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Abstract: Precision agriculture (PA) aims to maximize crop yields while minimizing inputs such as water, fertilizer and pesticides. To
achieve this, PA relies on advanced technologies such as sensors, drones, and satellite imagery to monitor crops and optimize input.
However, weeds pose a significant challenge, competing with crops for vital resources and thereby reducing production output. For
weeds to be managed and controlled effectively, they must be accurately categorized. Effective weed management requires understanding
each weed’s characteristics, which can be challenging with traditional methods. In this research, a comparative analysis of a mixture of
different lightweight and dense convolutional neural network models was conducted to classify multiclass weed seedlings. The models
included AlexNet, Inception v3, ResNet (18, 34, 50, and 101), SqueezeNet (1.0, 1.1), VGG 16, VGG 19, XResNet (18, 34, 50, and
101), and XSEResNet (18, 34, 50, and 101). The results demonstrated that the Inception v3 model achieved better performance with
95% accuracy and 95% F1-score, surpassing other architectures. However, due to Inception v3’s dense structure and large number of
trainable parameters, efforts were taken to reduce its complexity without compromising its performance. As a result, a new, simplified

version of Inception v3 was proposed, with improved metrics of 96% accuracy and 95.8% F1-score.
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1. INTRODUCTION

By 2050, it is estimated that there will be 9.7 billion
people on the earth, according to the United Nations [1],
leading to the continuous increase of food consumption,
driven by the rapidly expanding human populace. This
population growth, coupled with increasing urbanization
and changing dietary habits, puts significant pressure on the
agricultural sector to produce more food while minimizing
environmental impact. There is an urgent need for the
application of non-invasive modern technologies to better
meet the food demand in the future. An approach that
combines various technologies for acquiring and examining
field data, processing it, and utilizing it appropriately for the
task at hand is known as precision agriculture (PA) [2]. It is
often defined as the highest degree of exactness, considering
multiple aspects of crop cultivation [3]. Weed management,
which removes the hindrances produced by risky crops, is
one of the main aspects covered by PA. Weeds contend
with crops for water, nutrition, and sunlight and tend to
overgrow them [4]. A three-year research study finds that
the majority of the weed populations result in significant
output deficits in unweeded zones, spanning 19% to 56%.
[5]. Moreover, the consumption of certain species of weeds

by animals results in an unfavorable odor in their milk and
also poses serious threats to their health. They also impact
the ecology and surrounding environment by changing the
quality of the soil, disrupting native plant populations, and
causing erosion. The farmers also incur additional expenses,
mostly in the form of labor, time, and financial losses due to
poor harvests. These situations emphasize the necessity for
proper weed management. So far the methods used to curb
weed growth can be categorized into mechanical, chemical,
and cultural methods. Mechanical methods, historically the
first approach to handle weeds, include hand weeding,
mulching, and tillage. But they pose certain challenges in
real-world applications, such as their reliance on skilled
operators and dependence on weather and soil conditions
[6]. Chemical treatments, such as herbicide application, are
used to control a wide range of weeds or to narrowly target
specific weed species. However, they might contaminate
soil and water, harming unintentional plants and animals
and hastening the degradation of the ecosystem. There
are also concerns about the potential health risks that
agricultural workers and farmers may face from prolonged
exposure to the chemicals. In addition, herbicide-resistant
weeds might arise due to misuse or improper application,
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making long-term suppression of weeds more difficult [7].
Cultural strategies, such as cover cropping and crop rota-
tion, provide suppression of weeds rather than destruction.
However, these controls require extensive preparation and
precise timing. Advancements in machine learning (ML)
and deep learning (DL) algorithms in recent years have
made it easier to classify weeds based on images [8],
[9]. Numerous fields, including detecting facial expressions
[10], recognizing speeches [10], predicting crop yield [11],
and classifying plant disease [12], have seen impressive
results from these algorithms. ML algorithms frequently
depend on feature engineering and extraction to get high
performance [13]. However, the requirement for particular
extraction circumstances limits the usefulness of shape-
based characteristics. Later, because of their improved per-
formance and capacity to automatically extract intricate
features from images, DL algorithms—in particular, Convo-
lutional Neural Networks (CNNs)—have become a potent
tool for weed detection in computer vision applications [14].
With architectures ranging from AlexNet [15] for image
classification to YOLO [16] for object recognition, CNNs
have been increasingly popular for classification, object
detection, and segmentation applications. DL techniques
have been useful in a number of earlier research studies
that investigated the classification of crops and weeds. Even
with these developments, CNN-based weed categorization
still has several shortcomings. Whether dense, original
CNN architectures or lightweight variations offer higher
accuracy for weed detection is a crucial subject that requires
attention. The purpose of this research is to assess the
applicability of cutting-edge CNN architectures for attaining
high accuracy and examine how well they function in the
classification of weeds. Furthermore, the study aims to
create and suggest a new, lightweight Inception v3 model
that is more accurate while yet being more efficient. The
study on the trade-off between complexity and performance
also needs to be addressed. This research makes several
important contributions:

o The study uses six different types of weeds and
performs experiments with the Fast.ai library.

e A comparative analysis is performed on 18 pre-
trained CNN architectures, including AlexNet, Incep-
tion v3, ResNet (18, 34, 50, and 101), SqueezeNet
(1.0, 1.1), VGG (16, 19), XResNet (18, 34, 50, and
101), and XSEResNet (18, 34, 50, and 101).

o The Inception v3 network is modified to produce a
simpler model, which is compared against pre-trained
CNN networks.

o The results show that the simplified Inception v3
performs better in weed classification, with 96%
accuracy, 96.5% precision, 95.6% recall, and 95.8%
Fl-score. Furthermore, the simplified model offers
37.5% less complexity than the original Inception v3.

This paper offers useful insights into the implementation
of contemporary CNN architectures in precision agriculture
settings, in addition to highlighting their potential for weed
categorization.

2. BACKGROUND

PA aims to maximize crop productivity while minimiz-
ing resources by relying on advanced technologies like sen-
sors, drones, and satellite imagery. Among the challenges
faced in PA, weed detection and control remain critical,
as weeds compete with crops for essential resources. Tra-
ditional weed management approaches—manual, chemical,
biological, and mechanical [17], [18], [19], [20]—have lim-
itations in efficiency, scalability, and environmental impact,
prompting advanced solutions [21]. Modern weed identifi-
cation techniques employ Al and fall into three categories:
ML, DL, and hybrid approaches [21], [22]. These paradigms
overcome the limits of conventional methods by automating
feature extraction and increasing accuracy under various
scenarios. ML approaches have been beneficial in early
research that relied primarily on feature-based strategies.
These methods involve the extraction of distinctive features
such as color, texture, shape, and spectral qualities, followed
by the use of ML classifiers. For example, support vector
machines have been widely employed in weed classification
and segmentation due to their robustness in dealing with
high-dimensional data when compared to other models [23],
[24], [25], [26]. Random forest and k-means clustering,
on the other hand, have shown excellent performance at
distinguishing weeds from other crops [27], [28], [29].
However, despite their perceived simplicity and effective-
ness in controlled environments, ML systems have severe
limits. They rely on the accuracy and relevance of manually
derived characteristics, which are frequently task-specific
and fail to generalize across varied environmental situations
[29]. These models rarely adapt to complicated, high-
dimensional data, and they struggle with overlapping plant
structures found in real-world agricultural areas [26]. Recent
advances in DL have provided potential solutions in the
field of weed detection. These models learn hierarchical
feature representations straight from raw data, removing
the requirement for human feature extraction. CNNs, in
particular, have performed admirably in image-based weed
classification tasks. For example, Subeesh et al. used four
state-of-the-art CNN models to classify weeds in controlled
conditions. Among which, Inception v3 outperformed the
other models, with 97.7% accuracy. Despite the positive
results, the model’s scalability was limited to difficult field
conditions with dense vegetation [30]. Peng et al. modified
RetinaNet for real-time detection, attaining 24.3 frames per
second on a GTX TITAN X GPU. Although speed was en-
hanced, accuracy diminished, highlighting the necessity for
additional specialized datasets and fine-tuning for various
field circumstances [31]. Later, transfer learning was widely
adopted, as it used pre-trained models trained on large
benchmark datasets and fine-tuned the model for specific
weed detection tasks. Tannouche et al. utilized VGG 16,
VGG 19, Inception v3, Inception v4, MobileNet v1, and
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MobileNet v2 to distinguish weeds. The results showed that
Inception v4 achieved the highest precision with a rate of
99.51% on the mixed image sets and for its pre-trained
version. While these models showed high classification ac-
curacy, they required extensive manual preprocessing, such
as segmenting the region of interest (ROI) for classification
[32]. Garibaldi-Marquez et al. performed ROI extraction
using connected component analysis and classification using
ML and DL models individually. An average accuracy
of 97.5% was obtained for all DL models, which was
reported to be higher than ML models. This approach
worked effectively only when the plants were in their early
growth phases and when there was no occlusion or overlap
in the field [33]. Maram et al. identified ROI and applied
image enhancement techniques to the dataset for weed
detection, which led to improvement in accuracy. Still, the
authors found the model overfitting, indicating difficulties
in generalizing to variable environments [34]. Jin et al.
explored GoogleNet, MobileNet v3, ShuffleNet v2, and
VGGNet for detecting and discriminating weeds growing in
turfgrass based on their susceptibility to ACCase-inhibiting
and synthetic auxin herbicides. The authors reported that
ShuffleNet v2 was the most efficient and reliable model
among the neural networks evaluated. While all of the
studied models enabled quick detection, there were misclas-
sifications, particularly in regions where there was a need
to detect individual weed species rather than discriminating
weeds based on their susceptibility to herbicides [35]. Jin et
al. utilized DenseNet, EfficientNetV2, ResNet, RegNet, and
VGGNet to improve specificity in weed detection within
grid cells [36]. Hybrid methodologies integrate ML and
DL models or various DL models to enhance performance.
Hybrid models gained popularity, combining architectures
to balance feature extraction and classification accuracy,
resulting in more reliable weed and crop categorization. Al-
Badri et al. created a hybrid model that combines VGG-16,
ResNet-50, and Inception-V3 to categorize Rumex weed
plants in different light and overlapping situations, but it was
only evaluated on one weed species [37]. Nasiri et al. used
U-Net with ResNet-50 to enhance segmentation accuracy
in tiny regions, although overlap difficulties remained [38].
Occasionally, the classification of weeds has been enhanced
through the application of optimization techniques utilizing
metaheuristic algorithms. Veeragandham and Santhi pro-
posed a deep quantum neural network framework optimized
using the Coot political optimization algorithm, resulting in
a classification accuracy of 93.6%. However, adaptability to
different soil types was restricted, highlighting the need to
incorporate soil properties [39]. Dadashzadeh et al. created
a stereoscopic system that used hybrid NN-ICA and NN-
PSO algorithms, resulting in good classification accuracy
under regulated lighting; nonetheless, the heterogeneity in
weed species and growth stages limited generalizability
[40]. Recent efforts have concentrated on enhancing models
for edge computing and real-time processing, which are
crucial for practical implementations in the domain. Razfar
et al. investigated lightweight CNN architectures deployed
on resource-constrained hardware, such as Raspberry Pi,

and achieved acceptable accuracy and latency [41]. Rai et
al. combined YOLO v8, MobileNet v3, and EfficientNetBO
with the Nvidia Jetson AGX Orin, applying techniques like
pruning, quantization, and knowledge distillation to reduce
computational costs [42]. Hasan et al. utilized YOLO v7
and YOLO v8 for corn weed detection on the Nvidia Jetson
AGX Orin, achieving real-time weed detection suitable for
selective sprayer applications. However, environmental con-
ditions like lighting and plant occlusion affected accuracy,
emphasizing the need for robust datasets and validation
under diverse field conditions [43]. In their work on CNNs
using UAV images, Mesias-Ruiz et al. pointed out that
high-resolution, annotated datasets are crucial for achieving
the best results [44]. For real-time implementation, edge
computing was advised; however, field unpredictability and
data quality constraints presented difficulties. Even after
optimizations, constraints like device costs and environ-
mental unpredictability persisted, indicating that further
work is required to improve the model’s affordability and
robustness. Despite their capabilities, DL models encounter
several drawbacks. Deep network training necessitates a
significant amount of computer power and huge annotated
datasets, which may not be easily accessible in agricultural
settings. While substantial progress has been achieved in
weed detection using ML, DL, and hybrid techniques,
major gaps still exist. There is a demand for lightweight,
efficient CNN architectures that can operate in real-time
and under resource constraints. Existing models have lim-
ited applicability in various and complicated agricultural
situations. Challenges in accurately segmenting overlapping
crops and weeds. These gaps highlight the significance of
creating unique, efficient, and adaptive weed identification
frameworks that capitalize on the capabilities of ML, DL,
and hybrid techniques while resolving their limitations.
This work takes a methodical and practical approach to
weed detection, building on the benefits of prior methods
while addressing their limitations. Unlike standard ML
methods that rely on task-specific handcrafted features that
lack generalizability, this work uses DL models capable of
learning hierarchical representations directly from raw data.
While previous studies have achieved great accuracy using
pre-trained CNN architectures such as VGG, ResNet, and
Inception, they frequently deal with computational com-
plexity, overfitting, and environmental unpredictability. This
study goes a step further, doing a thorough comparison of
18 pre-trained CNN models to determine the most efficient
architecture. This reduction solves a fundamental barrier for
implementing deep learning models in resource-constrained
areas, such as agricultural fields, where edge computing
devices are common.

3. MATERIALS
A. Dataset

A comparative analysis was performed on a subset of the
V2 Plant Seedlings dataset from Kaggle [45]. The subset
encompasses six classes of weeds in their seedling stage
as RGB images. The class contains some of the most
common weeds in large arable lands. Fig. 1 gives the image
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Figure 1. Samples of weed seedlings in the dataset
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Figure 2. AlexNet

samples of each weed included in the dataset. The dataset
comprised 2,911 images with an uneven number of samples
in every class, thus making it an imbalanced dataset. The
class distribution and leaf characteristic appearance of every
weed species member are given in Table 1. Google Colab on
a laptop with Microsoft Windows 10 Pro and an Intel Core
i5 processor was used to implement all the architectures.

B. CNN Models
1) AlexNet

In 2012, Alex Krizhevsky and colleagues proposed
AlexNet, as shown in Fig. 2, a deep CNN model that won
the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), marking a breakthrough in computer vision
[15]. AlexNet outperforms traditional ML methods and
spurs rapid growth in DL. The architecture features five
convolutional layers, two fully connected (FC) layers, and
a softmax layer. The first layer uses 96 receptive filters
(11x11) with local response normalization and max pool-
ing. Layers starting from two to five use 5x5 and 3x3 filters,
with 384, 384, and 256 feature maps, respectively. Dropout
is applied in the FC layers to reduce overfitting.

2) VGGNet

The Visual Geometry Group (VGG) was runner-up in
the 2014 ILSVRC [46]. The key contribution of VGG

Figure 3. (a) VGG 16; (b) VGG 19
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Figure 4. Inception v3

is to demonstrate that increasing network depth improves
classification accuracy in CNNs. The VGG architecture
includes two convolutional layers with ReLU activation,
followed by a max pooling layer and FC layers, all using
ReLU as depicted in Fig. 3. The final layer is a softmax
layer. The VGG-E models—VGG-11, VGG-16, and VGG-
19—differ in the number of convolutional layer: VGG-
11 has 8, VGG-16 has 13, and VGG-19 has 16. VGG-
19, the most computationally expensive, has 138 million
parameters.

3) Inception v3

Inception v3, proposed by Google in 2015, is part of
the GoogLeNet family, which uses the Inception network
structure [47]. This structure reduces network parameters
while increasing depth, making it ideal for image classi-
fication tasks. The Inception module typically combines
three different sizes of convolutions and one max pooling
operation which is shown in Fig. 4. This aggregation
improves the network’s ability to handle various scales and
helps prevent overfitting. Inception v3 introduced several
improvements over its predecessors, such as splitting large
convolution kernels into smaller ones, reducing parameters,
and accelerating training speed.

4) ResNet

Generally, in DL, it is said that the deeper the network,
the higher the accuracy. As such, DL networks designed
focused on stacking layers and complicating the model.
However, it was seen that the network performance dimin-
ished when a certain threshold for layering was reached.
The problem is attributed to the gradients becoming zero
after complex computations and thus having nothing to
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Class | Weed Name | Scientific Leaf Characteristics Train Images | Valid Images
Name
BG Black grass Alopecurus Short, flat, bluish-green, and hair- | 242 67
myosuroides less. Typically rolled, rough, and
having a clearly discernible keel
CK | Charlock Sinapis A wide, rounded tip with shallow | 381 71
arvensis ridges running around its edges
FH | Fat hen Chenopodium | Toothed borders, which are com- | 445 93
album paratively wide
LSB | Loose silky- | Apera spica- | Sharp, slender, coarse, and hairless. | 597 165
bent venti Rolled.
SP Shepherd’s- Capsella The earliest true leaves are whole; | 207 67
Purse bursa- later leaves are severely lobed or
pastoris sliced, lance-shaped, and silvery in
appearance.
SFC | Small- Geranium The leaves are opposite and have | 457 119
flowered pusillum deeply and rather thinly cut hairs
cranesbill on the stalks; each solitary leaf lobe
frequently has three smaller lobes.
Total 2,329 582

TABLE 1. Weed characteristics and class distribution

learn more from the data [48]. Thus, to avoid the van-
ishing gradient problem, the authors of ResNet introduce
residual blocks with skip connections [49]. The main idea
behind ResNet is to use residual connections, which allow
information to stream from one layer to another, without
passing through all the intermediate layers, as shown in Fig.
5. Thus, a leftover block is produced. To build ResNets,
these leftover blocks are piled. ResNet’s 34-layer simple
network architecture is inspired by VGG-19, and the short-
cut connection is added after that. ResNet makes it possible
to train neural networks with hundreds of layers that are
incredibly deep while still maintaining good accuracy. In
this architecture, a convolutional layer processes the image
input first, followed by several blocks with residuals. A
shortcut link that adds the original input to the convolutional
layers’ output follows each residual block’s two or more
convolutional layers. This allows the network to learn the
residual mapping—the difference between the block’s input
and output. To create the final output for classification,
ResNet also employs an FC layer at the end and an overall
pooling layer. In general, as the number of layers increases,
the network becomes deeper and more complex, allowing
it to learn complex features and achieve good performance
on tasks such as image classification.

5) XResNets

The ResNet model was tweaked as XResNets, which
incorporated slight modifications, each variant focusing
on different layers of the base architecture [50]. These
modifications, often referred to as ResNet-B, ResNet-C, and
ResNet-D, address different aspects of the architecture as
shown in Fig. 6. ResNet-B and ResNet-D concentrate more
on retaining more data, whereas ResNet-C concentrates on
reducing the computational complexity. The former has

Weight layer n

X
f(x) -l identity
Weight layer n+1

f(x) + x /
ReLLU

v

Figure 5. Residual block

alterations in the downsampling block by changing the
strides for the convolution operation. The latter replaced the
7x7 convolution with three 3x3 convolutions. Though the
variants underperform in accuracy when compared to the
base model, they highlight the importance of random points
in layer selections that could affect the overall efficacy.
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6) SE-ResNets

SE-Nets, squeeze and excitation networks, introduced a
method to weigh each channel instead of assigning equal
weights to all input channels [51]. Basically, in CNN’s
multi-channel architecture, the top layers are responsible
for high-level feature extraction, whereas the bottom layers
extract simple features like edges. To avoid sharing the
same weights across all input channels, SE-Nets perform
the weighing by parameterizing the weights at the end of
the block. They take in a residual convolutional feature map
as input and then apply average pooling, which results in
reduced dimensions. Later, two FC layers are used for non-
linear representation using bottleneck parametrization. The
first FC layer is followed by ReLU and the second by the
sigmoid activation function. The output of these layers is
used to calculate the weights of each channel in a neural
network. The model is illustrated in Fig. 7.

7) SqueezeNet

SqueezeNets were developed to design a network that
can be deployed in any edge device or computer network
[52]. They have fewer trainable parameters, thus rendering
a small network with minimal processing time and memory.
The two methodologies of the SqueezeNet model are built
upon the AlexNet: one with heavy compression and the
other with a hybrid compression technique. AlexNet has
five convolutional layers in combination with a pair of
max pooling and ReLU layers and three final dense layers.
The entire network consisted of 61 million parameters.
SqueezeNet, with its base as AlexNet, is made up of two
convolutional layers, eight fire modules, three max-pooling
layers, and one global average pooling layer, as shown in
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Figure 8. (a) SqueezeNet module; (b) with bypass; (c) with compli-
cated bypass

Fig. 8. In the fire block, an expand layer with a combination
of 1x1 and 3x3 convolution filters receives input from a
squeeze convolution layer, which only has 1x1 filters. The
fire block consists of three hyperparameters: The number
of filters (all 1x 1) in the squeeze layer is denoted by § 1.
The expand layer’s number of 1x1 filters is denoted by ey
and the number of 3 x 3 filters is denoted by e33. The sum
of these filters is S < (ejq + e33). To reduce the amount
of input channels for the 3 X 3 filters, the squeeze layer
is used. Here, concat has been used to link many layers
to improve expressiveness (expressiveness in this context
refers to the earlier portions’ extraction of features and
spatial information from the images). Furthermore, no FC
layer exists. This yields a vector that has been flattened and
whose dimension is equal to the number of classes. This
vector is then supplied to the softmax layer. The number
of parameters is significantly reduced when FC layers are
absent.

8) Proposed Method
The proposed model had the following modifications:

e Filter Reduction: Lowering the number of filters
in the inception blocks reduces the model’s overall
complexity. Less Overfitting: A simpler model is
less likely to memorize training data specifics and
generalize better to unseen images. Faster Training:
Fewer parameters translate to faster training times for
your specific dataset.

e Auxiliary Classifier Removal: Removing these classi-
fiers simplifies the training process and might lead to
the model focusing more on the main classification
task.

o 3x3 Split Convolution: Splitting large convolutions
into smaller ones can improve computational effi-
ciency without sacrificing the receptive field (area
considered by the filter). This can be particularly
beneficial for resource-constrained environments.

e Block Removal: Removing Mixed;c: Replacing the
final block with an identity layer effectively stops
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the network from further processing features at that
stage. This can be beneficial if the additional process- 20
ing capacity doesn’t contribute significantly to weed
classification in your dataset. S 6
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First, the training data was pre-processed using various
augmentation techniques, such as random flipping and re-
sizing. These pre-processing steps increased the diversity
of the training data, making the model more robust and
resistant to overfitting. Next, the 18 CNN models’ archi-
tecture was used for feature extraction and classification.
During training, the weights of the new layer were updated
using backpropagation and gradient descent, optimizing
the model for the classification task. Finally, their results
have been compared in terms of classification reports and
confusion matrices. Throughout the training process, the
model was evaluated on a validation set to ensure that it
is not overfitting to the training data. The hyperparameters
used for all models are discussed in Table 2.

Parameters Values

Loss function | Categorical cross-entropy
Learning rate | 0.001

Epochs 50

Batch size 30

Library Fast.ai

TABLE II. Hyperparameters

5. PERFORMANCE METRICS

Several performance indicators for DL classification
models have been applied to evaluate how well CNN-based
algorithms perform in a specific scenario. The performance
metrics specified in the equations (1)-(4) are considered for
this study:

TP+TN
Accuracy = (1
TP+ FP+TN+FN

Precisi TP @
7 n = —
ecisio TP+ FP

TP

Recall = ——w 3)
TP+ FN

Fl— score = 2 x (Precision % Recall) @)

Precision + Recall

where True Positive (TP): The model accurately estimates a
positive class. False Positive (FP): The model misidentifies
a positive class. True Negative (TN): The model accurately
predicts a negative class. False Negative (FN): The model
mistakenly forecasts a negative class. In addition to the four
metrics mentioned above, confusion matrices are also used.
A confusion matrix is a table that compares a dataset’s
predicted labels against its true labels and summarizes
the performance of a classification model. It comprises
totals for TP, FP, TN, and FN. This tool assists with
model evaluation, threshold selection, and understanding
performance trade-offs by providing a short summary of
prediction accuracy in classification tasks.

ACCUERCY

LA CRE C T L S S

L I S e R R
Rk ;

Figure 9. Accuracy comparison among pre-trained CNN and proposed
model

6. ExPERIMENTAL RESULTS AND DIScussioN

In this study, a multiclass dataset is used to evaluate
the performance of 18 cutting-edge CNN models for weed
classification. The models evaluated are AlexNet, Inception
v3, ResNet (18, 34, 50, and 101), SqueezeNet (1.0, 1.1),
VGG 16, VGG 19, XResNet (18, 34, 50, and 101), and
XSEResNet (18, 34, 50, and 101).

The experimental results are reported in three sections,
based on pre-trained networks and the proposed technique.
The findings should respond to the following questions:

1. Which pre-trained CNN network performs better at
recognizing weeds?

2. Does reducing model complexity affect its performance?
3. What is the relationship between classification accuracy
and model complexity in weed identification tasks?

A. Which pre-trained CNN network performs better at
recognizing weeds?

In this section, the performances of all 18 pre-trained
individual CNN networks are presented. Fig. 9 displays
the accuracy of all the models. The Inception v3 model
achieved the highest accuracy at 95%, and XSEResNet 50
gave the lowest accuracy at 77%. The SqueezeNet models
had juxtaposing results. SqueezeNet 1.0 did reasonably
well, with an accuracy of 87%; however, SqueezeNet 1.1, a
more compact version, achieved just 81%. This performance
gap can be explained by SqueezeNet 1.1’s considerable
reduction in parameters and processing time, which may
limit its capacity to generalize effectively. The performance
gain from other models implies that deeper architectures
are better suited for this kind of classification since they
can use more layers to understand complicated patterns
in the data. Table 3 shows the precision, recall, and F1
scores generated by the models for each class. Among all
designs, Inception v3 performed the best, with an average
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precision of 96%. Notably, Inception v3, VGG 16, and
VGG 19 identified the SP and SFC classes with 100%
accuracy. Furthermore, ResNet 101, XResNet (18, 34, 50,
101), and AlexNet obtained 100% precision in the SP
class alone. In contrast, XSEResNet 50 had the lowest
overall precision (77.16%), while XSEResNet 18 had the
lowest precision in the black grass (BG) class (48%). BG
consistently emerged as the most error-prone class across
all models, while SP attained 100% precision across nine
models. Inception v3 continued to outperform in terms of
recall and F1-scores, with average recall and Fl-scores of
94.16% and 95%, respectively. ResNet 50, ResNet 101,
XResNet (18, 34, 50, 101), Inception v3, VGG 16, and
VGG 19 models achieved 100% accuracy in the SFC class.
VGG 16 and VGG 19 both obtained 100% recall for the
SFC, SP, and CK classes. At the other end of the spectrum,
SqueezeNet 1.1 and XSEResNet 34 had the lowest recall
values (37%), with BG being the most difficult class to
recall, followed by LSB. In terms of Fl-scores, VGG 16
generated 100% F1-scores for the SP and SFC classes,
while VGG 19 achieved 100% F1 for the SFC class.
For the BG class, which was the most misclassified of
all classes, Inception v3, XResNet 101, and Inception v3
achieved 91% precision, 82% recall, and 82% F1-scores.
The XSEResNet variations fared badly overall, most likely
because they relied on huge training datasets to effectively
learn representations. Despite having limited training data,
many models struggled to obtain high classification accu-
racy. Furthermore, architectural constraints and incorrectly
calibrated hyperparameters—such as learning rate, batch
size, or regularization settings—could have harmed their
performance. The results show that certain classes, such
as SP and SFC, were consistently categorized with high
precision and recall, whereas BG and LSB presented major
hurdles to all models. This emphasizes the importance
of class-specific data augmentation and improved model
designs in addressing such imbalances successfully. Fig 10
provides the confusion matrices for all the models.

(in %) \BG\CK\FH\LSB\SP\SFC
AlexNet
Precision | 77 99 99 86 100 99
Recall 61 99 98 93 99 100
F1-score 65 99 98 89 99 100
Inception v3
Precision | 91 100 | 99 86 100 | 100
Recall 74 99 98 96 98 100
F1-score 82 99 99 91 99 100
ResNet 18
Precision | 60 97 91 81 95 95
Recall 52 96 96 84 87 99
F1-score 56 96 93 82 91 97
ResNet 34
Precision | 58 92 90 83 98 97
Recall 54 97 96 83 85 99
F1-score 56 95 93 83 91 98
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(in %) [ BG | CK [ FH | LSB | SP | SFC

ResNet 50

Precision | 53 99 98 82 100 97

Recall 58 | 99 | 98 79 9 | 100

Fl-score | 56 | 99 | 98 80 98 98

ResNet 101

Precision | 66 97 96 83 100 98

Recall 58 | 99 | 98 88 90 100

Fl-score | 62 | 98 | 97 86 94 99

SqueezeNet 1.0

Precision | 58 92 90 83 98 97

Recall 54 | 97 | 96 83 85 99

Fl-score | 56 | 95 | 93 83 91 98

SqueezeNet 1.1

Precision | 54 90 73 78 94 91

Recall 37 | 89 | 88 84 72 97

Fl-score | 44 | 89 | 80 81 81 93

VGG 16

Precision | 62 | 99 | 99 85 100 | 100

Recall 61 | 100 | 98 85 100 | 100

Fl-score | 62 | 99 | 98 85 | 100 | 100

VGG 19

Precision | 69 95 98 85 100 | 100

Recall 63 | 100 | 97 88 97 | 100

F1-score 66 97 97 87 98 100

XResNet 18

Precision | 49 | 93 | 84 8 | 100 | 89

Recall 70 | 94 | 92 67 73 | 100

F1-score 58 94 88 76 84 94

XResNet 34

Precision | 52 | 92 | 88 85 100 | 92

Recall 66 | 94 | 95 74 78 | 100

Fl-score | 58 | 93 | 91 79 &7 96

XResNet 50

Precision | 52 92 88 85 100 92

Recall 66 | 94 | 95 74 78 100

F1-score 58 93 91 79 87 96

XResNet 101

Precision | 59 92 92 90 100 92

Recall 82 | 96 | 94 75 82 | 100

Fl-score | 69 | 94 | 93 82 90 96

XSEResNet 18

Precision | 48 | 90 | 83 79 94 83

Recall 48 | 93 | 82 75 75 98

Fl-score | 48 | 92 | 82 77 83 90

XSEResNet 34

Precision | 54 90 73 78 94 91

Recall 37 | 89 | 88 84 72 97

F1-score 44 89 80 81 81 93

XSEResNet 50

Precision | 53 87 80 74 90 79

Recall 39 | 8 | 80 81 66 93

F1-score 45 87 80 77 76 86

XSEResNet 101

Precision | 60 [ 85 [ 81 | 75 [ 8 | 79
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(in %) BG | CK | FH | LSB | SP | SFC
Recall 39 93 77 84 60 94
F1-score 47 89 79 79 71 86

TABLE III. Classification metrics for 18 models

B. Does reducing model complexity affect its performance?

Table 4 summarizes the metrics obtained using the
simplified Inception v3 model. The accuracy, as indicated in
equation (1), was calculated as the proportion of correctly
classified samples to the total number of samples. The
simplified Inception v3 model was created based upon the
classification results from 18 previously trained models.
Among these models, Inception v3 displayed the highest
accuracy, prompting its selection as the foundation for
future investigation. Inception v3 beat other models thanks
to its sophisticated design and optimisation methodologies.
Its inception modules used multi-scale convolutional filters
to successfully collect features at various levels, while
factorized convolutions decreased computing costs with-
out sacrificing performance. Batch normalization improved
training stability and minimized overfitting. Furthermore,
methods such as dimensionality reduction via 1x1 convo-
Iutions and robust regularization enhanced generalization.
The goal was to investigate the effects of lowering the
model’s complexity while retaining classification accuracy.
The proposed model achieved the highest accuracy of 98%.
The accuracy improvement from the original network to the
simplified network is notable due to the following actions:

o Filter Reduction
e Auxiliary Classifier Removal
e 3x3 Split Convolution

e Block Removal

Model | Accuracy | Precision | Recall | F1-score

Proposed 96 96.5 95.6 95.8

TABLE IV. Classification report

C. What is the relationship between classification accuracy
and model complexity in weed identification tasks?

The proposed model has the highest accuracy (96%)
of all models. It reduces complexity by about 37.5% over
Inception v3, which previously had the best performance-
to-complexity ratio. ResNet 101 (90%) and XResNet 101
(82%) exhibit much lower accuracy than the proposed
model. Despite its reduced complexity (~ 15M), the pro-
posed model outperforms other models in all metrics.
VGG 16 and VGG 19 achieve 91% accuracy, but need
approximately 10x the complexity ~ 138M and ~ 143M)
compared to the proposed model. This highlights the in-
efficiency of VGG architectures in this task. SqueezeNet
remains the lightest (1.2M-1.3M parameters); however, it
loses 17% accuracy compared to the proposed model.
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Figure 10. Confusion matrices for all the pre-trained and proposed
models

Although the proposed model is highly efficient, it may
face deployment issues on extremely resource-constrained
devices (e.g., microcontrollers) when compared to ultra-
lightweight designs such as SqueezeNet. In comparison to
Inception v3, it improves accuracy by 3.16%, making it
better than the original Inception v3, suited for real-world
deployment. Models such as SqueezeNet could still be
explored for ultra-lightweight applications, but they would
result in considerable performance losses.

7. CONCLUSION

Deep learning models are proficient in weed manage-
ment owing to their capacity to discern features and patterns
in images. This study examines the performance of 18
CNN models (lightweight and dense) for weed classifi-
cation. The findings of this study suggest that Inception
v3, a dense model, produced the best results, with 95%
accuracy, 96% precision, and 94.16% recall. However, it
is computationally expensive. To address this, a simplified
version of Inception v3 that reduces the trainable parameters
by 37.5% to 15 million is proposed. The modified version
was constructed by reducing filters, removing auxiliary
classifiers, and splitting large kernels into smaller ones.
The simplified model outperformed all the other 18 models,
with 96% accuracy, 96.5% precision, and 95.6% recall. In
comparison, ResNet50 in [53] scored 95.23%. However,
there are several limitations to the study: employing the
free resources available in Google Colab limits the depth
of research; using publicly available datasets instead of
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data taken from the fields; and lacking information on
the contributions made by fine-tuning the hyperparameters.
Future research will focus on further decreasing model size,
enhancing the performance of lightweight CNN models, and
investigating deployment on edge devices.

DATA AVAILABILITY

The data used in this work is  pub-
lically available at Kaggle website:
https://www.kaggle.com/datasets/vbookshelf/v2-plant-
seedlings-dataset
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