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Abstract: The earliest known way for humans to make a living is through farming. Smart farming is a new, improved vision of agriculture
that incorporates new technologies. In recent times, farmers have increasingly depended on technology to efficiently carry out their daily
responsibilities and enhance the quality of their crops. In agriculture, land suitability is an important aspect, which describes how well the
area is conducive for plant growth. Experts in land suitability can determine it or use mathematical tools to make accurate predictions.
Artificial techniques have been proven to be efficient prediction tools for this purpose. Empowered by the Internet of Things and Big
Data, Artificial Intelligence (Al) is capable of handling these kinds of tasks and easing the burden on farmers and experts. The devices
used to improve farming generate data in several formats, which might lead to ambiguous data. This paper proposes an ontology-based
solution to deal with the heterogeneity problem. Moreover, this paper uses a deep learning-based solution that uses streamed weather data
generated from sensors. Our system uses the long-short-term memory model to predict land suitability. The model exhibited encouraging
outcomes that could influence the field of agriculture.
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1. INTRODUCTION

Agriculture has served as the primary sustenance for
both people and animals throughout the past 12,000 years.
Due to its significance, authorities and private entities are
always trying to improve the return from farming the land,
which leads to increasing the incoming resources and meet-
ing the population requirements. The latest technological
development, if used properly, can substantially enhance the
farming field. Applying new technological developments in
traditional agriculture resulted in a new term called smart
agriculture [1], [2]. Smart agriculture integrates Internet of
Things (IoT) technologies with conventional agricultural
practices [3]. This combination will greatly facilitate field
monitoring, particularly in the production chain process. In
the conventional agriculture paradigm, farmers are responsi-
ble for nearly all process aspects, including aggregation and
crop collection. In addition, experts face limitations when
they want to study different phenomena and/or diseases that
affect crops. The emerging concept of agriculture revolves
around implementing sensors on the field to collect data
about several characteristics of the environment, such as
humidity, temperature, wind speed, and so on [4]. Experts

and data analysts can use the collected data for decision-
making process purposes [5], [6]. In addition, it could be
to study different phenomena related to the seeds or the
fertility of the land. Agricultural land suitability prediction
is a significant concern that producers prioritize greatly [7].
To optimize crop quality, farmers must know precisely the
optimal timing and location for seed planting, considering
several elements and criteria, including water availability,
weather conditions, soil composition, and fertilizer. Ex-
perts need a huge amount of historical data to make the
prediction as accurate as possible. The new developments
in technology can be very helpful in this domain. Using
sensors and actuators [8], [9], a huge amount of historical
data can be collected, and then, using Al techniques to
study this data, accurate information about the land and
the crops is deduced. In this work, we aim to design
and implement a system that uses Al techniques and IoT
technology to collect and analyze data that helps farmers
make appropriate predictions about land suitability. Through
developing a more sophisticated method for evaluating land
suitability in the context of smart farming, this study aims
to address these difficulties. This paper specifically intends
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to construct a dynamic, responsive system that can assess
land suitability with improved accuracy and efficiency by
integrating IoT and deep learning-based approaches for
efficient land suitability prediction in smart farms and
advanced data analytics. This approach can transform land
evaluation by utilizing AD’s predictive skills and real-time
data processing, making it more responsive to the demands
of modern agriculture. Usually, new farmers do not have a
sufficient understanding of the soil properties required for
agricultural production [10]. They lack awareness of the
necessity of assessing agricultural land before cultivation.
Consequently, it is essential to assess the area’s suitability
before cultivating crops to optimize production [11], [12].
Traditionally, farmers rely on manual data collection and
soil testing labs to know the soil’s properties. These meth-
ods may not achieve the goal because the data may not
be accurate [13], [14]. The elements of land can determine
whether it is suitable for agriculture and plantations. There
is still a crucial gap in how land suitability is determined
and incorporated into larger agricultural systems, despite
tremendous advancements in smart farming technologies.
Conventional land appraisal techniques are frequently labor-
intensive, resource-intensive, and prone to human error.
Furthermore, these techniques might not sufficiently con-
sider real-time data or adjust to shifting environmental
circumstances, reducing their usefulness in contemporary
agricultural practices. Nevertheless, terrestrial components
are excessively utilized and exploited. Various regions en-
counter diverse issues, including soil erosion, water logging,
groundwater depletion, excessive runoff, and productivity
losses. The deterioration of land poses a significant dan-
ger to food and energy security, water availability and
quality, biodiversity, and human life. Weather conditions
can significantly affect agricultural lands. This phenomenon
results from a modification in atmospheric conditions that
impacts the ability of agricultural operations to flourish
and enhance crop production. Several factors that influence
the conditions for crops and cattle include temperature,
nutrient concentrations, soil moisture, and water accessi-
bility. Research on crop yields has shown that very high
temperatures, resulting in elevated vapor pressure deficits,
can reduce the yields of rain-fed crops across different crops
and areas. Interconnected devices or physical objects via
the internet, known as IoT technology, represent the new
evolution in artificial intelligence [15]. This approach uses
different kinds of communication. Data collected this way
may be of different types. This problem is due to the nature
of data gathered by devices that are generally heterogeneous
[16]. In fact, these data are collected in real-time, which
will generate a sort of Big Data [17]. This kind of data
is usually handled using a data streaming process [18],
[19]. Smart agriculture brings a new vision that injects
Al technology into traditional agriculture. This combina-
tion increases production and economic profits [20]. The
emergence of sensors, which are based on different systems,
leads to problems about how this data is exchanged among
these systems. Usually, to avoid this issue, which is related
to understanding heterogeneous data or exchange signals

between sensors, known as the interoperability issue. In
fact, land suitability represents an issue for farmers in
two manners: the first consists of the quality of food or
plants, and the second is related to the nature of the field
area. By presenting an Al-driven method for assessing land
suitability that outperforms current approaches in terms of
precision and adaptability, this research makes a significant
advance to the field of smart farming. Although AI has
been used in the past to forecast land suitability, these
studies frequently used static models that were ineffective
at integrating multi-dimensional data inputs or adequately
accounting for changes in the environment in real time. This
study’s method stands out because it uses advanced data
analytics and generative Al to produce a dynamic, real-time
assessment tool. In contrast to conventional models, which
could be constrained by their reliance on past data and set
parameters, this study presents a system that can update its
predictions in real-time using the most recent information
on soil properties, climatic patterns, and environmental
variables. This development sets a new benchmark for
using Al in agriculture by improving the precision of land
suitability predictions and giving farmers access to a more
responsive and flexible tool. The primary contributions of
this study are:

o Develop a distributed architecture to ensure interop-
erability among devices.

e Propose an ontology domain to ensure data under-
standing between different generated data;

e Propose a deep learning model for land suitability
prediction;

e Develop a distributed architecture to ensure interop-
erability among devices;

e Propose a framework to visualize data in real-time;

e Perform several comparisons of our strategy with
alternative machine learning classifiers.

The paper is organized as follows: Section 2 describes
related works about smart agriculture, including land suit-
ability. In Section 3, we present our proposed framework.
Section 4 explains the prediction model for land suitability.
The obtained results are discussed in Section 5. Finally,
Section 6 concludes this paper and gives perspectives for
future works.

2. LITERATURE REVIEW

Since the emergence of sensors and actuators and the
idea of the IoT, many developers and researchers have
incorporated these technologies in many domains, such as
industry or agriculture. In the literature, many works have
used the Internet of Things as a solution in different fields.
In this section, we present some works that have used the
IoT to solve problems in the agriculture field. The agricul-
ture field has gained many advantages from this technology,




International Journal of Computing and Digital Systems

P
S bu

AL iwj
s,
a2 3

3

30 gy

such as collecting data, using irrigation systems, monitoring
the field, and detecting diseases in the crops. In addition,
land suitability is a major challenge due to its importance
to the countries, especially those with large areas. The work
of Hsu et al. in [21] has designed a platform that uses
cloud fog computing for agriculture purposes. The main
idea is to present a new creative IoT system layer composed
of a set of layers instead of the traditional IoT layers. In
fact, the authors integrated the fog computing layer into
this system. According to the authors, this architecture
ensures data gathering and analysis from different types of
devices. However, they did not mention how to deal with the
heterogeneity of collecting data from these devices. Pathak
et al. [22] proposed a field monitoring system based on IoT
technology to deal with the problem of crop irrigation. The
main objective of the developed system is to optimize the
quantity of water used for the corps’ irrigation. The main
idea is to use the collected climatic parameters to predict
the water level in the field and thus decide the amount of
water that should be poured to irrigate the crops. Also, Dos
Santos et al. in [23] have proposed a model to measure crop
productivity and anticipate problems. The proposed model,
named AgriPrediction, is based on both the ARIMA model
and LoRa IoT technology. The authors combined a set of
technologies, such as wireless network range systems, with
a prediction method to notify the farmers of some possible
recommendations. The system uses different climate factors
(soil humidity and temperature) to decide what actions
should be taken. However, the authors did not consider all
climate factors that could affect crop productivity, which
is a shortcoming of this work. Another work focuses on
crop recommendation systems in smart agriculture, such as
in Shams et al. in [24] have proposed a recommendation
system for suitable crops based on various factors such
as soil quality and climate conditions. The authors have
proposed an approach that stands on explainable Al. With
the proposed model, the system can help clear explanations
for farmers align Al recommendations with their knowledge
and local conditions, allowing for more confident decisions.
Where Paudel et al. in [25] the authors have focused on
crop yield forecasting, their paper aims to deal with the
evaluation of the performance and interpretability of neural
network models for crop yield forecasting. They compared
LSTM, 1DCNN, and a Gradient-Boosted Decision Trees
(GBDT) models to evaluate the system. Chen et al. [26]
proposed a platform called agriTalk, which is an IoT-
based platform for the precision farming of soil cultivation.
The authors ensure connections between the sensors and
actuators to preserve farming precision. The objective of
their solution is to increase the number of crop cultivation
resources through turmeric cultivation. They used network
time protocol in their platform. However, interoperability
between devices is not mentioned in this work. In [27] Sena-
paty et al. have applied IoT solution-based machine learning
to increase crop productivity. The solution consists of
analyzing soil nutrients to enhance precision in agriculture.
In addition, the proposal includes a crop recommendation
model. The machine learning model is represented as a

combination of a support vector machine with a directed
acyclic graph and fruit fly optimization technique. Where
Shevchenko et al. in [28] have proposed a solution to deal
with the impact of climate changes on land suitability. The
solution aimed to deal with risks that impact food security.
The machine model deals with the problem under differ-
ent carbon emission scenarios. However, interoperability
between devices is not mentioned in these works. Deep
learning and machine learning methods have gained sig-
nificant popularity in the domain of land suitability and the
advancement of smart agriculture. Conventional techniques
for land cover classification, such as logistic regression, dis-
tance measures, and clustering, mainly depend on manually
designed characteristics, which restrict their flexibility and
adaptability. Deep learning has proven its capacity to au-
tomatically collect non-linear and hierarchical information,
making it a potent method for diverse fields such as remote
sensing and urban planning [29]. Recent advancements in
deep learning have resulted in substantial enhancements in
tasks such as land cover categorization, data fusion, and
reconstructing missing data. This application is valuable for
identifying specific locations, analyzing narratives related to
landscapes, and providing answers to geographic inquiries.
Previous studies have shown that machine learning and IoT
benefit from their advantages, such as dealing with large
and complex datasets. Yet the heterogeneity in such works
does not account for specific locations and dynamics, which
can improve the model performance.

As described in this section, the heterogeneity of the
data was not considered. This strategy uses modern tech-
niques such as DL parallel processing and real-time ana-
Iytics to improve the proposed system. In contrast to con-
ventional data processing methods, typical data processing
methods can impede processing and fail to capture the
range and nature of data acquired from multiple devices. As
new technologies, such as ontologies, our solution benefited
from them. The system can rapidly grow with increasing
data quantities, enabling higher flexibility and efficiency
than older systems that struggle with enormous datasets.
Optimizing resources and expediting procedures can enable
the system to reduce operational expenses by requiring
fewer hardware and manpower resources to manage sub-
stantial data volumes.

3. PROPOSED METHODOLOGY

The agriculture field is evolving with new technologies
supported by artificial intelligence. There are many prob-
lems related to traditional agriculture that limit farmers’
profits. One of these significant problems is land suitability,
one of the most known issues in traditional agriculture. The
study of the suitability of a given land helps the farmer
to decide which kind of crops should be implanted and
what should be added to this land to support other crops.
Through data analysis and studying historical data related
to weather conditions, including soil conditions, this issue
should be covered. Similarly to other fields, the agriculture
field may benefit from different ideas using new technolog-
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ical developments, such as sensors that collect data about
the environment. The main use of new developments in
technologies is to reduce human effort in different fields,
and this is especially true in the agriculture domain. Farmers
nowadays use technology to complete their daily tasks in
the field to improve crop quality. To tackle these kinds
of problems, solutions based on multi-layer architecture
have been proposed. These solutions analyze collected
data, visualize these data in an easy-to-understand way for
farmers, and predict which crops are more suitable to be
implanted in this land. These solutions combine IoT and
data analytics to study a new phenomenon. In this section,
we propose an architecture that consists of a set of layers.
Every layer has a distinct responsibility. The first layer
installed in the field collects data from the physical area
using sensors and actuators. The second layer consists of
data analysis, which covers the preprocessing operations.
The last layer is a Cloud IoT approach; this layer represents
the model construction process and stores the data on cloud
servers. Besides, our proposal ensures data analytics in real-
time over historical one through data visualization displayed
as data insights for the users.

A. Architecture description

In this subsection, we present the constituents employed
in our suggested approach and their respective functions.
Our architecture is designed to address the issue of land
suitability problems through an interoperability protocol. It
is a multi-layer architecture based on IoT to predict land
suitability and visualize the data in real-time. In addition,
since we are using different farm settings, including the
number of sensors and actuators, it might produce various
kinds of data. To deal with this issue, our solution is
to use an ontology to ensure the interoperability proto-
col exchanged between inter-systems. Figure 1 shows the
proposed architecture composed of the following set of
components:

1) End User: This component is the interface to our
system. The user can access all operations available
in the system by clicking on the desired opera-
tion. The system supports all devices, such as pads,
phones, etc. This component aims to interact with
the users with the cloud services, which in our
case are data analysis, data visualization, and more
importantly, land suitability prediction. To perform a
suitability detection for a given land, the user should
introduce some parameters related to a blessed land.
These parameters are weather conditions and data of
the land, such as PH and nature, to check if the given
area is suitable for a specific crop.

2) Sensing layer: called the physical field layer, its
primary role is gathering data from the field and
sending it to the sink. This layer is made up of
temperature, humidity, soil moisture, UV, and pH
sensors. All sensors are controlled by the sink, which
is the Raspberry Pi model in our case. The primary
role of the sink is to transmit the collected data

3)

4)

to the IoT Edge layer. The gathered data can be
scheduled weekly, daily, or hourly according to the
necessity of the data and the studied area. With this
configuration, the farm will be monitored in each lap
of time, generating vast amounts of data that will be
treated as big data. The resulting data will be passed
to the next level for analysis purposes.

IoT Edge layer: This component is an IoT edge
layer. We can call this layer a middleware in our
architecture, which connects the processing layer
(cloud IoT layer) and the physical layer (sensing
layer). This layer also ensures the interoperability
between different data collection types from the field.
In this layer, we use an ontology domain to unify
the data collected from the field. An MQTT broker
facilitates the interaction between the physical layer
and this layer through the sink. The MQTT broker
ensures the exchanged messages between devices
are published and subscribed to [30]. It contains the
following modules:

o Interoperability protocol: Before we start the
data analysis operation, we need to unify the
different data types. After receiving the col-
lected data from each farm site, data streaming
is transmitted to the MQTT broker. Then we
perform the interoperability; we use an ontol-
ogy domain attributed to this layer, which will
be presented in the next section.

e Collected data analysis (preprocessing): Af-
ter collecting data from different areas, this
module occupies the pre-treatment process,
which covers data cleaning. This operation is a
data streaming-based method that will collect
data in real-time. After this operation, the ex-
tracted meaningful patterns from the collected
data will be transformed into the cloud IoT
layer for the model creation.

Cloud IoT layer: This component is a cloud-based
layer. It extends the local server’s abilities by us-
ing the cloud server’s resources. Furthermore, this
layer gains from cloud advantages such as resource
pooling and service on demand [31], [32]. This
layer also offers a platform with multi-functionalities
accessible via the Internet.

e Cloud storage: The different sensors collected
huge amounts of data (Big Data) [33], which
requires a lot of storage space. The cloud
provides the user with unlimited data storage
space compared to the local server.

e Data visualization: It allows the farmers to
visualize data in real-time as it is collected
from the field. The data visualization makes
data more understandable. At the end, the gen-
erated data will be transmitted as XML and
JSON formats for later use.

e Model construction or machine learning
module: The cloud offers high computing re-
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Figure 1. Land suitability monitoring and prediction system.

sources, which can run complex algorithms to
predict land suitability. In our work, we use
a deep learning method, which is a neural
network-based method. In our proposal, we use
a machine learning algorithm that handles the
land suitability prediction.

B. Dataset description

To construct our model to predict the suitability of the
land based on remote sensing data, we utilized meteoro-
logical data collected from different regions over twenty
years. This dataset includes various features such as soil
moisture, precipitation, temperature, relative humidity, and
pressure. We focused on using deep learning techniques to
predict land suitability across a heterogeneous set of land
covers, including natural vegetation, croplands, and human
infrastructure.

C. Land Suitability prediction process

To explain the role of each element in the architecture
depicted in the previous figure (see figure 1), we use the
following flowchart (see figure 2). As described in figure 2,
our system consists of settings, especially at the physical
layer (sensing layer) installed in each farm. To ensure
that a given area can produce healthy plants, our proposal
comprises two different subsystems. Our system provides
the land suitability prediction in a specific area. We present
the previous flowchart’s various operations to deal with
the interoperability problem between other data generated
from sub-systems (different farms). The issue related to
interoperability due to the nature of generated data could
be presented in other formats (JSON and CSV in our case
or maybe include XML format).

1) Data collection: This step is important to construct
the data, especially data streams. The system receives

2)
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Figure 2. Land suitability process.

numerical data from our farm, where the output
(raw data) is stored as unstructured data (JSON file).
In the end, the local server saves this data using
streaming frameworks such as KAFKA [34], [35].

Data unification: Since we have many types of
data generated from each farm field, this presents
a big challenge related to understanding each type.
To ensure an excellent manner to process these data,
this step introduces a protocol to unify them. The
primary objective of this operation is to prepare data
for the pre-processing stage. The MQTT broker han-
dles the unification process, which we also call the
interoperability process. The main idea is to use the
collected data from the field. In IoT, interoperability
can be defined as two systems that can communicate
and share information or data services via devices
[36]. The devices generate different kinds of data
with several data formats, including XML, JSON,
or even CSV [15]. As we have seen in our proposed
architecture, our system may generate data from
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devices as in the previous data format. According
to [15], semantic interoperability in IoT can be
ensured through different ideas, which are given in
three ways: information model, data model, or using
ontologies. The existence of different kinds of sen-
sors can generate different data types. To deal with
the mentioned problem, semantic interoperability is
needed, and gathering data from devices needs the
use of sensor ontologies [37]. Since ontology is well
known in the semantic field through many works in
literature, our interest is to use them [38], [39]. We
aim to use domain ontology to unify the collected
data to start the data analytics task. In complex
datasets like land suitability assessments, which of-
ten include climate and soil data, an ontology-based
solution is an advanced way to overcome data het-
erogeneity. By providing a consistent framework for
interpreting and combining diverse data, ontologies
improve land suitability estimates’ accuracy and effi-
ciency. Integrating these sources for a cohesive pre-
diction model is difficult due to their diverse formats,
structures, and semantics. To create the proposed
ontology, we collect technical information from IoT
devices from the literature since an ontology is a
formal, explicit specification of a shared conception.
It establishes entities, relationships, and rules in
an area of knowledge, giving systems a common
language. Figure 4 shows how we created the domain
idea identification of sensor features and information
to build our ontology. Then mapping each data
field from heterogeneous datasets to the associated
concept in the ontology linked data sources to the
ontology. By offering a standardized framework for
integrating diverse datasets, the ontology-based solu-
tion helped solve data heterogeneity. By establishing
semantic coherence and improving inference, land
suitability forecasts improved. It also automated data
integration and enabled rapid querying, making land
suitability assessment more scalable and credible.
To extract information from each file using the
ontology and to find the right concept from one data
format to another, we execute the equation presented
in equation 1 [40]. The primary role of this operation
is to calculate the similarity degree from concept to
concept and then create a unified file at the end. In
this work, we use the XML file type as a unified
data file. The idea behind this decision is due to the
tools and library that make file generation easier than
other types.

W(term) = tf—id f(term) = tf(term)—log,( )

N
df(term)
/ (1)
W represents the term weight, tf is the term fre-
quency, where N is the number of documents in
the collection, and df is the document frequency,
which is the number of times the word appears in
the other documents. After unified data construction,

.
Ontology domain { '

R

Unified data

JSON

<S> bog
XML

Ccsv

Figure 3. Data unification model.

the MQTT brokers send the result to start the data
preprocessing. The following figure represents the
ontology used to unify concepts between different
data formats. The presented ontology is inspired
by [41]. The IoT flow data is fed to the model
to create a model. Firstly, as we can see through
the proposed solution, we consider the multi-format
data generated by sensors. The problem addressed
in the paper is handling the heterogeneity of data,
especially related to the nature of the generated data
since it has different data formats. Our proposal
used a new ontology domain that helps to manage
streamed data to unify it using Algorithm 1. After
the data collection step, the raw weather data from
sensors often requires extensive preprocessing (in-
cluding data normalization and missing data) before
being fed into a deep-learning model for time-series
prediction purposes. Sometimes, while streaming
data, data privacy and security are represented by
big challenges in such solutions.

To fetch data from the used ontology given above
(see figure 4), we propose the following algorithm
to extract the pertinent data. After extracting the
classname, we compare them (data format: csv, xml,
and JSON files) to unify the data. After that, we
send the data for the preprocessing step to create our
prediction model. Our algorithm consists of several
steps, given as follows:

e Step 1. Given the data format received from the
sink, which could be one of the three formats
discussed earlier. This data format is presented
as a query to our algorithm, and we also give
the used ontology.

e Step 2. For each name ‘n’ from class name ‘q’
in query Q, we fetch the appropriate concept
that is near to ‘n’.
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Algorithm 1 Fetch in the ontology.

Input: Q: query: data from a source file, O: ontology
domain.
Output: C: a list of concepts and their signification.
Begin
Let o class _node of data from O;
Let q set of name _class of Q;
for each name n in q do > extract class name from
ontology.

i« 0;

Let S an array of real values

for each class node o in O do
of similarity between concepts. Tf-idf

S[i] « similarity(o, n);
i—1i+1;

end for

classes <« ExtractClassName(S);
name with the highest value.

C « addtolist(classes, n);
end for
Return C;
End.

> calculate degree

> Extract class

e Step 3. We calculate the degree of similarity of
each name ‘n’ and compare it with each class
node of ontology O and store it in an array S.

e Step 4. Last step, we extract the class node with

3)

4)

the highest degree of similarity and save it in a
list named ‘C’ with the current class name ‘n’
When we finish this algorithm, we return each
concept with its meaning using the ontology,
resulting in list ‘C’.
Data pre-processing: Accumulating vast quantities
of minuscule numerical values will always result
in incomplete datasets. If the raw data contains
missing values and is immediately inputted into the
model, it will lead to an error. Hence, a preliminary
data pre-processing stage is required to ensure data
cleanliness. To improve accuracy and efficiency, it
is essential to standardize the data to a range of 0
to 1. The result will be a tidy and reliable dataset
prepared for usage with the model.
Model construction: The selection of the opti-
mal model and architecture significantly influences
the accuracy of predictions. From the several Ma-
chine/Deep learning methods and algorithms avail-
able, we have selected an approach that considers
time series data. This phase consists of two steps:

e Designing the model and its architecture, in-
cluding determining the number of layers, neu-
rons, and activation functions.

e Performing model training and testing by pro-
ducing predictions to evaluate the model’s per-
formance. The algorithm that was utilized will
be examined in the "Prediction algorithm” sec-
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tion.

5) Deploy the model: Upon creation, the model is
deployed to the web platform to be served for
users access for prediction purposes. The users can
visualize the results in four different decisions: "Best
suitability”, “Suitable”, “Moderately suitable”, or
“Unsuitable”.

D. Evaluation metrics

Performance evaluation is an essential stage in val-
idating the efficiency of a machine learning system.
Various metrics are employed for this objective,
including Recall, Precision, F1- score, Accuracy, and
Confusion Matrix [42] [43]. These equations are
calculated using the number of correct and incorrect
classes, as referred to as True positive/negative and
False positive/negative. The metrics used are mea-
sured as follows:

TP+TN
A = 5
couracy = T FPy TN+ FN D
TP
Precision = ——— 3
recision = sy 3)
TP
Recall = ———— @)
TP+ FN
F1 — score = 2. x precision X recall 5)

precision + recall

4. PREDICTION MODEL FOR LAND SUITABILITY

LSTM networks are a specific type of Recurrent Neural
Network (RNN). Their purpose was to tackle the problem
of prolonged reliance on RNN. LSTMs have an exceptional
ability to preserve information over prolonged durations.
Due to the potential impact of prior information on model
correctness, LSTMs are often used for this purpose [44].
The LSTM architecture consists of a module known as the
”Repeating Module”, which comprises four neural network
layers that interact distinctively. The characteristics of the
data at hand primarily determined the selection of the
LSTM architecture. Given that we are working with time
series, which refers to data that is associated with time and
has been recorded sequentially, LSTM has demonstrated
superior performance in situations when it is capable of
retaining and recalling information from past data points.
Our circumstances can benefit from this approach, as the
prediction of land suitability is not possible using dispersed
or unsorted data. The repeating module is equipped with
three gate activation functions: o, 0, 03 and two output
activation functions ¢; and ¢, as shown in Figure 5.

As depicted in figure 6 the proposed architecture con-
sists of a set of layers by the definition of LSTM. This
study employs a stacked LSTM architecture with numerous
LSTM layers, succeeded by dense layers, to translate the
sequential outputs into the final prediction. The model
receives input characterized by climatic factors, with each

Memory From
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=)

Memory from
Current Block
@ l

| Output
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5 @

Output of
Previous Block

Input Vector

Figure 5. LSTM Repeating Module.

time step serving as an input to the model. Dropout layers
are implemented subsequent to each LSTM layer to mitigate
overfitting. Each LSTM cell comprises three gates: an input
gate, a forget gate, and an output gate (measured in equa-
tions from 6 to 11). These gates regulate the information
flow and allow the network to determine which information
to retain or discard over time. The cell state, in conjunction
with hidden states, enables the LSTM to learn temporal
patterns proficiently. These gates are explained as follows
[45].

o Forget Gate: The forget gate (f;) determines what
information from the previous cell state should be
discarded or kept.

e Input Gate: The input gate (i;) updates the cell state
with new information from the current input.

o Output Gate: The output gate (0,) controls the output
of the cell, which becomes the hidden state for the
next time step.

Si = c(Welha, xi] + by) (6)
ir = o(Wilhn, x:] + b;) (7
C, = tanh(W¢lhs, x,] + be) 8)
Ci=fixCry+i;xC, 9)
0 = o(W,lhs, x:] + b,) (10)
h, = o, X tanh(C;) (11

Where x; is the input vector at time step ¢, h,_; is the hidden
state from the previous time step, and W, b are the weight
matrices and bias terms, respectively.

The idea behind choosing LSTM model is
that this kind of networks are especially appropri-
ate for our goal since they can effectively capture long-
term dependencies in time-series data. In contrast to con-
ventional RNNs, LSTMs proficiently address the vanish-
ing gradient issue, which is essential for recognizing pat-
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terns throughout prolonged data sequences, such as ele-
ments influencing weather conditions. As we mentioned

Climatic factors

Tnput layer

LSTM layer

Dropout
Dropout layer
Dense layer
Dropout D T

Dense Layer

Quput
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Figure 6. Proposed LSTM Model Architecture.

before, we use the LSTM method to create our prediction
model. Our algorithm follows the next steps:

1) Data collection: This procedure is carried out, as
previously described, using Internet of Things (IoT)
devices such as sensors and Raspberry Pi.

2) Data preparation: involves several steps before in-
putting it into the model. These steps include filling
in missing values, cleaning the data, normalizing it,
and reshaping it into a 3-dimensional array suitable
for LSTM input.

3) Model creation: Selecting the appropriate model is
crucial for developing an effective learning model.
The creation process is executed by specifying cer-
tain parameters, such as the number of neurons,
layers, and the activation functions used.

4) Training: The dataset will be partitioned into two
segments. The initial segment will be employed
for model training, specifically for fine-tuning the
weights to align the predictions with the anticipated
outcomes.

5) Evaluation: The second segment of the dataset will
be employed for testing and assessing the model.
The testing data is less in size and different from the
training data.

6) Prediction: Once the training and testing steps are
complete, the model can be utilized to make predic-
tions, specifically about land suitability.

5. RESULTS AND DISCUSSION

This section outlines the configurations that enable us
to implement our suggested design, hence our prediction

Algorithm 2 LSTM prediction model pseudo code.

Input: Datasets of weather conditions.
Output: LSTM _model
Begin
normalize data(0,1); » Normalizing data values between
0 and 1.
X_train,y train,x_test,y test « splitdata(data,?5);
> Divide the data into training and testing sets (25%
testing) reshape data(data) » Reshape data according to
LSTM input
model « CreateS equentialModel()
configure the LSTM model
model.add LSTM _layer(number _lstm, sigmoid)
model.add NN _layers(nbr _nn) model.compile()
for epochs number do > Training the model

for batch _size do

model. fit();

end for
end for
results < model.predict(x _test); » Test the model and
make predictions
End.

> Prepare and

model. Moreover, this section summaries the attained out-
comes and provides a discussion related to the subject
matter.

A. Simulation’s settings and configurations

Our proposed approach was implemented in Python on
a machine with an Intel i7 processor consisting of 16 GB
RAM. The architecture of our model consists of an input
layer, three hidden layers, and one output layer. The input
layer is provided with a three-dimensional array of four
features, where a one-dimensional array with four columns
represents each feature. The next table (see Table I) explains

Ism 3:LSTN
input ‘ ouput P input ‘ oufpt: —binput:‘nutput: —bmput:‘nutpm: M input:‘uutput:
AL ‘ LA (CADIR) (00| |0RCH] |08 eY

Ism 3 input IputLayer dense 9:Dense | | dense 10:Dense | | dense 11; Dense

Figure 7. LSTM model architecture and layers.

the used configurations to train the used model LSTM. The
explained hyperparameters presented in Table I are selected
based on the OptKeras optimization tool. Accordingly, for
each hyperparameter, a set of trials is provided to the
optimization tool, and for the results, the best combination
is chosen.
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TABLE 1. Hyperparameters settings.

Parameters Values
LSTM output size 4

Dropout 0.3

Epoch 20

Learning rate 0.001

Batch size 128
Validation split 0.3

Loss function Cross-entropy
Optimizer 0.80

B. Obtained results and Discussions

In this subsection, we present some results about our
proposed system. It shows some plots for our model re-
sulting from training and constructing it. Also, it gives data
visualization about the degree of suitability for a given area.

1) Interfaces: As we mentioned earlier, our system is
a web-based application that gives the possibility to
the user to use it anywhere. Plus, this application
could be used by any means, whether mobile or
other device. Our system also gives the possibility
to help the experts of farmers to give real-time data
streaming from the field with two types of data:
weather data and soil data, including PH values and
quantity of water from the humidity of the soil.

To check if the given area is suitable or not, the next
figures (see figures 8 and 9) help the experts to see
the degree of suitability of the chosen area according
to its climatic factors. The next figure (see figure 9)

Choose land and weather factors:
A i e

Prediction and analysis results:

Figure 8. Land suitability from a chosen preference.

helps the experts visualize the degree of suitability
of the chosen area as the choropleth map results
from the Cloud IoT layer. Figure 9 shows suitability
degrees from 1 to 4 (unsuitable, moderately suitable,
suitable, and best suitability, respectively).

2) Model creation: The next figure shows the results
after the training step. As we can see, we have four
classes, which correspond to unsuitable, moderately
suitable, suitable, and best suitability, respectively.
From figure 10 we can see that the testing data pre-
sented in green and the prediction results presented
in red are almost identical, which shows the effec-
tiveness of our model. Figure 11 shows the difference
between the desired output and the predicted output,

Land Suitability

Decision (Sum)

(]
1,00 4,00

Figure 9. Land suitability using visualization.
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Figure 10. LSTM model -a- Results.

which is given by our model. Google Colab was used
for the model’s training phase. 200 epochs of training
with a five-person batch size were conducted. To
accurately identify and predict whether the land will
be appropriate or not, our LSTM model was trying
to understand the relationship between weather data
and the land suitability label. As seen in the image
below, accuracy was very poor at the start of the
training, with a large loss value.

After 200 epochs, the accuracy at the end of the
training has increased to 0.98, while the loss value
has decreased to 0.06 compared to the initial values.
The LSTM model was able to match the data, as
seen by its increasing accuracy over time, which
went from 0.44 to 0.98. Predicting land suitability
accurately the majority of the time, the validation
accuracy, which varies from 0.95 to 0.98, is likewise
thought to be very high. The trained model was
able to predict accurately for an entirely separate
collection of data since it used a different validation
set of data that was not part of the training set.

We employed the categorical cross-entropy func-
tion to compute the loss. It is the predominant
function in the context of categorization difficulties.
The categorical cross-entropy metric rises as the
anticipated probability deviates from the true label.
The model operates by minimizing the loss function,
which condenses all components of our algorithm
into a single numerical measure that quantifies the
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Figure 12. LSTM accuracy.

effectiveness of our model. During the initial training
phases, the loss function had a high value of 1.2.
The LSTM model strives to learn from the data and
reduces the loss by employing backpropagation as
the training progresses. After a few epochs, the value
drops dramatically to 0.06, indicating that the model
successfully extracted information from the dataset
and identified the pattern to predict the suitability of
the land accurately.

0 i — > Epochs

0 2 0 80 80 100 120 140 160 180 200

Figure 13. LSTM loss.

As we can see from the obtained results depicted in
Table II, which gives a comparative study between LSTM
and other ML techniques. Particularly, the LSTM model
demonstrated superior performance in capturing the tem-
poral dynamics of the remote sensing data compared to
more traditional machine learning approaches. Our deep
learning model was able to achieve an overall accuracy of
98% in predicting land suitability, which is a significant
improvement over the baseline pixel-based classification

TABLE II. Comparative performance of ML models.

Model Accuracy Precision Recall F1-score
SVM 0.6533 0.6468  0.6533  0.6338
R Linear 0.5012 0.4504  0.5012  0.3949
egresswn
RLOgISt¥C 0.4663 0.3683  0.4663  0.4038
egressmn
LSTM 0.9805 0.9809  0.9805  0.9805
Bﬁ%l]“g 0.8875 0.8597 09108  0.8845
Parallel RF
[47] 0.96 - - -
MLP
(48] 0.945 0.959 0.938  0.946
Crop Suitability
Prediction [49] 0.965 0.952 09901  0.9709
Soil measures [50] 0.931 0.952 0.943 0.94

accuracy of 85%. Further, the model provided detailed
insights into the important drivers of land suitability, with
the Sentinel-derived vegetation indices and soil moisture
data being the most predictive features. To ensure scalability
and generalizability over crops and regions, we tested our
model on two datasets. These datasets predict land suitabil-
ity for a given crop in different regions. These datasets were
published on Kaggle datasets.

06 T
04 I I I I
0.2
0
S5ViM

15T
Figure 14. Comparison between different ML models.
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The below figure (see Figure 14) explains the differences
between standard deviation changes over the evaluation
metrics and the prediction accuracy. Here, the next figure
15 explains the different confusion matrices between ML
techniques and LSTM. As we can see, the LSTM has the
highest accuracy and lowest errors for different land use
classes compared to the other methods. Ensuring device
interoperability is crucial to seamlessly integrating new
technologies with current systems. Our work has prioritized
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Figure 15. Confusion matrix for different models

interoperability by strictly following standardized data for-
mats derived from the suggested ontology and the fetching
mechanism. Our design approach allows for easy integration
with other agricultural devices and systems, improving the
practical usefulness of our model. Our model’s interoper-
ability with existing sensors and data platforms enables
seamless real-time data integration, leading to enhanced
decision-making and optimized resource management. Pre-
liminary experiments have shown that integrating this ap-
proach is beneficial, resulting in improved portability across
various platforms and enhanced overall functionality.

C. Discussions

The proposed system aims to deal with land suitability
prediction in smart farming to overcome the agriculture field
since it plays a crucial role in economic development. As
depicted in the obtained results, our solution shows good
results compared to other works presented in the literature
or different machine learning techniques. The proposed
model uses the metrological data during the training step
to construct it. The land suitability-based prediction system
mainly focuses on smart agriculture for arid areas. The
farmers neglected the idea of focusing on such an area due
to the costs of land study, the time-consuming nature, and
the ability that the area could produce such specific crops.
However, the study does not work on specific crops due to
the lack of data about each crop, namely pepper, potato,
tomato, or even date fruits. These problems are related to
the model’s generalizability, which can cover all kinds of
crops. Unfortunately, to cover such a point, we need an
important dataset with various information, such as data
on satellites, fertilization, and chemical features for soil
in need of crops. To cover the model’s scalability, In our
subsequent experiments, we have explored how the model
can scale by incorporating climatic and soil factors, which

significantly influence crop performance. We tested the
model on various datasets representing different geographic
regions and farming conditions. The results show that,
while scaling up the model requires careful consideration
of computational resources, it is feasible with the right
adaptations, such as model compression techniques and
efficient data processing pipelines. We will incorporate a
discussion of these experiments in the revised paper to
show how the model can be extended to larger datasets
and real-world agricultural systems, where the obtained
results are presented in Table I. In addition, the solution’s
scalability should also consider some dynamic changes,
especially when dealing with meteorological data. Ulti-
mately, we presume that the challenges of scalability and
generalization in agricultural systems are significant, with
key issues related to computational capacity, data quality,
infrastructure availability, and adaptability to diverse agri-
cultural environments. Overcoming these challenges may
require tailored solutions, such as region-specific training
of models, improved data collection techniques, and flexible
technological infrastructure.

6. ConcrusioN AND FuTure WoRK

Land suitability is a crucial factor in agriculture and
farming, and our primary objective is to offer accurate
predictions. The suggested architecture, which integrates
DL and IoT, effectively predicted land suitability by lever-
aging data on weather and soil conditions. In contrast to
the existing literature on smart farming and land appro-
priateness, our strategy also prioritized the utilization of a
data streaming mechanism. Gathering data using the most
effective method will undoubtedly enhance outcomes. Our
method utilizes the LSTM model to make predictions with
time-series data instead of traditional ANN and other ML
methods. This is because time series data exhibits patterns
over time rather than being composed of isolated data
points. As seen in the previous sections, farms generate
different types of data, which will create a problem of data
heterogeneity. Our solution consists of proposing ontology
to deal with the issue. In addition, we have proposed
an algorithm to fetch information through data formats.
Unfortunately, our solution was hindered by the lack of data.
The available historical data span only nine years, which is
relatively limited, with only one data point recorded daily.

In the future, we are open to incorporating additional
functionalities into our system, like cameras, to keep an
eye on the health of the plants. Every day, pictures will
be taken and kept on the server databases. Convolutional
Neural Networks (CNN) will thereafter receive all of the
saved photos to process them and extract pertinent data
regarding the health of the plants. Adding more sensors
to the field will improve forecast accuracy by enriching
the dataset. From an alternative angle, we would like to
equip every agricultural truck with a GPS tracker so that
the server software can locate each on the field. Giving
farmers complete management authority over their farms
will increase agricultural output and make the work even
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easier. To enhance interoperability in the future, we are
focused on improving the ability of different systems to
work together by partnering with others and creating open
interfaces for software applications, which will expand the
range of situations where the model may be used and its
effectiveness. In general, our emphasis on interoperability
tackles important difficulties and improves the practical
usefulness of our technology in actual agricultural environ-
ments.
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