairs.

2) Construct user and item graphs for each user pair
(ui, u j) and item pair (ii, i j).
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Figure 1. Shows our proposed model MGRS-HFA Framework

3) Apply a two-layer GCN to the user and two-layer
GAT to item subgraphs to update feature matrices
and fine-tune user and item features.

C. Content Filtering with GraphSAGE
Input: User and Item feature matrix (XU , XI)
Output: Processed mixed feature matrix HUI

1) Apply unsupervised clustering to both user and item
features and compute cluster centroids of user clus-
ters CU j and item clusters CI j.

2) Compute cluster similarity for each user cluster
CU j and item cluster CIk and construct a cluster
similarity-based graph.

3) Apply three MixHopConv layers to the cluster
similarity-based graph.

4) Apply GCN to refine node features in the constructed
graph.

5) Calculate the final processed mixed feature matrix
HUI .

D. Cross-Attention, VGAE, and Recommendation Genera-
tion

Input: Processed feature matrices HU , HI , HUI
Output: Recommendations

1) Define the query, key, and value matrices and com-
pute the attention weights and cross-attention mech-
anism’s output.

2) Use the Variational Graph Autoencoder (VGAE) to
learn probabilistic distributions over latent variables:

a) Inference Model (Encoder): Calculate the
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mean and log variance. Sample Z latent vari-
ables from the inferred Gaussian distribution.
Calculate the posterior distribution.

b) Decoder: Reconstruct the adjacency matrix by
estimating link probabilities between nodes.
Using the encoder’s latent variables, determine
the likelihood of each link’s existence.

3) Calculate the loss function using reconstruction loss
and KL divergence.

4) Calculate the likelihood of node pairs for link pre-
diction.

5) Rank the computed link probabilities to generate
recommendations.

3.2 Framework of the ProposedModel
There are four components to the proposed model: pre-

processing multimodal data, collaborative filtering, content-
based filtering, and hybrid filtering (which includes cross-
attention, VGAE, and recommendation generation).

A. Multimodal Data Preprocessing
The model encompasses a range of data modalities,

including text, images, videos, and metadata, for building
user and item representations. The feature extraction and
multimodal data fusion process is the core module of our
recommendation system. The steps proceed as follows:

i) Data Collection and Preprocessing
The model starts by gathering multiple sources of

data, including text features (e.g., user reviews and item
descriptions), image data (e.g., product images and user-
uploaded photos), video data (e.g., trailers and reviews),
and structured metadata (e.g., item attributes and user demo-
graphics). Each data type undergoes specific preprocessing
to standardize and validate the information. For text data,
preprocessing includes removing stop words, punctuation,
and applying lemmatization. Images are resized and normal-
ized for consistency. Videos are divided into keyframes, and
features are extracted. Metadata is standardized to ensure
uniform records. For categorical metadata, we use the most
frequent category or a placeholder value like ’unknown’.
To handle missing data (such as user IDs, movie genres,
or tags) and clean noisy text (such as movie titles, descrip-
tions, and tags containing special characters or irrelevant
text), we use imputation techniques, tokenization, and text
normalization. Matrix factorization, such as Singular Value
Decomposition (SVD), addresses sparse data, such as user-
item interaction ratings from users who haven’t rated many
movies.

ii) Feature Extraction Models
For feature extraction from each data modality, we use

specific models:

• Text data: Using a pre-trained RoBERTa model,
we derive contextual embeddings. This paradigm
provides dense vector representations and captures
semantic subtleties.

• Image Data: EfficientNet-V2 extracts high-level fea-
tures from images. This model’s time efficiency
and outstanding performance in image categorization
tasks persuaded us to select it.

• Video Data: A Video Transformer model processes
the video data, capturing the dynamic informa-
tion within video sequences by analyzing sequential
frames to extract temporal properties.

• Metadata: Normalization processes for continuous
variables and one-hot encoding for categorical vari-
ables transform metadata characteristics into numeri-
cal vectors.

iii) Feature Integration and Encoding
We create an integrated representation of users and items

by combining the features retrieved from all modalities
(e.g., visuals, text, and other metadata). This integration
often results in a feature matrix, where each row represents
a user or an item and each column corresponds to a
particular feature (such as image attributes, textual content,
or other item-specific data). Next, we use a feature encoder
to transform the unified features into a fixed-dimensional
space suitable for further processing. The encoded feature
matrices for users and items are then sent to collaborative
and content-based filtering modules, which improve the
accuracy of the recommendations by refining and updating
the user and item embeddings.

iv) Bipartite Graph of User-Item features
We construct a user-item bipartite graph using the uni-

fied and encoded features. User nodes represent the system’s
individual users, and item nodes represent the items the
system offers (e.g., products, movies). An edge connects a
user and an item node if there is an interaction between
them. These interactions can be explicit (e.g., purchases,
ratings) or implicit (e.g., browsing history, clicks).

A bipartite graph G = (U, I, E) entails two distinct sets
of vertices: U (users) and I (items), where E represents
the edges between these sets. Each edge eui ∈ E connects
a user u ∈ U and an item i ∈ I, indicating some form
of interaction or relationship (e.g., purchase, rating). The
edge list from user-item interactions constructs the graph,
representing each interaction as a connection between a user
and an item. The feature matrix, which has features for both
users and items, helps set up the attributes of these nodes
so that users and items are shown with accurate data.

B. Collaborative Filtering
Collaborative filtering is essential in recommender sys-

tems, utilizing user-item interactions to enhance person-
alized recommendations. We create a user collaboration
graph (users with similar item interactions) and an item
collaboration graph (items with similar user interactions).
A Graph Attention Network (GAT) is used on the item
graph, and a Graph Convolutional Network (GCN) is used
on the user graph to improve feature representations. The
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hybrid module then uses the processed item and user feature
matrices for personalized recommendations.

i) User Collaboration Graph
This graph represents relationships between users as

shown in Figure 2. The model can create edges based
on shared preferences, similar browsing behavior, or social
connections. This graph helps identify user communities
with similar interests, allowing the system to recommend
items popular within those communities. From the bipartite
graph, we extract a user-user graph GU = (U, EU) based on
feature similarity among users. The edges EU are defined
based on a similarity metric s(u,u’) for (u,u’)ϵU, such as
the cosine similarity of user feature vectors as shown in
equation (1):

s(u, u′) =
vu, vu′

∥vu∥ ∥vu′∥
(1)

where vu is the feature vector of user u.

Figure 2. User Collaboration Graph of the MovieLens 1M dataset

ii) Item Collaboration Graph
This graph captures relationships between items as

shown in Figure 3. We can generate edges based on item co-
purchases, content similarity, or complementary function-
alities. This graph helps identify groups of similar items,
allowing the system to recommend complementary items
or substitutes based on user preferences. Similarly, we form
an item-item graph GI = (I, EI) by connecting items (i,i’)ϵI
based on their similarity s(i,i’), as given in equation (2):

s(i, i′) =
vi, vi′

∥vi∥ ∥vi′∥
(2)

where vi is the feature vector of item i.

Figure 3. Item Collaboration Graph of the MovieLens 1M dataset

iii) GCN and GAT Processing on Attributed Graphs
We apply two layer GCN and GAT separately to and to

learn and refine the node (user or item) representations.

User GCN Architecture
The User GCN architecture processes the user feature

matrix and the user graph (represented by edge indexes
and weights). It comprises two GCN layers and a fully
connected layer. The first layer employs a GCNConv layer
to aggregate features from immediate neighbors, followed
by ReLU activation and dropout (0.5) to prevent overfitting.
The second GCNConv layer continues to aggregate features,
including higher-order neighbors, producing the final user
embeddings. Finally, a fully connected layer reduces the
dimensionality of the embeddings to match the desired
feature space for downstream tasks. The propagation rule
for a GCN layer is given in equation (3):

H(I+1) = σ(D−1/2ÂD̂−1/2H(I)W (I)) (3)

Item GAT Architecture
The Item GAT architecture processes the item feature

matrix and the item graph (represented by an edge index).
It includes two GAT layers and a fully connected layer. The
first GATConv layer with multiple heads captures attention
weights from neighbors, followed by ELU activation and
dropout (0.6) for regularization. The second GATConv layer
with a single head aggregates information from attention-
weighted neighbors, refining item embeddings. The fully
connected layer maps the final item embeddings into the
desired feature space. The update rule for a GAT layer is
expressed in equation (4):

h′i = σ

 ∑
j∈N(i)

ai jWih j

 (4)

For both GCN and GAT, the learning rate is set at
0.001 to balance convergence speed and stability. The
Adam optimizer handles sparse gradients and adaptive
learning rates well, which leads to better performance of
the recommendation system and better learning of feature
representations.

iv) Obtaining the Processed Feature Matrix
We obtain the output feature matrices HU and HI for

users and items, respectively, after processing through the
two-GCN and GAT layers. These matrices encapsulate the
refined graph structure and node interactions to create high-
level user HU and HI item representations.

C. Content Filtering
We feed the encoded features into a supervised clus-

tering layer, which groups users and items into clusters
based on their feature similarities to integrate content-based
filtering into graph structures. This clustering results in user
and item clusters that capture the underlying patterns in the
data. We construct a bipartite graph using the similarity
between these clusters, where nodes represent user and
item clusters, and edges indicate similarity relationships. We
apply Graph Neural Networks (GNNs), specifically three
MixHopConv layers, to this unified graph. These layers
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capture complex relationships and dependencies within the
graph, refining the feature representations of both users and
items. The MixHopConv layers produce processed feature
matrices for users and items. The hybrid module integrates
these matrices, empowering the system to generate person-
alized recommendations through comprehensive content-
based filtering signals derived from the multimodal data.

i) Unsupervised Clustering
Unsupervised clustering can discover hidden structures

within data and increase recommendation accuracy. Using
unsupervised learning, we create clustering graphs for users
and items. This layer shows user behavior and item quality
by combining users and items with similar features. We
use k-means to cluster users and items separately during
the build process. These clusters help improve recommen-
dations by identifying groups of similar users and items,
allowing the system to leverage these patterns for more
accurate and relevant suggestions. By understanding these
natural groupings, the recommender system can provide
more personalized recommendations, improving user sat-
isfaction and engagement. We designate each collection of
users and items as U and I. In the dataset, each user uϵU
and item iϵI are represented by vu and vi.

As shown in equation (5), users in these connections
share interests or behaviors.

CU = {CU1,CU2, . . . ,CU j} (5)

CU j represents the j-th user cluster.

Equation (6) connects clustered items, reflecting their
content similarity or co-occurrence patterns.

CI = {CI1,CI2, . . . ,CI j} (6)

CI j represents the j-th user cluster.

ii) Cluster Similarity-based Graph
Using user and item clustering graphs, we can create a

cluster similarity-based network for content filtering. This
graph examines cluster relationships. Nodes represent the
previous stage’s user and item clusters as shown in Figures 4
& 5. High-similarity edges connect user and item clusters.
Content-based feature analysis or common user preferences
for cluster elements can measure this similarity. We must
calculate user and item similarity after clustering.

First, compute each cluster’s centroid. The centroid of
a cluster CU j, can be found using equation (7).

CU j =
1
|CU j|

∑
u∈CU j

Vu (7)

In a similar way, equation (8) gives the cluster’s centroid
CI j:

CI j =
1
|CI j|

∑
i∈CI j

Vi (8)

Figure 4. User Clusters of the MovieLens 1M dataset

Use a similarity measure like cosine similarity in equa-
tion (9) to compute the similarity among each pair of user-
item clusters.

s(CU j,CI j) =
CU j,CI j∥∥∥CU j

∥∥∥ ∥∥∥CI j

∥∥∥ (9)

Figure 5. Item Clusters of the MovieLens 1M dataset

The cluster similarity allows for CBF by recommending
items from clusters similar to those a user has interacted
with earlier. In the context of recommendation systems,
clusters group users or items based on shared characteristics
or behavior patterns. We quantify the similarity between
clusters to ascertain how closely the aggregate preferences
of one user cluster align with the aggregate characteristics
of an item cluster.

iii) User-Item Content Filtering Graph
To form the user-item content-based graph, we apply

three MixHopConv layers to the cluster similarity-based
graph. We design the architecture of these layers to capture
and refine complex relationships within the graph, thereby
enhancing feature representations for both users and items.
Each MixHopConv layer extracts features from multiple
hops in the graph, specifically leveraging adjacency powers
A0, A1, and A2. The input dimensions match the feature
dimensions of the graph, and each hop has an output
dimension of 60. We ensure regularization and prevent
overfitting by applying a dropout rate of 0.7 before the first
layer and 0.9 after each MixHopConv layer. We apply batch
normalization to stabilize and accelerate training, ensuring
the normalization dimension matches the concatenated out-
put size of MixHopConv (3x60=180).

A final linear layer reduces the dimensionality of the
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output to a 32-dimensional embedding, making the feature
vectors suitable for downstream tasks. The Adam opti-
mizer, with a learning rate of 0.001 and weight decay of
1e4, ensures efficient training by handling sparse gradients
and adaptive learning rates. This architecture leverages the
strengths of MixHopConv layers to create a robust, content-
based graph that enhances the overall recommendation sys-
tem’s performance through refined user-item interactions.

The goal is to construct an integrated graph that blends
user and item nodes, leveraging cluster-level similarities.
We utilize V as the nodes and E as the cluster-similar
edges in this graph. We can set this threshold based on
a predefined value or derive it from the distribution of
similarities. We consider the feature vectors of nodes in
the new graph G; vu for users and vi for items. Refine the
node features and apply GCN to the constructed graph.

iv) Obtaining the Processed Feature Matrix
The final output feature matrix Hui, represents refined

embeddings for users and items. These embeddings incor-
porate connections from cluster-level interactions and graph
convolutions, improving prediction and recommendation
tasks.

Graph-based content filtering embeds item features into
a graph, creating stronger connections for items with shared
attributes. In a movie recommendation system, this in-
volves linking movies by genre, director, and cast, and
integrating user preferences to form a bipartite graph. We
refine user and item features through multiple hops using
GNN, specifically three MixHopConv layers, to produce
enhanced feature representations. The final feature matrix
improves recommendation accuracy by capturing user-item
relationships, item-item similarities, and cross-user inter-
actions. This method provides personalized and relevant
recommendations, enhancing overall system performance.

D. Hybrid Filtering
Most recommendation systems use CF, which uses user-

item interaction data, or CBF, which uses item features.
However, each method has limitations. CBF may struggle
with restricted feature representation, while CF may have
sparsity and cold-start issues. Hybrid approaches combine
the strengths of both approaches to overcome these con-
straints. This hybrid filtering approach relies on cross-
attention.

i) Cross Attention Mechanism
Dynamically combining user and item information is

essential for hybrid filtering. Cross-attention learns the
importance of features based on their relevance to the user
and the item.

Representing Users and Items: We use embedding layers
to convert user and item features to latent representations.
These lower-dimensional representations capture user and
item traits.

Equation (10) describes the attention mechanism:

Z = Attention(Q,K,V) = softmax
(

QKT

√
dk

)
(10)

Define the queries (Q), keys (K), and values (V) as
follows in equation (11) :

Q = HU ,K = HI , and V = HUI (11)

After addressing cross-attention, the mechanism com-
putes the attention weights. When calculating the model’s
weights, we can see how much weight each user attribute
should have when considering a certain item, and vice versa.

Equation (12) allows us to determine the weight of
attention.

AttentionWeight (A) = softmax
(

QKT

√
dk

)
(12)

Finally, we apply the learned attention weights to the
user-item representations. In our recommendation, we use
a weighting technique to pay attention to the preferences of
users and items and qualities. The cross-attention method
allows the model to focus on the relevant regions of the
merged feature matrices. HU , HI , and HUI to represent
the input feature matrices. The cross-attention permits the
model to focus on pertinent parts of the feature matrices
when combining them. Let HU , HI , and HUI be the input
feature matrices. Equation (13) shows the cross-attention
process.

Z = AV (13)

To improve recommendation accuracy, the cross-
attention component dynamically combines and refines user,
item, and content-based interaction feature representations.
The hyperparameters for the model include 32 feature
dimensions for both user and item features. We use the
Adam optimizer for optimization, balancing convergence
speed and stability with a learning rate of 0.001. We use
the sigmoid function for activation, which handles non-
linearities and maintains outputs within the range of 0
to 1. The model updates weights and biases dynamically,
enhancing interaction predictions for users and items. It
uses attention scores to weight and combine processed user
and item features from collaborative filtering and mixed-hop
features from content filtering based on relevance for each
user-item pair. To better understand user-item interactions,
the model can personalize recommendations by focusing
on the most essential content features that coincide with
a user’s interests. Overall, the cross-attention technique
enhances collaboration and content-based signals to help the
recommendation system grasp complex relationships and
provide more accurate, personalized options.
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ii) Recommendation through Link Prediction
Predicting user preferences and then suggesting relevant

items is the main objective of recommendation systems. For
this purpose, link prediction in graphs is a method that has
shown some potential. This section explores the Variational
Graph Autoencoder (VGAE) within recommendation sys-
tems for potential use in link prediction.

Finding the likelihood that an edge will connect two
nodes is one of the primary objectives of graph link pre-
diction. In the past, link prediction relied heavily on either
hand-crafted attributes or really basic graph properties. But
it’s also conceivable that these approaches overlook the
complex patterns and relationships in the data pertaining
to interactions between items and users.

iii) Variational Graph Autoencoder (VGAE) for Link Pre-
diction

Utilizing deep learning’s capabilities, VGAE sidesteps
the limitations of conventional methods. VGAE, a subclass
of deep learning architectures, specifically handles graph
data. Making an item-based representation of the data is the
initial step. Nodes represent users or items, whereas edges
indicate interactions between nodes. Engagements include
clicks, ratings, and purchases. The VGAE encoder processes
the user-item graph. Graph convolutional layers are used in
this encoder to detect intricate relationships. The inference
model aims to learn a probabilistic distribution over the
latent variables (node embeddings). We employ GCN layer
for computing µ = GCNµ(X, A) and logσ = GCNµ(X, A)
that shares the weight matrix W0).

Equation (14 & 15) illustrates how we derive the infer-
ence model from the Variational Graph Autoencoder.

q(Z|X, A) =
N∏

i=1

q(zi | X, A) (14)

q(zi | X, A) = N(zi | µi, diag(σ2
i )) (15)

where µi and σ2
i are the mean and variance obtained from

the GCN layers.

The VGAE encoder compresses the user and item repre-
sentations into a lower-dimensional latent space. This latent
space captures the most important features and relationships
from the user-item graph.

The equation (16) provides the likelihood of a link
between two nodes, u and v, based on the latent represen-
tations Z obtained via the VGAE.

p(Auv = 1 | Z) = σ(zT
u zv) (16)

where nodes u and v have latent vectors zu and zv.

Using latent representations, the decoder reconstructs
the original user-item graph. During this process, the VGAE
predicts the likelihood of missing edges (i.e., unobserved
user-item interactions).

Equation (17 & 18) shows how the decoder reconstructs
the network structure using link prediction based on the
encoder function’s latent embedding.

p(A|Z) =
N∏

i=1

N∏
j=1

p(Ai j | zi, z j) (17)

p(Ai j = 1 | zi, z j) = σ(zT
i z j) (18)

where σ is the sigmoid function.

As expressed in equation (19), the VGAE loss function
is made of two components: the reconstruction loss and the
Kullback-Leibler (KL) divergence.

L = Eq(Z|G)
[
log p(A|Z)

]
− KL(q(Z|G) ∥ p(Z)) (19)

where Eq(Z|G)
[
log p(A|Z)

]
is the reconstruction loss and

KL(q(Z|G) ∥ p(Z)) is the KL divergence.

We implement this module using hyperparameters such
as input feature dimensions of 200 and 100, and hidden
layers of 100 and 50 dimensions. We use the Adam op-
timizer for optimization with a learning rate of 0.01. The
activation function is ReLU, and the loss function is binary
cross-entropy loss with logits. The model undergoes training
over 100 epochs, processing batches of data, updating
weights, and optimizing attention mechanisms to predict
and complete the user-item interaction matrix.

iv) Generating Recommendations
To generate recommendations, compute the probability

of new links for each user-item pair. Rank these probabil-
ities to suggest the most likely new links (i.e., recommen-
dations).

4. Simulation of the ProposedModel
This section will encompass case studies of MGRS-

HFA, experimental scenarios, and performance evaluations.

A. Experimental Setup
i) Datasets

The study employs the framework of description and
empirical evaluation on the platforms MovieLens 1M [36],
MovieLens 10M [38], MicroVideo 1.7M [38] and TikTok
[36] as shown in Table I.

• MovieLens Datasets

The GroupLens Research Group developed the Movie-
Lens dataset. Researchers have used the MovieLens dataset
for movie recommendation research. The original dataset
does not contain visual features. We made an effort to
gather videos from YouTube, which led to downloading
movie trailers and manually verifying their accuracy. The
MovieLens 1M dataset contains 1,239,508 ratings from
55,585 users, covering approximately 5,986 movies. It
encompasses user demographic data, including age, gender,
occupation, and zip code, as well as movie metadata, such
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TABLE I. Dataset Statistics and Features

Dataset Interactions Items Users Sparsity Visual Textual
Tiktok 726,065 76,085 36,656 99.99% 128 128

Movielens 1M 1,239,508 5,986 55,485 99.63% 2,048 100
MovieLens 10M 10,216,527 10,682 51,001 98.12% 10,380 300

MicroVideo 1.7M 12,737,619 1,704,880 10,986 99.93% 984,983 200

TABLE II. Performance Analysis of the MGRS-HFA with other Collaborative Recommendation Systems

MovieLens 1M TiktokModel Precision Recall NDCG F1-Score Precision Recall NDCG F1-Score
MGAT [35] 0.1272 0.5412 0.3251 0.2060 0.1251 0.5965 0.3838 0.2068
MGCF [36] 0.1342 0.5654 0.3448 0.2169 0.1308 0.6179 0.3987 0.2159
MCGCRS 0.4910 0.8506 0.3684 0.6226 0.5209 0.9378 0.4124 0.6698

MGRS-HFA (Proposed) 0.8269 0.8718 0.6844 0.8484 0.7969 0.9452 0.7023 0.8643
%Improvement 68% 2% 86% 36% 53% 1% 70% 29%

TABLE III. Performance Analysis of the MGRS-HFA with other Content based Recommendation Systems

MovieLens 10M MicroVideo 1.7MModel Precision Recall NDCG F1-Score Precision Recall NDCG F1-Score

DIEN [37] 0.2820 0.4316 0.6899 0.3411 0.3898 0.0625 0.6892 0.1077
MUIR [38] 0.2917 0.4413 0.6992 0.3512 0.4018 0.0640 0.6978 0.1104

HMCB-GRS [39] 0.2998 0.4510 0.6998 0.3602 0.4054 0.6173 0.7009 0.4894
MGRS-HFA (Proposed) 0.5912 0.4785 0.8711 0.5285 0.6659 0.6485 0.8619 0.6568

%Improvement 97% 6% 24% 47% 64% 5% 23% 34%

TABLE IV. Performance Analysis for MGRS-HFA with other Recommendation Systems on Accuracy and RMSE

Model Accuracy RMSE
MLens-1M Tiktok MLens-10M MicroVideo 1.7M MLens-1M MLens-10M

HMCB-GRS [39] - - 0.3535 0.3559 - -
FedPerGNN [40] - - - - 0.8390 0.7930

GHRS [41] - - - - 0.8380 -
MCGCRS 0.4807 0.5413 - - 0.6471 -

MGRS-HFA (Proposed) 0.5182 0.5519 0.5593 0.5295 0.8496 0.8133
%Improvement 8% 2% 58% 49% 1% 3%

as titles and genres. The MicroVideo 1.7M dataset, which
includes 1.7 million video clips, features such as video ID,
publication timestamp, author username, video description,
likes, comments, shares, views, and tags. Each dataset
comprises comprehensive records of user-item interactions
and numerous multimodal features.

• TikTok Dataset

TikTok, a popular micro-video sharing platform, pub-
lished this dataset in a data mining competition. It contains
micro-videos with a duration of 3–15 seconds, along with
the textual video captions provided by the users. The Tik-
Tok dataset comprises 76,085 videos and includes features
such as video ID, publication time, country code, author
username, video description, music ID, likes, comments,

shares, views, hashtags, and audio transcripts.

• MicroVideo 1.7M Dataset

This dataset contains 12,737,619 interactions from
10,986 users on 1,704,880 micro-videos. It is openly avail-
able at GitHub.

• Datasets Biases and Ethical Consideration

All datasets are publicly available and do not infringe
upon user privacy. The MovieLens dataset incorporates
user demographic data, such as age, gender, and occu-
pation, which could potentially lead to biases if certain
demographic groups have excessive representation. Rec-
ommendations may prioritize the preferences of specific
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Figure 6. Performance of the MGRS-HFA with other collaborative filtering models on various evaluation metrics

Figure 7. Performance of the MGRS-HFA with other content-based filtering models on various evaluation metrics

Figure 8. Performance for MGRS-HFA with Content-based and Collaborative Recommendation Systems of Accuracy and RMSE

groups, potentially neglecting the interests of underrepre-
sented communities. The TikTok and MicroVideo datasets
include trending videos and user engagement metrics. This
may result in a bias favoring the promotion of already pop-
ular content, as algorithms tend to emphasize videos with
elevated engagement metrics (likes, shares, and views) over
niche or less popular content. This may lead to a ”rich-get-
richer” phenomenon, wherein popular content perpetually
prevails in user suggestions. Biases within datasets may lead
to skewed recommendations by prioritizing overrepresented
demographics, popular products, or highly engaged users
while disregarding niche interests and less active users.
Balanced and diverse datasets, along with fairness-oriented
algorithms, can enhance the accuracy of recommendations.

ii) Baselines
MGAT [35]: User preferences determine gated and at-

tention mechanisms for distinct techniques. This model uti-
lizes comparable attention to determine method relevance.

MGCF [36]: Fusion enhances MGCF representation
learning. Numerous GCN processes and attention strategies

combine multimodal information to improve performance.

MCGCRS: This approach uses multimodal CLIP-guided
graphs to predict links between users and items. It uses both
adversarial pretraining and Variational Graph Autoencoder
(VGAE) techniques to accurately record how users interact
with items.

DIEN [37]: It improves DIN by adding a dynamic inter-
est layer to track users’ changing interests and eliminating
batch normalization.

MUIR [38]: It aims to capture a wide range of user inter-
ests by combining several representations for personalized
recommendations without using batch normalization.

HMCB-GRS [39]: This approach for content-based fil-
tering uses a hierarchical fusion, graph-based architecture
with GCNs, meta-path-based GNNs, and bipartite graphs
to better show how users interact with items, which makes
personalized suggestions more accurate.
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(a) MovieLens 1M (b) Tiktok (c) MovieLens 10M (d) MicroVideo 1.7M

Figure 9. Training loss by MGRS-HFA over 100 epochs on various datasets

FedPerGNN [40] : This framework offers privacy-
preserving personalization. It uses a privacy-preserving
model update method to train models on decentralized
graphs inferred from local data.

GHRS [41] : This system uses a graph-based model,
similarity of ratings, demographic and location information,
and autoencoder feature extraction. The method improves
performance in cold-start problems.

iii) Evaluation Metrics and Parameter Settings
A random allocation method splits the dataset into

three parts, with a ratio of 8:1:1 for training, validation,
and testing, respectively. We assess the performance of
the top-K using widely recognized metrics such as Preci-
sion@K, Recall@K, Accuracy@K, F1-Score@K, RMSE,
and NDCG@K. We set a value of K=10 for all models and
calculate the mean score value accordingly. Precision mea-
sures the proportion of relevant recommendations, recall
measures the proportion of recommended items, F1-Score
balances precision and recall, NDCG evaluates ranking
quality, RMSE measures the difference between predicted
and actual ratings, and accuracy measures the proportion of
correct recommendations. These metrics help determine the
recommender system’s accuracy and efficiency in providing
users with the right items. The results shown in Tables II-
IV highlight the system’s performance across these metrics.
Adam’s optimizer trains the model with randomly initialized
parameters using a Gaussian distribution, Sigmoid as the
activation function, binary cross-entropy loss, and a learning
rate of 0.001.

High precision ensures that recommendations are accu-
rate based on user interactions with different data types.
Recall is critical in ensuring that the system does not miss
recommending relevant items across various modalities,
capturing all items of interest. The F1-score helps assess the
system’s overall ability to both recommend relevant items
(precision) and ensure that all relevant items are considered
(recall), which is crucial for minimizing false positives and
negatives. The NDCG plays a crucial role in evaluating
the ranking of recommended items, guaranteeing optimal
relevance and rank in the recommendation list, thereby
boosting user satisfaction. RMSE is useful for evaluating

how well the system predicts user preferences across differ-
ent modalities and ensuring accurate predictions. Accuracy
is an essential metric for evaluating the overall correctness
of the system’s output across different modalities, leading
to higher user satisfaction and engagement. Figures 6-10
depict the outcomes.

iv) Scalability Analysis
We designed the proposed multimodal system to effi-

ciently process diverse data types, particularly large-scale
datasets like MovieLens-10M and MicroVideo 1.7M. It uses
advanced hardware like the NVIDIA RTX 4060 Tensor
Core GPU, ensuring high throughput for deep learning
tasks. Table V presents detailed performance in terms of
parameters, training time, and memory requirements for
various datasets, showcasing the system’s efficiency and
scalability. The table also reveals that the system can handle
smaller datasets (MovieLens 1M, TikTok) more efficiently
due to their lower memory usage and processing time,
compared to larger ones. As seen in Tables II and III the
proposed model shows improved performance on smaller
datasets. However, the model’s performance decreases when
applied to larger datasets due to increased data sparsity,
complexity, noise, and computational constraints. These
challenges highlight the model’s limitations in handling
larger datasets, as it requires more sophisticated optimiza-
tion techniques and better data management strategies.

TABLE V. Parameters, Training Time, and Memory Footprint for
various datasets

Dataset #Param Time Memory
MovieLens 1M 12M 17m32s 468 MiB

MovieLens 10M 32M 1h5m13s 876 MiB
Tiktok 3M 7m43s 242 MiB

MicroVideo 1.7M 19M 28m56s 614 MiB

B. Performance Analysis
The experimental results shown in Tables II- IV, show

that MGRS-HFA exhibits outstanding performance on var-
ious metrics, viz. precision, recall, NDCG, F1-score, accu-
racy, and RMSE for different models.
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Figure 10. Performance of MGRS-HFA on various datasets (MovieLens 1M (1st image), TikTok (2nd image), MovieLens 10M (3rd image),
MicroVideo 1.7M (4th image)) using different evaluation metrics for various values of K and Epochs.
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The MGRS-HFA outperforms other collaborative mod-
els; for MovieLens 1M, the MGRS-HFA achieves a pre-
cision of 0.8269, which is 68% higher than the base-
line performance. On TikTok, the MGRS-HFA achieves a
precision of 0.7969, marking a 53% improvement. There
are modest improvements in recall: 2% for MovieLens
1M and 1% for TikTok. The MGRS-HFA demonstrates
substantial improvements in NDCG: an 86% improvement
for MovieLens 1M and 70% for TikTok. Notably, the F1-
Score improves by 36% for MovieLens 1M and 29% for
TikTok.

The MGRS-HFA outperforms other content-based mod-
els. The MGRS-HFA shows a 97% improvement in pre-
cision for MovieLens-10M and a 64% improvement for
MicroVideo-1.7M. The recall improvements are 6% for
MovieLens-10M and 5% for MicroVideo-1.7M. There is a
24% improvement in NDCG performance for MovieLens-
10M and a 23% improvement for MicroVideo-1.7M. The
F1-Score also sees significant gains: 47% for MovieLens-
10M and 34% for MicroVideo-1.7M.

For the MovieLens 1M and TikTok datasets, the
MGRS-HFA shows an 8% improvement in accuracy over
MCGCRS and a 2% improvement over HMCB-GRS. For
the MovieLens-10M and MicroVideo-1.7M datasets, the
MGRS-HFA shows a 58% improvement over MCGCRS
and a 49% improvement over HMCB-GRS. The MGRS-
HFA model outperforms other models, achieving a 1% and
3% improvement using the RMSE metric.

The model’s precision is highly consistent for smaller k
values and shows reasonable performance and variability
for larger k values across different datasets and epochs.
Each dataset shows unique characteristics in how recall
values evolve over epochs, likely due to dataset size, item
diversity, and user behavior differences. Across all datasets,
as k increases, accuracy tends to improve or stabilize over
epochs. Larger values of k (e.g., 50, 100) consistently show
more stability or improve accuracy, suggesting that models
may benefit from recommending a larger number of items
simultaneously. Higher k values tend to stabilize F1-scores
better than lower k values. While some metrics stabilize
early on, smaller k values often show more variability and
potential for improvement over epochs. It is crucial to tailor
recommendation systems to each dataset, as each dataset
exhibits unique performance characteristics.

5. Conclusion
The Multimodal Graph-based Recommendation System

using Hybrid Filtering Approach (MGRS-HFA) framework
improves by combining text, image, video, and metadata
to generate more relevant recommendations for individ-
ual users. Adding GCN-based collaborative filtering and
graph-based similarity clustering using content filtering to
the model makes it more robust than traditional collab-
orative filtering and content-based filtering methods. The
model uses a cross-attention mechanism and a Variational
Graph Autoencoder (VGAE) for link prediction to capture

complex user-item interactions. Experiments on multiple
datasets demonstrate the effectiveness of MGRS-HFA com-
pared to the state-of-the-art. The presented model performs
better on various evaluation metrics. However, a notable
limitation of the study is the increased computational com-
plexity and resource requirements associated with integrat-
ing multimodal data and advanced graph-based methods.
This approach faces challenges in scaling to large-scale
datasets or real-time applications. Researchers can improve
recommendation accuracy in the future by capturing com-
plex user-item interactions using more advanced attention
mechanisms and deep learning architectures. Adding more
advanced recommendation methods, such as meta-learning
and reinforcement learning, to the MGRS-HFA model can
enhance its performance and flexibility. Additionally, opti-
mization techniques and distributed computing can signifi-
cantly improve the system’s ability to handle large datasets.
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