
International Journal of Computing and Digital Systems
2025, VOL. 17, NO. 1, 1–15

http://dx.doi.org/10.12785/ijcds/1571064448

A multi-objective optimization technique for scheduling
real-time IoT Applications in Fog Computing Using

Approximate Computations and TOPSIS

Rishika Mehta1, Jyoti Sahni2, Shilpa Mahajan3 and Kavita Khanna4

1,3The NorthCap University, Gurugram, India
2Victoria University of Wellington, New Zealand

4South Asian University, Delhi, India

Received 18 August 2024, Revised 31 January 2025, Accepted 2 February 2025

Abstract: In the last decade, fog computing arose as a distributed computing paradigm to handle latency-sensitive real-time IoT
applications in an effective way. By utilizing fog resources, improved performance such as timely service provisioning, optimal
energy usage, decreased network load, etc. can be achieved. Fog resources usually have finite computational capacities. Conversely,
Internet of Things (IoT) applications are getting complicated in addition to being computationally intensive, necessitating a specific
degree of QoS in stringent time restrictions. In real-time, many times it is preferable for an IoT application to complete its execution
by its deadline by generating an imprecise outcome instead of yielding a delayed accurate output. We study the placement of
real-time jobs in a heterogeneous fog infrastructure by applying approximate computations. In this technique, we considered that
if a constituent task yields an inaccurate outcome, the error may not only be limited to its closest predecessor tasks but may also
proliferate to the succeeding workflow tasks, thereby, influencing the overall outcome of the workflow. We simultaneously study
how error proliferation affects energy consumption of fog resources. The proposed workflow orchestrating model is compared to
a baseline technique and a state-of-the-art policy, where, the effects of partial computations are studied under varying values of
proliferation probability of input error and result precision threshold. The simulation findings reveal that our scheduling technique
outperformed both policies with regard to number of deadline misses, energy savings, schedule hole utilization, and overall result precision

Keywords: IoT workflow, Error proliferation, Topsis, Real-time scheduling, Partial computations

1. INTRODUCTION
The Internet of Things (IoT) envisions to make human

life more intelligent and automated [1]. An expeditious
increase in the count of IoT devices is not unanticipated in
the near future. The initial IoT phases have seen an immense
upsurge in IoT data production which is further likely
to increase exponentially as a vast number of everyday
objects, including, mobile devices, actuators, and sensors
are linked to the Internet, producing at an astounding rate
an unparalleled amount and variety of data. Cloud resources
may be inadequate to efficiently process such large volumes
of data within strict time limits [2-3].
This generates the need to utilize local computing resources
to meet IoT requirements. Essentially, fog computing has
emerged to bridge this void [4]. Scheduling IoT applications
on fog resources enhances performance metrics, including
timely service provisioning, decreased network load, and
optimized energy consumption. Fog computing supplements

cloud computing by providing an extra computing infras-
tructure layer between Internet of Things devices and cloud
resources. Such an interconnected infrastructure is termed a
fog-integrated cloud [5]. IoT data often requires processing
within strict time constraints. The accuracy and utility of the
results in such a real-time scenario rely not only on their
result quality but also on timeliness [6-7]. Generally, real-
time complex applications comprising various constituent
tasks with antecedence and data constraints, process the IoT
data. In other words, every job forms a workflow, wherein,
the outcome of a task is utilized by subsequent tasks of the
job [8]. Only when all its predecessors have been completed
can a child task begin to be executed. Usually, every job is
associated with a fixed deadline by which all of its tasks
must be finished. A delayed result would be futile otherwise.
As a result, it is preferable for an application to give an
inexact outcome by its deadline as opposed to an accurate
delayed outcome. It is to be noted that the terminologies

E-mail address: rishikamehta10@gmail.com, jyoti.sahni@ecs.vuw.ac.nz, shilpa@ncuindia.edu, kavitakhanna@sau.int

http://dx.doi.org/10.12785/ijcds/1571064448

2 Rishika Mehta, et al.

workflow, job, and application are used interchangeably.
Considering this, Lin et al. presented an approximate com-
putations strategy, where, a workflow is permitted to pro-
duce in-between and inexact results of lower yet acceptable
quality by its deadline [9]. In this technique, each con-
stituent task is presumed to be monotone which means that
every task is divided into a mandatory portion that generates
an inexact outcome of the lowest permissible quality, and an
optional portion that improves the outcome of the manda-
tory portion [29]. For a task to yield a satisfactory result,
the task’s mandatory portion must be finished. If a task’s
optional portion is permitted to be processed for a prolonged
period, the task’s result precision gets further raised (e.g.
video streaming and statistical guesstimation) [10]. Most
of the research studies presume that error in a parent task’s
output can always be managed by the immediate child tasks
and will not propagate to subsequent tasks in the workflow
[15,18]. Nevertheless, this may not always be the case.
Whenever a parent task generates imprecise outcome, it is
crucial to analyse the error propagation impact not only
to immediately succeeding tasks but also to other ensuing
workflow tasks due to the interdependencies among tasks
within the workflow. While the majority of studies focus on
the immediate error handling by child tasks [15,18], only a
few consider the possibility that errors could also proliferate
to later tasks in the workflow [4].
Subsequently, the impact of approximate computations
on computation time of the workflow tasks and energy
consumption of fog computational resources needs to be
examined simultaneously. Furthermore, no Multi Criteria
Decision Making (MCDM) technique is utilized in the
literature for selecting computational resources when work-
flow tasks are monotone in nature. This applies not only
to fog environments but also to other distributed comput-
ing environments. Consequently, the implication of error
proliferation among the tasks of workflow in addition to
its effect on the computation time of every impacted task
and energy consumption of each computational resource
should be examined while taking the limited computation
capabilities of fog resources into consideration.
Towards this end, we propose the placement of various real-
time jobs in fog computing by utilizing approximate com-
putations. The vital contributions of our proposed policy are
as follows:

a) The workflows are first ranked according to Earliest
Deadline First technique. The constituent tasks are
further prioritized on the basis of higher value of
Expected Processing Time which considers both
computation and communication expenses.

b) The computing instances are ordered based on Ex-
pected Finish Time, Energy Consumption, as well as
Computational Expense by utilizing Multi Criteria
Decision Making technique - Topsis.

c) The best fit idle slot utilization technique is con-
sidered to place constituent tasks in the available
schedule holes thereby considering the effect of
error proliferation on the computation time of every

influenced task and energy consumption of each
computational resource.

d) The proposed technique is contrasted with a Topsis-
based baseline strategy and a state-of-the-art strategy.
Experimental outcomes establish that the proposed
technique yields considerably enhanced results in
comparison to both policies.

The paper is arranged into six sections: Section 2 discusses
some of the latest research works on approximate computa-
tions. Section 3 describes the fog computing infrastructure,
the workload model, the approximate computations and
error proliferation model as well as the energy consumption
model. The presented placement methodology is presented
in Section 4. Section 5 discusses the utilized assessment
parameters and examines the simulation outcomes. The
paper is summarized and concluded in Section 6, providing
insights for further research.

2. Related work
A number of works on approximate computations-based

workflow scheduling in non-fog environments have been
proposed in the literature which are as follows:
Feng and Liu [10] devised a real-time placement methodol-
ogy that makes use of imprecise computations. The authors
demonstrated how input error influenced the static place-
ment of a linear deadline-bound job by scheduling it on a
single processor. The mandatory as well as optional portions
of the predecessor task were prolonged to address and fix
the error generated by the parent tasks. That is, the scenario
in which an input error could be passed on to the subsequent
child tasks of the workflow was overlooked.
With a focus on the imprecise computation model,
Zhang and Chen [30] presented EEAA, an energy-efficient
scheduling algorithm for imprecise mixed-criticality real-
time tasks on multiprocessor systems. This approach per-
mitted partial task execution rather than complete drop-
ping, allowing low-criticality tasks to operate with lower
execution budgets in high-criticality modes. EEAA adapted
genetic operations like crossover and mutation to examine
diverse solutions, ensuring task schedulability while reduc-
ing energy consumption. However, this model considered
the workload to be a bag-of-tasks and the effect of error
proliferation was also not taken into account.
Niu and Zhu [31] designed a fixed-priority scheduling
framework for energy-aware adherence of (m, k)-deadlines
in standby-sparing systems. It incorporated fault tolerance
for permanent and transient failures in addition to ensuring
energy efficiency using a primary and spare processor. This
methodology divided tasks into deeply red and uniformly
dispersed patterns, enabling optional tasks to be executed
dynamically in order to adapt to varying workloads. By dy-
namically scheduling mandatory and optional tasks, energy
consumption was minimized without compromising fault
tolerance or (m, k)-deadlines. Imprecise computation mod-
els were leveraged; however, the effect of error proliferation
was not considered.
A heuristic for placing real-time jobs with imprecise com-

International Journal of Computing and Digital Systems 3

putations on multiple processor systems was presented by
Ravindran et al. [11]. The authors proposed a simplistic ap-
proach to compute collective output error of exit tasks with
the goal of increasing the result quality while accounting for
limited computation capability and energy consumption of
fog resources. The authors utilized imprecise computations
technique and input error but error proliferation and its
influence on the execution time of every constituent task
was not taken into consideration.
Zhang et al. [32] presented a novel task scheduling algo-
rithm called CA-EDF, aimed at enhancing the performance
of imprecise mixed-criticality (IMC) systems. IMC systems
consisted of tasks with two criticality levels: low (LO) and
high (HI). The CA-EDF algorithm focused on improving
the schedulability of these tasks by strategically delaying
the execution of LO tasks when necessary, allowing for
better resource allocation during high criticality periods.
By allowing graceful degradation of LO tasks, CA-EDF
maintained system reliability while optimizing performance.
However, this methodology didn’t consider workload as
workflows and the possibility that the error could proliferate
was also not taken into consideration.
Esmaili et al. [12] introduced a heuristic approach for
scheduling time-sensitive tasks by utilizing imprecise com-
putations on multiple processors. Even with limited energy
resources, the proposed approach was able to find optimal
schedules. This proposed strategy was compared with a
Mixed Integer Linear Program where, in a few instances,
the proposed strategy achieved the same QoS values as
those yielded by the latter approach. While both strategies
considered the implications of input error when the results
produced by the parent task were imprecise, the idea behind
both was that the input error would invariably be offset
by the extension of every impacted predecessor task’s
mandatory component. Therefore, both strategies failed to
consider how error from the entry task might proliferate to
the exit task.
Jiang et al. [33] introduced a novel framework for mixed-
criticality systems (MCS) called HIART-MCS. This frame-
work aimed to improve the survivability of less-critical tasks
while maintaining the functionality of the system. It intro-
duced a new processor that supports approximation at the
hardware level and introduced an intermediate system mode
(MID-mode) to execute less-critical tasks with reduced
precision. This study presented theoretical models, system-
level designs, and experimental evaluations to demonstrate
the effectiveness of the proposed HIART-MCS framework.
Additionally, it compared the software and hardware over-
head of HIART-MCS with other existing systems. Overall,
this framework emphasized on the resource efficiency and
improved survivability of less-critical tasks. However, this
study considered dual mode Mixed Criticality System due
to which error proliferation could not be catered.
Li et al. [34] discussed task deployment approach to max-
imize system QoS while addressing real-time and energy
supply constraints. This methodology optimized frequency
assignment, task allocation, scheduling, and migration si-
multaneously. The task deployment problem was initially

formulated as a mixed-integer non-linear programming
(MINLP) model, which was then linearized into a mixed-
integer linear programming (MILP) model to obtain the
optimum solution. Additionally, leveraging the problem’s
structure and decomposition, a new heuristic with low
computational complexity was proposed. The sub-problems
of frequency assignment, task allocation, scheduling, and
adjustments were tackled sequentially. However, this model
treated the workload as a bag-of-tasks and did not account
for the impact of error propagation.
Chakraborty et al. [35] presented task scheduling strategy
called Prepare for scheduling approximate real-time tasks
on chip multiprocessors (CMPs) to improve result accu-
racy and thermal efficiency of the underlying hardware.
This method combined offline task scheduling with run-
time energy-adaptive voltage/frequency (V/F) management,
aiming to minimize execution times and enhance thermal
performance. It tackled the challenge of balancing high
result accuracy in real-time applications with strict power
constraints. This strategy considered workload as workflow
but overlooked the impact of error proliferation among the
component tasks.
Stavrinides and Kratza [13-18] presented the placement of
multiple real-time jobs with partial computations. These
works considered the impact of input error on immediate
child tasks such that it gets corrected at the immediate
child level. Therefore, there was no consideration of error
proliferation in any of these proposed solutions.
Numerous research efforts have addressed the issue of
workflow scheduling in fog environment. However, we
found only a few scheduling policies that utilized partial
computations in the fog environment.
Cao et al. [19] introduced a QoS optimization technique
for fog environment that took into account the reusable
nature of IoT devices. These IoT devices were considered
to be powered by hybrid energy sources that included grid
electricity and renewable generations. By utilizing approxi-
mate computations, the authors designed a two-phased task
placement strategy. Application-level and component-level
energy provisioning were carried out one after the other
at the Internet of Things layer to create a local placement
solution. Through renewable-adaptive computation offload-
ing, a local-remote placement technique solution was later
derived at the fog layer. However, this strategy considered
the workload to be a bag-of-tasks and the impact of error
proliferation was not considered.
Mora Mora et al. [20] presented an approximate compu-
tations based task placement strategy for fog-cloud en-
vironment. This technique considered IoT data as bag-
of tasks instead of workflows. In addition, this technique
did not consider monotone tasks where, the computational
volume of the task is divided into mandatory and op-
tional constituents. The authors assumed few tasks to be
mandatory and rest to be optional. Subsequently, input error
proliferation impact was not taken into consideration.
Mo and Kritikakou [21] introduced a mathematical frame-
work that integrates partial computations for energy-
effective placement of deadline-bound jobs in a cyber-

4 Rishika Mehta, et al.

physical ecosystem in fog environment. Due to the problem
being complex, it was initially expressed as an MINLP
(Mixed Integer Non-Linear Programming) problem which
was further linearized to MILP (Mixed Integer Linear
Programming) problem. This work considered workload
as workflow jobs but it did not consider initial IoT data
required for entry tasks of the workflow. Additionally, the
error proliferation impact was also not taken into consid-
eration. Specifically, we found only one study related to
partial computations that considers the impact of end-to-end
error proliferation in workflow processing in fog computing
environment.
Stavrinides and Karatza [4] proposed a heuristic based
deadline aware policy that utilized partial computations and
depicted the impact of error proliferation in a workflow.
This work showed the impact on the computation expense
of every impacted constituent task in the workflow but
overlooked the influence of error proliferation on the fog
computing resources’ energy consumption.
The policy discussed in [4] has several limitations that serve
as the motivation for improvements and extensions. In this
policy [4], the tasks are prioritized according to the lower
value of the deadline i.e. task with a lower deadline is given
higher priority. In case when the deadlines of the tasks
match then the task with a higher computational volume
is given higher priority i.e. the communication expense of
the task is not considered for the ranking of tasks. Expected
Processing Time Calculation is an important metric that is
generally considered for the ranking of tasks [28]. It needs
to be calculated based on computation as well as commu-
nication expenses. Next, this methodology aims at reducing
the Finish Time (or response time) of workflows without
considering the computation expense of fog computing
instances while allocating the task to a computing instance.
The scheduling technique should take into account the
computation expense of the processors since the fog nodes
have limited processing capacities. Another vital factor in
fog infrastructure is energy consumption in addition to
response time which is not considered in [4]. Also, this
policy uses a first-fit idle slot utilization strategy which may
not be an ideal choice to utilize available schedule holes.
Additionally, this policy is a single objective optimization
problem that aims only at minimization of the response
time of the workflow. All these identified drawbacks are
the motivation for this work.
Therefore, we propose a Topsis-based Partial Computations
(TPC) technique which is a multi-objective optimization
technique that takes into consideration the optimization of
energy consumption as well as response time and simul-
taneously aims at improving schedule hole utilization and
overall result precision of the workflows by eliminating
the drawbacks recognized in the state-of-the-art work [4].
In our presented methodology, all the workflow jobs for
execution are acquiesced to an intermediary fog node which
acts as a fog scheduler. It obtains the status of all the avail-
able fog computational resources. The proposed application
scheduling strategy assigns the acquiesced applications to
appropriate fog resources in such a manner that finds

the right balance between the response time of real-time
applications and the energy consumption of fog computing
instances. Further, the presented policy employs the best-
fit idle slot utilization strategy in place of the first-fit to
enhance the system performance.

3. The system and workload model
This section describes the system model which is a fog-

IoT environment, workload model and energy consumption
model employed in this proposed work.

A. System Model
The proposed work considers a fog-enabled IoT system

which is a two-layer architecture: Fog nodes at the topmost
layer and end-user devices at the lowermost layer. The IoT-
fog ecosystem is shown in Fig. 1. The bottom or terminal
layer is constituted by IoT devices, e.g., sensors, smart ve-
hicles, smartphones, home appliances, and wearable devices
[22, 27]. These devices communicate with upper-level fog
resources for application processing by sending requests and
data.
In this study, IoT devices are considered as data generation
sources that lack the capability to execute the produced data.
The fog computing layer is typically deployed close to IoT
devices. It is constituted by nodes with restricted processing,
transient storage and transit capabilities that reside close to
the network edge e.g. access points, base stations, routers,
and switches [23].
Specifically, the fog environment consists of a set R =
{r1, r2, . . . , r|R|} of |R| physical hosts with heterogeneous pro-
cessors. A pool of vi VMs is provided by every physical host
ri . Jointly, the fog layer provides a set M = {vr1

1 , . . . , v
r|R|
|M|} of

|M| =
∑

ri∈R vi fog VMs where, every fog virtual machine is
assigned a vCPU. Every virtual CPU (vCPU) and therefore,
every virtual machine (VM) has a queue of allocated tasks
that must be completed.

To get the required services, users can connect to the
fog nodes. The fog resources are anticipated to lie one
or two hops distant from the users to satisfy stringent
latency requirements [24]. The rate of data transmission
(tIoT) amongst the Internet of Things tier and fog tier follows
uniform distribution in the following interval:

tIoT ∼ U
[
τIoT ·

(
1 −

T IoT

2

)
, τIoT ·

(
1 +

T IoT

2

)]
(1)

where, τIoT and T IoT depict the mean data transmission
rate amongst the Internet of Things tier and fog tier, and
heterogeneity grade of bandwidth of the network connecting
both layers respectively. The virtual machines in the fog tier
are linked via a wireless network connecting both layers
over the Internet.
The rate of data transmission (tfog

i j) between two fog virtual
machines (VMs) vfog

i and vfog
j follows uniform distribution

in the following interval:

tfog
i j ∼ U

[
τfog

(
1 −

T fog

2

)
, τfog

(
1 +

T fog

2

)]
(2)

International Journal of Computing and Digital Systems 5

Figure 1. IoT-Fog ecosystem

where, τfog and T fog depict the mean data transmission
rate among the fog nodes and heterogeneity grade of the
virtual fog network respectively. It should be noted that
the variable names use superscripts to distinguish between
the variables associated with each layer. The fog resource
queueing model (adopted from [4]) is illustrated in Fig. 2.

Task scheduling on the fog layer virtual machines (VMs)
is done by a central scheduler known as fog broker op-
erating on a specific computing node in the fog layer. It
collects user requests, controls resources on fog nodes, and
generates optimal schedules for input workflows.

B. Workload Model
This section describes the computational and

communication characteristics of the workflow along
with the approximate computations and error proliferation
model used in this work.

a. Computational and Communication Characteristics
The data produced by Internet of Things layer devices are
transmitted to the second layer where, real-time workflows
process it. A sample diagram of the workflow is shown in
Fig. 3.

A directed acyclic graph (DAG) G=(N,E),where, N
denotes the set of graph nodes and E denotes the set of
directed edges connecting the nodes, is used to describe
each workflow. Every node signifies a workflow task ni,
while, a directed edge ei j connecting these workflow tasks
ni and n j signifies the data that needs to be conveyed from
a predecessor task ni to a successor task n j. A workflow’s
constituent tasks are assumed to be non-preemptible since
preemption might result in a decrease in performance for
real-time tasks [6]. Every task ni is associated with a weight
wi that represents its computational volume i.e. the count

Figure 2. Fog resource queuing model

of clock cycles needed to process the task’s instructions.
It follows an exponential distribution around the mean k̄ .
The computational expense of the task ni on a VM vmv is
determined by:

Comp(ni, vmv) =
wi

fv
(3)

where, fv is the frequency at which VM vmv operates.
Every edge ei j from a task ni to task n j is associated with a
weight wi j that depicts its communication volume, i.e. the
amount of data (in GigaBytes) necessary to be transmitted
from task ni to n j .

It follows an exponential distribution around the mean
q̄. Data transfer from task ni (placed on VM vmp) to task
n j (placed on VM vmq), incurs an edge communication
expense which is defined as:

Comm((ni, vmp), (n j, vmq)) =
wi j

tfog
pq

(4)

where, tfog
pq depicts the rate of data transmission of the

virtual connection amongst the virtual machines (VMs)
vmp and vmq. Every job’s entry task needs input data
generated by the Internet of Things layer. An entry task ni’s
input data size di has mean d̄. The communication expense
experienced by input data transmission from the Internet of
Things layer devices to a task ni placed on a fog virtual
machine vmv is as follows:

Comm(ni, vmv) =
di

tIoT (5)

where, tIoT depicts the rate of data transmission across
the Internet of Things layer and fog layer. The path length
in the graph is determined by adding up the computational
expense of all the tasks and the communication expense
of all the edges on that path which includes the cost of
transferring preliminary input data to the entry task. The
critical path length (CPL) refers to the maximum path length

6 Rishika Mehta, et al.

Figure 3. Computational and Communication Characteristics of
Workflow

in a graph. Every real-time job has a fixed deadline, denoted
as D, by which the execution of all of the constituent tasks
should be finished. It is given by:

D = AT + RL (6)

where, AT denotes the workflow’s arrival time and RL
is the workflow’s relative deadline limit, which follows
uniform distribution within the interval [CPL, 2CPL].
Given the time-sensitive setting being studied, the deadline
of every workflow must be adhered to, or else its results
would go futile. Thus, in such a scenario, the job is
otherwise, regarded as lost.

b. Approximate Computations and Error Proliferation
Model
This section describes the approximate computations and
error proliferation model considered in this work. Every
workflow submitted to the fog orchestrator is bounded by
a deadline which must be satisfied for the results to be
meaningful. A job is regarded as lost if all of its constituent
tasks do not get completed by its deadline. To address this
issue, approximate computations can be employed which
trades off result precision for timeliness i.e. this method
allows a job to return results that are not precise but yet
acceptable in quality in case when its deadline cannot be
satisfied. This technique assumes workflow’s constituent
tasks to be monotone i.e. computational volume wi of every

constituent task ni comprises of two parts: a mandatory
portion mpi and an optional portion opi.

wi = mpi + opi (7)

where, 0 ≤ mpi ≤ wi
When the respective mandatory portion of a task has
completed its execution, then the constituent task is deemed
complete. Depending on the central scheduler’s decision,
the task can either finish the execution of the entire optional
portion, partial optional portion or it may omit its entire
optional portion. The outcome of a partly executed task ni is
inaccurate and thus, the task generates an output error. Since
the predecessor task’s outcome is utilized as input by its
successors, therefore, input error is present in the input data
of the successors. Additionally, there’s a possibility that the
child task’s incoming error is passed on to its outcome if it is
unable to rectify the error through additional computations,
and as a result, the task’s incoming error is passed on to
the task’s output which is governed by the task’s input error
proliferation factor. Therefore, the task ni’s output error is
computed as:

OEi =
δi

opi
+ ϕi × IEi (8)

where, δi is the unexecuted portion of the task’s optional
portion opi, whereas, ϕi is the task’s input error prolifer-
ation factor (IEPF). The value of ϕi is dictated by p (i.e.
proliferation probability of input error) which takes values
in the range [0,1]. For a task ni, the input error is taken to
be equivalent to the mean output error of its predecessors
as shown below:

IEi =

∑
n j∈Fi

OE j

|Fi|
(9)

where, Fi is the set of the predecessors n j corresponding
to successor ni. There is a direct impact of a task’s input
error on its execution time. To tackle the error impact and
generate a satisfactory end outcome, additional instructions
and therefore, clock cycles (computations) are needed.
As a result, the task’s mandatory portion is extended. In
particular, the mandatory portion extension of a task ni
because of its input error is given by:

mpei = mpi × IEi (10)

The task’s mandatory portion extension is summed with
its primary mandatory portion. It is crucial to note that the
task’s optional portion is not impacted by the incoming
error. The result precision with respect to task ni is given
by:

RPi = RPT + (1 − RPT)(1 − OEi) (11)

where, RPT depicts the the result precision threshold, below
which a task’s output becomes unacceptable. A task’s result
precision lies in the range [RPT, 1], i.e.:

RPT ≤ RPi ≤ 1 (12)

International Journal of Computing and Digital Systems 7

The average of the result precision of a workflow’s exit tasks
determines the workflow’s overall result precision, i.e.:

RP =
∑

ni∈Nexit
RPi

|Nexit|
(13)

where, Nexit denotes the set of workflow exit tasks. From
equations (8) and (11) it follows that if an input error
proliferates into a task’s output, the outcome of the task
will remain inaccurate even after the task’s entire extended
computational volume has been executed. Hence, the dis-
crepancy in the input of a task because of its incoming error
cannot always be recompensed by carrying out supplemen-
tary computations. Therefore, it is not always possible to
make up for a task’s input error discrepancy by doing more
computations. When there is no proliferation of incoming
error in the task’s outcome then result precision threshold
is determined by dividing the task’s mandatory portion by
its computational volume.

RPT =
mpi

wi
(14)

As per this imprecise computations and error proliferation
model, whenever the result of a constituent task of a
workflow is imprecise, the resulting error can spread beyond
just the directly connected child tasks ultimately impacting
the overall outcome of the workflow. The error proliferation
among the workflow tasks is quantified by the input error
proliferation index as shown below:

IEPI =
|Eerr| + |Nerr

exit|

|E| + |Nexit|
(15)

where, an edge set that propagate incoming error from
predecessor to its successor is represented by Eerr, Nerr

exit
depicts the set of exit tasks which yield outcome comprising
proliferated input error, E denotes the set of edges, while,
Nexit denotes the set of exit workflow tasks. Subsequently,
in the imprecise computations scenario, upon reaching the
deadline, the job is assumed to be completed if all the
remaining constituent tasks are exit tasks and all of them
have finished the execution of their respective mandatory
constituent tasks. Despite the job result being imprecise,
the result quality is still acceptable.

C. Energy Consumption Model
In this section, we compute the energy consumed by all

the VMs during both busy and idle times. The expected
energy consumption due to the tasks scheduled on VM vm j
is given as follows:

EECBusy
j =

∑
ni∈G:G∈E

(
alloci j × Comp(ni, vm j) × ECRateBusy

j

)
(16)

where, alloci j = 1, if task is scheduled on VM vm j (and
0 otherwise) and Comp(ni,vm j) is the computation expense
of task ni on vm j. It is important to compute the energy
consumption due to idle time slots that may not be utilized
for the execution of any task.

EECidle
j =

 vk∈V∑
ni∈G:G∈E

(
allocik × Comp(ni, vmk)

)
−

∑
ni∈G:G∈E

(
alloci j × Comp(ni, vm j)

)
] × ECRateidle

j

(17)

where,
∑vk∈V

ni∈G:G∈E
(
allocik × Comp(ni, vmk)

)
gives the total

computation expense of all tasks ni of the workflow G such
that G ∈ E, where, E depicts the ensemble of completed
workflows. Therefore, the total energy consumption of a
VM vm j is given as:

EEC j = EECBusy
j + EECIdle

j (18)

Thus, the total energy consumption of all VMs is given by
the following equation:

TEC =
∑
v j∈V

EEC j (19)

4. The ProposedModel
To schedule workflow tasks submitted at the fog orches-

trator, a dynamic two-state strategy is implemented which
entails a Task Prioritization state and a Computational
Resource Selection state. To determine the sequence of ex-
ecution of the workflow tasks, the algorithm first computes
their ranks. Subsequently, a suitable fog VM is chosen for
each task based on the most commonly employed MCDM
technique - TOPSIS.
As illustrated in Fig. 4, the proposed policy ranks the work-
flows based on the Earliest Deadline First strategy followed
by the calculation of the Expected Processing Time of work-
flow tasks to decide their scheduling order. The execution
sequence of the tasks has a significant effect on how well
the scheduling method works. Next, the proposed policy
utilizes the most commonly employed MCDM technique
TOPSIS in order to determine the processor on which the
task will be scheduled for execution. The proposed policy
considers Expected Finish Time, Computational Resource
Computation Expense, Energy Consumption as well as best
fit policy for occupancy of available idle slots (which may
appear in the processor’s schedule) while selecting the
appropriate processor for task scheduling in order to meet
the QoS criteria.

A. Task Prioritization
The task prioritization phase involves assigning prior-

ities to the constituent tasks in order to determine their
sequence of execution, mostly to optimize scheduling dur-
ing the computational resource selection phase. To achieve
this, the workflows in the fog scheduler’s global waiting
queue are assigned ranks based on their end-to-end deadline
D. The workflow with the least deadline is assigned the
topmost priority. Workflows are therefore ranked using the
Earliest Deadline First (EDF) criteria. Then, we assign
priorities to the workflow’s constituent tasks on the basis
of their Expected Processing Times (EPT), which is the

8 Rishika Mehta, et al.

critical metric that signifies the time by which the task is
expected to be completed.
The Expected Processing Time of a constituent task ni is
computed as follows:

EPT(ni) = max
np∈Fi

[
EPT(np) + ECE(ni) + DTE(np, ni)

]
(20)

where, ECE(ni) is the Average Expected Computation Ex-
pense of task (ni) and is equal to wi/ favg and DTE(np, ni)
is the time taken to convey data from predecessor task np

to ni. Its value is equal to wpi/t
f og
avg . If ni is an entry task

(i.e. ni ∈ Nentry) then its Expected Processing Time is equal
to the Data Transfer Expense from the IoT layer which is
computed as follows:

EPT(ni) = ECE(ni) + DTE(ni) (21)

where, DTE(ni) is the time taken to convey initial IoT
data to the fog layer and is equal to di/tIoT.

B. Computational Resource Selection
The task ni with the highest rank is chosen for execution

from the global queue that can only start to execute when
all the predecessors of ni have finished execution and the
target execution node has acquired the necessary input
data of ni. MCDM approaches prove to be very useful
when VM instances need to be ordered based on multiple
metrics. Several Multi Criteria Decision Making techniques
including AHP (Analytical Hierarchy Process), ANP (An-
alytic Network Process), TOPSIS, etc. can be utilized to
associate ranking with the alternatives (i.e. VMs). Because
TOPSIS produces hypothetical best and worst results, it is
superior than other MCDM techniques [25]. It then ranks
the available alternatives based on their proximity to the
best and the worst results. Additionally, TOPSIS is sim-
plistic, easily understandable, and the most commonly used
MCDM technique [28]. Of paramount importance is the
low computational complexity of TOPSIS, which facilitates
the designing of placement policy with lower computational
complexity required for the fog computing environment. To
rank the various available VMs, multiple metrics such as
Expected Finish Time, Processor Computation expense and
Energy Consumption are taken into consideration. To look
for a suitable idle slot within the schedule of the same VM,
the difference between available slot size and effective slot
occupancy is considered. The fog scheduler selects a ready
task (ni) from the global queue as per the task ranking and
assigns the task to the virtual machine (VM) that can reduce
the finish time as well as increase the Energy Savings of the
computational instances. The steps performed for suitable
VM selection are as follows:
1. The Estimated Energy Consumption due to the allocation
of task ni on VM vmk is computed as follows:

EECik = Comp(ni, vmk) × ECRateBusy
k (22)

The Expected Finish Time of task ni on vmk is calculated
as follows:

EFT(ni, vmk) = max {tdata avail(ni, vmk), tvm avail(ni, vmk)}
+Comp(ni, vmk)

(23)

where, the term tdata avail(ni, vmk) signifies the time at
which the ready task’s input data will reach vmk. If ni
belongs to a set of workflow entry tasks then the term
tdata avail(ni, vmk) depicts its preliminary input which needs
to be transmitted to the fog tier from the IoT tier. In rest
of the scenarios, the term tdata avail(ni, vmk) depicts the data
produced by predecessors of ni. Considering the state of the
local queue of vmk at the moment, the term tvm avail(ni, vmk)
gives an estimate of the time when vmk will be available to
process the task ni.
To ascertain the value of the term tvm avail(ni, vmk) , follow-
ing steps are performed:
1. Based on the priority of task ni, it is first scheduled at
the potential position in the local queue of vmk.
2. Next, we determine whether a schedule hole exists in
the processor vmk’s schedule to check if task ni can be
scheduled before its potential position given that task ni’s
required input data is already available at vmk and task nh
scheduled at the front of vmk’s local queue is still waiting
for its requisite input data from other processing nodes or
the IoT data sources. It is to be noted that a schedule hole
appears in the processor’s schedule when vmk is idle i.e. no
task is being executed at that moment.

sh = tdata avail(nh, vmk) − tpresent (24)

3. If a schedule hole exists then we attempt to place the
ready task ni in the schedule hole by doing the following:
3.1 First, we find out the schedule holes where, the complete
task can fit i.e.

sh ≥ wi/ fk (25)

where, wi depicts the task ni’s computational volume and
fk shows the vmk ’s operating frequency. In case multiple
schedule holes exist, then ni is inserted in the schedule
hole where, the difference between available schedule hole
size and task ni ’s computational expense is the least.

3.2 In case complete task ni cannot be accommodated
in the identified schedule holes then, we try to place a
segment of the ready task ni by using partial computations.
Particularly, we assess whether the minimum plausible
fraction of the task ni can fit into the schedule hole i.e.

sh ≥ (wi − δ
max
i)/ fk (26)

Subsequently, we determine whether the aggregate average
extra computation time imposed due to the mandatory
portion extension of task ni’s immediate successor tasks
is equal to or lesser than the saved execution time from
the unexecuted optional portion of ready task ni which is

International Journal of Computing and Digital Systems 9

Figure 4. Flowchart of Proposed Methodology

computed as shown below:

δmax
i

fk
≥

∑
n j∈Ci

∑
vml∈V

(mp j × IE′j)

fl
·

1
|V |

(27)

In addition, we also check whether the aggregate average
extra energy consumption levied due to the execution of
the mandatory portion extension of task ni’s child tasks
is equal to or lesser than the energy consumption from
the unexecuted optional portion of ready task ni as shown
below:

δmax
i

fk
× ECRateBusy

k ≥
∑
n j∈Ci

∑
vml∈V

(mp × IE′j)

fl
×

1
|V |
× ECRateBusy

l

(28)

IE′j denotes the probable input error corresponding to
the child task n j which is computed as:

IE′j = IE j +

(
δmax

i
opi
+ ϕi × IEi

)
|F j|

(29)

where, IE j signifies child task n j’s current input error
while F j represents the set of n j’s predecessor tasks. Only
a portion of the ready task ni can be introduced in the
schedule hole if conditions (26), (27), and (28) are met. In
this scenario, the portion of the task that would be processed
corresponds to its computational volume w′i that would fit

in the schedule hole i.e.

w′i = sh × fk (30)

Among the identified schedule holes, the one with the
maximum capacity (schedule hole size) is chosen to sched-
ule the ready task ni so that its maximum portion can
be executed in an attempt to increase the result precision
of task ni and reduce its output error. After getting the
Expected Finish Time and Expected Energy Consumption
values for all VMs, alternative matrix (A) is obtained with
Expected Finish Time, Expected Energy Consumption, and
Processor Computation expense as VM dependent metrics.
Then, Topsis is applied on this alternative matrix (A). The
steps followed for Topsis are described below:
Step 1: The matrix A is normalized using Eq. (31) where,
a′i j is the element of the normalized matrix A’.

a′i j =
ai j√∑n
i=1 a2

i j

(31)

Step 2: To represent the significance, every metric is as-
signed a weight. Every column of normalized matrix A’ is
multiplied with its corresponding weight to get Weighted
normalized matrix B.

bi j = w j × a′i j (32)

where, i = {1, 2, . . . , n}
∑k

j=1 w j = 1, w j represents jth VM
dependent metric’s weight.
In the proposed work, every metric is allocated a fixed equal
weight in the fog environment as all the VMs need to be
examined based on the same standard. Since three metrics
are taken into consideration, therefore, w1 = w2 = w3=0.33.
Step 3: Using the formulas given in Eqs. (33) and (34),
Positive Ideal Solution (PIS+) and Negative Ideal Solution
(NIS−), are obtained from the matrix.

PIS+ = [b+1 , . . . , b
+
k] (33)

NIS− = [b−1 , . . . , b
−
k] (34)

This step attempts to determine the best and the worst value
of every metric. For each metric in B, PIS+ depicts the
vector corresponding to the best value while NIS− depicts
the vector corresponding to the worst value.
Step 4: Calculate the Euclidean distance of every VM from
the PIS and NIS i.e. S +i and S −i respectively.

S +i =

√√√ k∑
j=1

(b+j − bi j)2 (35)

S −i =

√√√ k∑
j=1

(b−j − bi j)2 (36)

10 Rishika Mehta, et al.

Step 5: For each VM, determine its relative closeness, or
rating of VM (RV i) from the ideal solution using S +i and
S −i .

RVi =
S −i

S +i + S −i
(37)

The set of VMs can now be ranked in descending order
based on the rating of each VM i.e. RV i and the task is
assigned to the fog VM having maximum value of RV i.

5. The Performance Study
The proposed work is contrasted with a baseline-Topsis

based multi-objective optimization strategy (i.e. BMO)
which utilizes schedule holes according to best fit policy
only when complete task can occupy a schedule hole and
a state-of-the-art work [4] for the placement of workflows
by utilizing approximate computations and Topsis. The
shortcomings of [4] have been recognized and mentioned
in Section 1. This section demonstrates the efficacy of
the presented strategy in relation to Baseline policy and
the state-of-the-art technique [4]. For comparison, the
presented scheduling technique, Baseline technique and the
state-of-the-art technique [4] are observed under varying
values of RPT (result precision thresholds) and p (i.e.
proliferation probabilities of input error). In particular,
we examined the efficacy of the presented strategy
over Baseline policy and state-of-the-art work [4] for
each potential pair of the following values of these two
attributes, RPT = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
and p = {0, 0.35, 0.7, 1}.

A. Performance Metrics
The following metrics are used to assess the efficiency

of the proposed approach:
1. SLA Violation Ratio : It is calculated as the ratio of
the count of jobs that were unable to accomplish their
execution within their deadline - and therefore, were
discarded - to the count of total jobs that reached at the
fog scheduler.
2. WA-RP: It is the weighted average of the result precision
of completed jobs where, the result precision of every
completed job was weighted by the count of its exit tasks.
3. AV-RT: It is the average response time of the completed
jobs.
4. AP-TSG: It is the average percentage of constituent
tasks of completed jobs that were assigned to the schedule
holes for their execution by the fog scheduler.
5. AV-IEPI: It is the average input error proliferation index
of completed jobs.
6. P-PCG: It is the percentage of completed jobs which
on reaching the deadline had at least one partly completed
exit task, therefore, generated imprecise yet acceptable
quality results.
7. TEC: It gives the total amount of energy consumed by
the fog resources in executing the completed jobs during
the observed simulation duration.

B. Simulation Experiments
In order to assess the performance of the proposed

policy, iFogSim [26] is utilized to simulate the Fog en-
vironment. For our simulation experiment, we considered
|N | = 10 physical nodes in the fog environment offering
|V | = 64. heterogeneous virtual machines in total. The
values of workload and other simulation parameters used in
the proposed model are shown in Table 1. The independent
replications strategy was used in simulation tests, conduct-
ing 30 runs for each set of input parameters with unique
random number seeds. For each mean value, a confidence
interval of 95% was calculated, with all half-widths being
less than 5% of their respective means. of their respective
means. To evaluate statistical significance, 95% confidence
intervals were also computed for the differences between
every pair of means. Since none of these intervals included
0, the differences were deemed statistically significant.

C. Performance Evaluation
In this section, the proposed policy Topsis based Par-

tial Computations technique (i.e. TPC), is compared to a
Topsis based baseline multi-objective optimization policy
(i.e. BMO) and a state-of-the-art Heuristic based Partial
Computations technique (i.e. HPC) [4]. In Fig. 5, TPC,
BMO and HPC are compared under various RPT (Result
Precision Threshold) and p (error proliferation) values on
the basis of the SLA Violation Ratio parameter.

It is evident from Fig. 5 that for all values of p
and RPT, the proposed approach TPC outperformed the
baseline policy (BMO) and the state-of-the-art technique
(HPC). There was a significant decline of 9.93% and
36.5% compared to HPC and BMO respectively in the
SLA Violation ratio as depicted in Table 2. Since, BMO
did not utilize approximate computations, therefore, it could
utilize schedule holes only when entire task could occupy
a schedule hole. In comparison to HPC, this decrease was
more significant, particularly, for low result precision values
because the proposed methodology incorporated the best fit
policy due to which at lower RPTs it could place more
tasks in the schedule holes than state of the art policy HPC
as evident from Fig.6. Hence, scarcer workflows lost their
deadline in TPC as compared to HPC and BMO.
The variation in schedule hole utilization between the two
scheduling methods TPC and HPC became less noticeable
for higher result precision thresholds. Overall, still, TPC
approach made use of more schedule holes than HPC. This
is shown in Fig. 6. Further, according to the simulation
findings shown in Fig. 5, increase in the p values resulted in
a greater number of jobs failing to meet their deadline. This
pattern can also be observed in case of increase in rpt values.
However, the proposed technique, TPC, met more deadlines
as compared to HPC and BMO, even in the instances when
input error proliferation remained constant throughout the
constituent tasks of the job (i.e. p=1). This demonstrates that
TPC was less susceptible to the proliferation of input errors
across the workflow tasks. The proposed policy (TPC) could
place a lesser number of tasks in schedule holes for larger

International Journal of Computing and Digital Systems 11

TABLE I. Simulation input metrics

IoT Layer
Mean data transfer rate of IoT-fog network τIoT = 50 Mbps

Heterogeneity grade of IoT-fog network T IoT = 0.5
Fog Layer

Count of physical nodes |N | = 10
Count of fog VMs |V | = 64

Operational frequency of fog VM vCPU f = {2.5 – 3.8}GHz
Mean data transfer rate in fog network τ f og = 1 Gbps
Heterogeneity degree of fog resources T f og = 0.5

Fog VM Energy Consumption Rate during idle time ECRateIdle = [25 − 40]
Fog VM Energy Consumption Rate during task execution ECRateBusy = [105–130]

Workload Characteristics
Number of DAGs [40 − 100]

Minimum count of tasks in a workflow Wmin = 10
Maximum count of tasks in a workflow Wmax = 32

Mean input data size for entry task d̄ = 1 GB
Communication to Computation Ratio 2

Mean computational volume of constituent task k̄ = 8.93 × 1011 clock cycles
Mean communication volume of edge q̄ = 44.74 GB

Result precision threshold RPT = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
Proliferation probability of Input error p = {0, 0.35, 0.7, 1}

Figure 5. SLA Violation ratio percentage under different values
of input error proliferation probability (p) and Result Precision
threshold (RPT)

p values, as can be seen in fig. 6. This is because there was
a greater likelihood of an increase in the average additional
processing time and average additional energy consumption
due to the proliferation of input error which is why fewer
constituent tasks satisfied the requirements in (26), (27) and
(28) during the selection of the potential VM.

Nevertheless, TPC used more schedule gaps than both
HPC and BMO scheduling methodologies even for the high-
est p value (i.e. p=1). This was because it took advantage of
the best fit idle slot utilization which let the fog orchestrator
to insert more partial tasks in the holes as opposed to HPC’s
first fit policy whereas, BMO could not take place partial
tasks in the available schedule holes due to which it could
utilize lesser number of schedule holes than TPC.

Figure 7 shows a comparison of all orchestration tech-
niques in terms of the weighted average result precision
parameter. For lower RPTs and higher p values, the re-

Figure 6. Average percentage of tasks occupying schedule holes vs.
different values of input error proliferation probability (p) and Result
Precision threshold (RPT)

sult precision of the accomplished workflows was lower
(although over the mandatory level) for both HPC and TPC.
However, the proposed policy could yield a better weighted
average result precision due to the use of best fit strategy.
However, as RPT increased, the difference between the two
policies became less noticeable. This was caused by the fact
that the optional portion of the tasks got smaller at higher
RPT values and as a result, the percentage of the optional
portion that the proposed policy could discard was also less.
It can also be observed from the simulation findings in
Figs. 5 and 7 that TPC traded-off lesser value of result
precision for timeliness in comparison to HPC. In contrast
to the decline in missed deadlines, the decline in job result
precision was of less significance for TPC than baseline
policy BMO and state of the art technique HPC.

The performance of the scheduling methods TPC, HPC
and BMO concerning the average response time is displayed
in fig. 8. Due to better utilization of available schedule

12 Rishika Mehta, et al.

TABLE II. SLA Violation Ratio Percentage Decrease

RPT TPC vs HPC TPC vs BMO
Values p=0 p=0.35 p=0.7 p=1 Average p=0 p=0.35 p=0.7 p=1 Average

0.1 22.79 20.05 150 14.05 18.02 79.05 77.97 75.19 73.21 76.36
0.2 19.69 16.94 21.08 17.11 18.70 71.09 68.31 68.00 64.14 67.89
0.3 13.05 17.25 14.86 12.97 14.54 59.03 57.51 54.03 48.96 54.88
0.4 13.32 14.19 11.51 14.38 13.35 45.97 44.34 42.29 43.92 44.13
0.5 6.27 7.81 11.06 10.09 8.81 34.05 33.15 32.35 31.86 32.85
0.6 8.66 6.89 6.06 6.11 6.93 24.88 21.99 23.45 23.14 23.37
0.7 6.55 5.32 4.21 2.98 4.77 21.61 19.67 17.76 18.66 19.42
0.8 2.35 5.22 1.25 4.30 3.28 6.32 8.48 6.85 9.42 7.77
0.9 1.04 1.58 0.70 0.70 1.01 1.04 2.74 1.63 2.08 1.87

Overall Avg. 9.93 Overall Avg. 36.50

Figure 7. Weighted average result precision vs. different values
of input error proliferation probability (p) and Result Precision
threshold (RPT)

holes in TPC, there was a significant difference between
response time values among the two policies TPC and HPC
for lower RPTs. However, for moderate to higher RPT
values, the execution time of the workflows and therefore,
the response time of the workflows got increased. This
was because lesser tasks could be positioned in schedule
holes when the RPT values were raised (Fig.6). It can also
be observed that TPC strategy resulted in a slight higher
value of response time than HPC policy for higher values
of result precision thresholds as the former incorporates
optimization of Energy consumption along with response
time minimization while the latter only aims at reduction
of response time.

Moreover, in a real-workload scenario, meeting deadline
is utmost important. This does not always imply decreasing
the response time of the workload [6]. Therefore, in contrast
to the state-of-the-art policy, the presented technique’s re-
duction in the SLA violation ratio is much more significant
than slight higher value of response time of the workflows
since the proposed policy also increases Energy Savings
significantly. Specifically, TPC increased Energy Savings
by 12.54% and 29.33% in comparison to HPC and BMO
respectively as shown in Fig 9. For lower result precision
thresholds, energy savings in TPC are higher compared to
HPC and BMO. This is attributed to the efficient utilization
of schedule holes in TPC due to employability of best fit
policy. Even for moderate to high values of RPT, when the

Figure 8. Average response time vs. different values of input error
proliferation probability (p) and Result Precision threshold (RPT)

Figure 9. Total Energy Consumption vs. different values of input
error proliferation probability (p) and Result Precision threshold
(RPT)

proportion of computational volume that could be discarded
got lesser, TPC was able to save significantly higher amount
of energy than HPC and BMO.

The percentage of partly completed workflows is dis-
played in Fig. 10. A workflow is said to be partly completed
when its exit tasks cannot accomplish their entire execution
prior to the workflow’s deadline. For lower RPT values,
because of the better utilization of schedule holes by the in-
between workflow tasks in the proposed policy, there was
a higher likelihood that their exit tasks would be finished
ahead of their deadline.

Due to this, when the RPT value was lower, the number
of partly executed workflows was lesser for the presented
technique. In contrast, when the RPT value was medium
to high, the percentage of partly completed workflows

International Journal of Computing and Digital Systems 13

Figure 10. Percentage of partly completed jobs vs. different values
of input error proliferation probability (p) and Result Precision
threshold (RPT)

Figure 11. Average input error proliferation index vs. different values
of input error proliferation probability (p) and Result Precision
threshold (RPT)

reduced. This was because, for higher RPT values, fewer
intermediate tasks could be inserted into schedule holes
(Fig.6) due to which the response time of the workflow
jobs increased (Fig.9).

When a workflow job reached its deadline, the probabil-
ity of its remaining unexecuted tasks being exclusively exit
tasks was very low. Even if all the remaining workflow tasks
belong to the set of exit tasks, it was less probable to satisfy
upper result precision standards set by upper RPT values.
As a result, not many workflows were partly completed and
therefore exceeded their deadline. However, the number of
partly completed workflows was higher in the case of TPC
than HPC which also confirms that the SLA Violation ratio
was lower in TPC (Fig. 5).

Fig. 11 shows the comparison of both scheduling strate-
gies with respect to the weighted average input error prolif-
eration index. The value of IEPI in the case of TPC is higher
because it utilized more schedule holes due to the utilization
of best fit strategy. However, with an increase in RPT values,
lesser tasks could be positioned in schedule holes which
resulted in a decrease in the input error proliferation index
for both HPC and TPC. Therefore, the difference between
IEPI values of TPC and HPC gets lesser with an increase
in RPT values.

6. Conclusion
In this work, we examined the orchestration of several

real-time IoT jobs in a heterogeneous fog computing in-
frastructure by leveraging approximate computations. The
impact of approximate computations has not been much
explored to achieve timeliness for real-time jobs in a fog
computing environment. None of the research works in fog
computing studied the effect of input error proliferation

on processing time and energy usage of computational
resources simultaneously. This study is essentially impor-
tant as many real-time systems such as lane detection
systems in autonomous vehicles, environmental indicator
monitoring systems, sleep pattern estimation in wearable
health monitoring system and so on employ approximate
computations and sacrifice high-definition accuracy for
faster and energy-efficient processing. Towards this end,
we proposed a multi-objective optimization approach that
aims at reducing workflow response time and the number
of deadline misses while simultaneously increasing the
energy savings. The proposed policy employed the most
commonly used MCDM technique Topsis to schedule the
workflow tasks on suitable fog computational resources.
To rank the VMs, different vm dependent metrics such
as Expected Finish Time, Processor Computation expense,
and Energy Consumption are considered. The best fit idle
slot utilization technique is employed to make effective
use of the available schedule holes. The simulation results
confirmed that the proposed policy outpaced the baseline
as well as state-of-the-art policy regarding the SLA vi-
olation ratio (i.e. deadline miss ratio) and overall result
precision. In addition, the proposed policy significantly
increased energy savings for a relatively insignificant rise
in response time. Explicitly, the proposed policy provided
an average SLA Violation ratio decrease of 9.93%, and
36.5% while simultaneously increasing Energy Savings by
12.54% and 29.33% compared to the state-of-the-art policy
and baseline policy respectively. Moreover, the experimental
findings demonstrate that the proposed technique was more
resistant to the impact of error proliferation athwart the
workflow tasks. In future, we aim at integrating proposed
technique into a four-tier environment where, mist as well
as cloud resources will be available to process varied types
of workloads. Additionally, we intend to apply the proposed
methodology in real-world environment, utilising statistical
and profiling methods to analyse the communication and
computing aspects of the workload. In addition, error pro-
liferation impact on workflow processing cost can also be
observed.

7. References

[1] Soori, Mohsen, Behrooz Arezoo, and Roza Dastres. ”Internet of
things for smart factories in industry 4.0, a review.” Internet of Things
and Cyber-Physical Systems 3 (2023): 192-204.

[2] Nabavi, S., Wen, L., Gill, S. S., and Xu, M. ”Seagull optimization
algorithm based multi-objective VM placement in edge-cloud data
centers.” Internet of Things and Cyber-Physical Systems 3 (2023):
28-36.

[3] Elazhary, H. ”Internet of Things (IoT), mobile cloud, cloudlet, mobile
IoT, IoT cloud, fog, mobile edge, and edge emerging computing
paradigms: Disambiguation and research directions.” Journal of Net-
work and Computer Applications 128 (2019): 105-140.

[4] Stavrinides, G. L., and Karatza, H. D. ”Orchestrating real-time
IoT workflows in a fog computing environment utilizing partial
computations with end-to-end error proliferation.” Cluster Computing
24(4) (2021): 3629-3650.

14 Rishika Mehta, et al.

[5] Wang, N., Varghese, B., Matthaiou, M., and Nikolopoulos, D. S.
”ENORM: A framework for edge node resource management.” IEEE
Transactions on Services Computing 13(6) (2017): 1086-1099.

[6] Buttazzo, G. C. Hard real-time computing systems: predictable
scheduling algorithms and applications (Vol. 24). Springer Science
& Business Media, 2011.

[7] Wainer, G., and Moallemi, M. ”Designing real-time systems using
imprecise discrete-event system specifications.” Software: Practice
and Experience, 50(8) (2020): 1327-1344.

[8] Chen, Y., and Tsai, W. T. Service-oriented computing and web
software integration: from principles to development. Kendall/Hunt
Publishing Co., 2014.

[9] Lin, K. J., Natarajan, S., and Liu, J. W. S. ”Imprecise results: Utilizing
partial computations in real-time systems.” No. NAS 1.26: 180561,
1987.

[10] Feng, W. C., and Liu, J. S. ”Algorithms for scheduling real-time
tasks with input error and end-to-end deadlines.” IEEE Transactions
on Software Engineering, 23(2) (1997): 93-106.

[11] Ravindran, R. C., Krishna, C. M., Koren, I., and Koren, Z. ”Schedul-
ing imprecise task graphs for real-time applications.” International
Journal of Embedded Systems, 6(1) (2014): 73-85.

[12] Esmaili, A., Nazemi, M., and Pedram, M. ”Energy-aware schedul-
ing of task graphs with imprecise computations and end-to-end
deadlines.” ACM Transactions on Design Automation of Electronic
Systems (TODAES), 25(1) (2019): 1-21.

[13] Stavrinides, G. L., and Karatza, H. D. ”Scheduling multiple task
graphs with end-to-end deadlines in distributed real-time systems
utilizing imprecise computations.” Journal of Systems and Software,
83(6) (2010): 1004-1014.

[14] Stavrinides, G. L., and Karatza, H. D. ”The impact of input
error on the scheduling of task graphs with imprecise computations
in heterogeneous distributed real-time systems.” In Analytical and
Stochastic Modeling Techniques and Applications: 18th International
Conference, ASMTA 2011, Venice, Italy, June 20-22, 2011. Proceed-
ings 18, Springer Berlin Heidelberg, (2011): 273-287.

[15] Stavrinides, G. L., and Karatza, H. D. ”Scheduling real-time DAGs
in heterogeneous clusters by combining imprecise computations and
bin packing techniques for the exploitation of schedule holes.” Future
Generation Computer Systems, 28(7) (2012): 977-988.

[16] Stavrinides, G. L., and Karatza, H. D. ”A cost-effective and QoS-
aware approach to scheduling real-time workflow applications in PaaS
and SaaS clouds.” In 2015 3rd International Conference on Future
Internet of Things and Cloud, 231-239, IEEE, August 2015.

[17] Stavrinides, G. L., and Karatza, H. D. ”Energy-aware scheduling of
real-time workflow applications in clouds utilizing DVFS and approx-
imate computations.” In 2018 IEEE 6th International Conference on
Future Internet of Things and Cloud (FiCloud), 33-40, IEEE, August
2018.

[18] Stavrinides, G. L., and Karatza, H. D. ”An energy-efficient, QoS-
aware and cost-effective scheduling approach for real-time workflow
applications in cloud computing systems utilizing DVFS and approx-
imate computations.” Future Generation Computer Systems, 96, 216-
226, 2019.

[19] Cao, K., Zhou, J., Xu, G., Wei, T., and Hu, S. ”Exploring renewable-
adaptive computation offloading for hierarchical QoS optimization in
fog computing.” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(10), 2095-2108, 2019.

[20] Mora Mora, H., Gil, D., Colom López, J. F., and Signes Pont,
M. T. ”Flexible framework for real-time embedded systems based
on mobile cloud computing paradigm.” Mobile Information Systems,
2015.

[21] Mo, L., and Kritikakou, A. ”Mapping imprecise computation tasks
on cyber-physical systems.” Peer-to-Peer Networking and Applica-
tions, 12(6), 1726-1740, 2019.

[22] Bittencourt, L., Immich, R., Sakellariou, R., Fonseca, N., Madeira,
E., Curado, M., Villas, L., da Silva, L., Lee, C., and Rana, O.
”The Internet of Things, fog, and cloud continuum: Integration and
challenges.” Internet of Things, 3:134-155, 2018.

[23] Mahmud, R., Ramamohanarao, K., and Buyya, R. ”Latency-aware
application module management for fog computing environments.”
ACM Transactions on Internet Technology (TOIT), 19(1), 1-21, 2018.

[24] Mehta, R., Sahni, J., and Khanna, K. ”Task scheduling for improved
response time of latency sensitive applications in fog integrated cloud
environment.” Multimedia Tools and Applications, 82(21), 32305-
32328, 2023.

[25] Behzadian, M., Otaghsara, S. K., Yazdani, M., and Ignatius, J. ”A
state of the-art survey of TOPSIS applications.” Expert Systems with
Applications, 39(17), 13051-13069, 2012.

[26] Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., and Buyya, R.
”iFogSim: A toolkit for modeling and simulation of resource manage-
ment techniques in the Internet of Things, Edge and Fog computing
environments.” Software: Practice and Experience, 47(9), 1275-1296,
2017.

[27] Mehta, R., Sahni, J., and Khanna, K. ”Internet of Things: Vision, ap-
plications, and challenges.” Procedia Computer Science, 132, 1263-
1269, 2018.

[28] Ijaz, S., Munir, E. U., Ahmad, S. G., Rafique, M. M., and Rana, O. F.
”Energy-makespan optimization of workflow scheduling in fog–cloud
computing.” Computing, 103, 2033-2059, 2021.

[29] Yao, S., Hao, Y., Zhao, Y., Shao, H., Liu, D., Liu, S., and
Abdelzaher, T. ”Scheduling real-time deep learning services as im-
precise computations.” In 2020 IEEE 26th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 1-10, IEEE, August 2020.

[30] Zhang, Y. W., & Chen, R. K. (2023). Energy-efficient scheduling
of imprecise mixed-criticality real-time tasks based on genetic algo-
rithm. Journal of Systems Architecture, 143, 102980.

[31] Niu, L., & Zhu, D. (2021). Fixed-priority scheduling for reliable
and energy-aware (m, k)-deadlines enforcement with standby-sparing.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 41(3), 502-515.

[32] Zhang, Y. W., Ma, J. P., Zheng, H., & Gu, Z. (2023). Criticality-
aware EDF scheduling for constrained-deadline imprecise mixed-
criticality systems. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems.

[33] Jiang, Z., Dai, X., & Audsley, N. (2021, December). HIART-

International Journal of Computing and Digital Systems 15

MCS: High resilience and approximated computing architecture for
imprecise mixed-criticality systems. In 2021 IEEE Real-Time Systems
Symposium (RTSS) (pp. 290-303). IEEE.

[34] Li, X., Mo, L., Kritikakou, A., & Sentieys, O. (2022).
Approximation-Aware Task Deployment on Heterogeneous Multicore
Platforms With DVFS. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 42(7), 2108-2121.

[35] Chakraborty, S., Saha, S., Själander, M., & Mcdonald-Maier, K.
(2021). Prepare: Power-Aware Approximate Real-time Task Schedul-
ing for Energy-Adaptive QoS Maximization. ACM Transactions on
Embedded Computing Systems (TECS), 20(5s), 1-25.

	INTRODUCTION
	Related work
	The system and workload model
	System Model
	Workload Model
	Energy Consumption Model

	The Proposed Model
	Task Prioritization
	Computational Resource Selection

	The Performance Study
	Performance Metrics
	Simulation Experiments
	Performance Evaluation

	Conclusion
	References
	
	

