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Abstract: Distributed Denial of Service (DDoS) attack is a huge threat to network security, and the detection of such an attack is
one of the major tasks in cybersecurity. In this work, we are going to investigate various machine learning-based classification models
for the efficient detection of DDoS attacks. Herein, we compare those models based on the performance of Random Forest, Support
Vector Machine, Gradient Boosting, and Deep Learning regarding the accuracy, confusion matrices, F1 scores, and training times and
compare the results with the proposed method to reduce time while maintaining the same level of performance. The experimental
results demonstrate that the four models exhibit similar performance, with only slight differences observed in training time and
a low incidence of classification errors. The results indicate that the Random Forest model is optimal for situations necessitating
rapid training, whereas Gradient Boosting offers enhanced accuracy for applications where precision is paramount. This research
contributes to the growing body of literature on machine learning in cybersecurity by critically and analytically comparing these
different classification models for the detection of DDoS. The results of this study highlight the importance of choosing the appropriate
model according to specific application demands that will consequently increase the efficiency of cybersecurity defense systems against
new and emerging threats. In future work, building on these models in combination with some high-performance ensemble strategies
would enhance the capability and reliability of DDoS detection systems to a higher degree and combine dimensionality reduction
methods like Principal Component Analysis (PCA) and autoencoders (AE) to make real-time applications run faster and on a larger scale.
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1. Introduction
The Internet infrastructure has become, in this mod-

ern day and age, an integral driver of global economic
growth and technological progress. Private and governmen-
tal organizations depend increasingly on most day-to-day
functions involving communication, data management, and
online business operations that use the facilities provided by
the internet. As these dependencies began to emerge and
grow, cybersecurity concerns obtained critical importance
for the protection of information and digital infrastructures
from cyber threats. Of these, distributed denial of service
attacks pose serious threats by attempting to overwhelm
networks or servers with a flood of spurious requests with
the objective of crippling services and causing substantial
damage [1]. The DDoS attacks can be characterized as an
intentional and malicious attempt to render the network
resources unavailable to the intended users by crippling
the system with an abnormal volume of traffic. The attacks
started with the growth of the internet during the 1990s and
have taken increasingly sophisticated and damaging forms

with advancements in technologies. They come in a lot of
different shapes, including volume-based and application-
layer attacks, which clog up all the bandwidth and target
specific server applications, respectively [2]. These attacks
result in huge financial impacts on organizations through
operational disruptions, loss of revenue, and brand reputa-
tion. In this respect, research from Nexusguard shows that in
2021 a record 16.17% increase in DDoS attack volume was
claimed compared to previous years [3]. Several incidents
in recent years have been assessed to result in considerable
financial losses, totaling hundreds of millions of dollars,
while also compromising sensitive information belonging
to customers and corporations [4], [5], [6]. The incidents
underscore the increasing complexity of digital threats and
the necessity for enhanced detection systems to reduce their
effects. Poor reactions to these threats may cause damage
not only to the technical infrastructure of a company but
also to its performance and customers’ confidence.

History is replete with instances illustrating the detri-
mental consequences of large-scale DDoS assaults. In 2016,
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a significant occurrence transpired when the ”Mirai” botnet
used internet-connected devices, including cameras and
routers, to execute a substantial assault. This assault inter-
rupted the operations of several important websites, such
as ”Netflix” and ”Twitter,” across substantial areas of the
United States, revealing serious weaknesses in the infras-
tructure of various famous businesses [7]. While attackers’
methods have gradually become more sophisticated, devel-
oping complicated ways of trying to outsmart the mecha-
nisms of defense. Similarly, attacks with sophisticated bots
and automated botnets brought added intensity. The second
aspect was the emergence of multi-vector attacks, further
increasing their difficulty of detection and mitigation [2].
As these threats develop, conventional defensive methods
like firewalls and intrusion detection systems are inadequate
for effective management [8]. The most feasible approach
theoretically is using artificial intelligence (AI) and machine
learning (ML) to enhance cybersecurity. These technologies
facilitate the development of systems that can learn from
historical data, identify behavioral patterns in network traf-
fic, and detect malicious activities with high precision and
speed. [4]. AI and ML provide a transformational strategy
for network security against DDoS assaults by address-
ing new risks and minimizing reaction times via ongoing
learning [7], [9]. This section outlines the methods used in
this work to evaluate the performance of machine learning
models for DDoS attack detection. This would be through
a set of stages involved in the methodology: data collection
and analysis, application of machine learning models, and
performance metrics. One of the most recognized datasets
in cybersecurity, CICIDS2017 [10], was applied for this
research to conduct quite a careful methodology. Such a
dataset provides different attack scenarios in a real network
environment. Hence, it is ideal for comprehensive and
accurate model performance assessment. In particular, much
attention has been focused on identifying DDoS attacks
among other types of network traffic, including malicious
and benign activities. It is, of course, perceived that the
quality of the given data is the single most important
factor dictating the success of a machine learning model;
therefore, data preparation was an important task. This
study’s network traffic dataset contains examples of both
regular and DDoS assault patterns. We obtained the records
from credible and publicly accessible sources, such as the
CICIDS and CAIDA databases. These datasets provide
authentic, high-caliber traffic logs that are crucial for ef-
ficient model training and assessment [11]. First, intense
preprocessing was carried out to ensure reliability and high-
quality data from the information obtained. Sample random
selection was an appropriate fraction of the entire dataset,
so as not to get computationally heavy while avoiding loss
in integrity and accuracy in the results [12]. The text labels
were converted into numerical labels, and every missing
or anomalous value was treated with care not to have
any negative impact on model performance. After that,
standardization techniques were applied to the data in order
to bring all the features to a common scale that was well-
suited for model training [13]. We then partition the data

into training and testing subsets, allocating a designated
percentage for testing to ensure the fairness of the evaluated
models. This technique included Four primary models:
random forest, support vector machine, deep learning, and
gradient boosting. Therefore, each model is selected by its
characteristics and proven effectiveness in handling such
complex classification tasks, especially with respect to dis-
tinguishing between benign and DDoS traffic. The Random
Forest bases its accuracy on the ensemble method of using
decision trees; Support Vector Machine, on maximizing the
margin between classes of data; and Gradient Boosting,
on iteratively improving its performance while focusing on
instances of misclassification. A comprehensive set of mea-
sures evaluated the models’ performance, including accu-
racy, precision, recall, F1 score, and the Cohen Kappa index,
which indicates the concordance between anticipated and
actual labels. We also assessed the models’ discriminatory
efficacy using the ROC curve and its corresponding AUC.
Finally, record time was taken with regard to training each
model in order to ascertain computational efficiency, pro-
viding further insight with respect to trade-offs that existed
among all these models with respect to their accuracy and
speed. This has been represented in terms of model accuracy
comparison bar charts, F1 score, and training time. The
main view of the in-depth view of the classification errors
was done using confusion matrices, while ROC curves
present a comparison chart of each model’s ability with
regard to distinguishing classes. From these analyses, some
valuable insights were obtained concerning the strengths
and weaknesses of each model in detecting DDoS attacks
within network traffic. These final results are very de-
tailed, with all visualizations and results stored in reusable
formats, should later analysis be necessary or warranted.
Such completeness gives a wide frictional grasp of the
effectiveness of machine learning models in DDoS attack
detection and therefore forms a basis for further research in
enhancements within cybersecurity [14]. It targets several
objectives, which are very significant to further advance
and enhance the DDoS attack detection approaches using
machine learning models. The work aims to effectively and
comprehensively compare three well-known and common
machine learning models, namely random forest, support
vector machine, and gradient boosting. It systematically
investigates the performance of these models in terms of
their accuracy, speed, and efficiency in classifying network
traffic into either legitimate or malicious. It’s essentially
supposed to determine which among these models is best
capable of handling the challenges presented by today’s
network environments, where fluctuations have become fast
and continuous. The research also seeks to evaluate how
much these models can adapt to the nature of ever-changing
DDoS attack patterns. This is because, with continuous vari-
ation in the strategizing of cyber-attacks, flexibility in the
adaptation capability of the detection models is necessary
towards learning and real-time adjustment. This objective is
of essence because it makes necessary the high demand for
intrusion detection systems that can respond quickly to on-
going changes in the methods of attacks. The study further
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seeks to address one of the most important challenges of
intrusion detection systems—which is the reduction of false
positives that might eventually distract a security team and
deplete precious resources. A careful performance analysis
is needed in the research to discover the model that offers
the best trade-off between detection with high accuracy and
reduction of false positives to serve in the improvement
of efficiency in security systems and reducing overall costs
associated with unnecessary alerts. Based on the findings,
the study makes several recommendations for improvement
of the existing methodologies of intrusion detection sys-
tems. These are target-oriented toward their improvement in
terms of accuracy, efficiency, and practicality and therefore
could easily be deployed in various network environments
for large-scale implementation. Hence, the contributions
from the present study are very significant from both the
scientific and practical aspects. It has woven theoretical
analysis together with practical applications using real-
world data collected from actual network environments.
The reliability of such data makes the findings much more
applicable to real-world conditions. Thus, designers are
better equipped in their employment of more knowledge-
influential and highly effective attack detection systems to
work out increasing security challenges that organizations
are facing in day-to-day life.

Research scope and paper structure
This study aims to evaluate different machine learning

models for detecting DDoS attacks by looking at their
accuracy, training time, and how well they classify attacks.
This research specifically:

• Evaluates the efficacy of Random Forest, Support
Vector Machine (SVM), Gradient Boosting, and Deep
Learning models.

• Evaluates their categorization accuracy, precision, re-
call, and training durations.

• Investigates the effects of dimensionality reduction
methods, including Principal Component Analysis
(PCA) and Autoencoders (AE), to improve efficiency.

• Provides valuable insights into the trade-offs between
model complexity and computing efficiency, assisting
academics and practitioners in selecting the optimal
model for practical implementation.

This paper differs from the previous ones, as the study
focuses on practical applications of machine learning mod-
els by using data collected from real-world, complex net-
work environments. In so doing, not only will the findings
be more accurate, but they will also be highly applicable to
the cybersecurity community for commercial and govern-
ment organizations looking to implement robust defensive
strategies.

The structure of the paper, with the view to achieve these
research objectives, proceeds as follows:

Section 2: Literature review The section reviews past
research done regarding the detection of DDoS attacks
using machine learning methods, noting their successes and
challenges yet to be overcome.

Section 3: Methodology This section will elaborate on
explaining the steps of data preparation, explain experi-
mental settings and training methods for the three models,
and further develop performance measures and evaluation
metrics.

Section 4: Results and analysis This section covers
the results of the experiments. It gives a deeper analysis of
the performance of each model to the results after using the
proposed method, bringing into view different strengths and
weaknesses of each about specific criteria.

Section 5: Conclusion and future recommendations
We conclude by summarizing the main insights and go
ahead to make recommendations for future work; this in-
cludes leaving scope for the improvement of the model and
exploring other methods that could further strengthen cyber
defense. This research work is designed to deliver useful
insight to cybersecurity decision-makers and researchers.
We hope this will contribute to developing efficient and
dependable intrusion detection systems, thereby enhancing
resilience in view of threats posed in ever-more complex
and shifting sands in the digital world.

2. Literature review
Machine learning has become a crucial technique for

identifying and alleviating distributed denial of service
(DDoS) assaults specifically. These attacks have developed
into a persistent threat, becoming increasingly complex as
technology advances. Researchers have investigated several
machine learning techniques to enhance the precision and
efficacy of intrusion detection systems, with each research
contributing distinct insights to the endeavor. Recent years
have thoroughly examined numerous varieties of DDoS
assaults and strategies for their mitigation. Nguyen et al.
[4] conducted an extensive investigation of DDoS attack
classifications and offered sophisticated mitigation measures
using real-time machine learning methodologies. Their re-
search underscores the significance of adaptive and intel-
ligent systems in combating the dynamic nature of DDoS
assaults. They motivated the fact that due to the attackers’
tactics, which are constantly changing, the problem is
very serious. Traditional solutions such as firewalls and
signature-based intrusion detection are insufficient against
sophisticated attacks. They proposed adaptive models that
can learn from historical attack patterns; they adapt to a
new threat landscape in runtime. That laid the bedrock
for machine learning applications in cybersecurity, meaning
that the defense mechanisms need to be flexible and adap-
tive. Lee et al. [15] made another notable contribution by
examining the efficacy of support vector machines (SVM)
and ensemble models like Random Forest for the catego-
rization of network traffic. Their research indicated that
while SVM is proficient in binary classification tasks, it has
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difficulties with big, high-dimensional datasets, especially
those exhibiting significant variability in traffic patterns.
Conversely, Random Forest demonstrated enhanced perfor-
mance for accuracy and resilience, particularly in managing
skewed data. Their result supported the current consensus
that, generally, ensemble methods provide better general-
ization and are more resistant to noise and anomalies in
network traffic data. Olufunsho et al. [16] have provided
a comprehensive review of machine learning techniques in
the context of ensemble learning while projecting DDoS
threats. Their study has been related to models such as
ARIMA and ETS but discussed the advantages of using
ensemble classifiers such as gradient boosting and random
forest for real-time detection. The catch—as the authors
concluded—is that in these models, the trade-offs between
accuracy and computational efficiency remain crucial for
taking up large-scale implementation. Another development
and successful research direction has been the increasing
sophistication of botnet-driven DDoS attacks. An investiga-
tion of the Mirai botnet assault, as examined by Alazab
et al. [7], demonstrated that the exploitation of hacked
IoT devices may substantially amplify the magnitude and
effect of DDoS attacks. This research emphasizes the risks
present in IoT ecosystems and shows the need for strong
security measures to alleviate these threats. He discussed
the role played by machine learning in understanding botnet
behavior and developing proactive defense strategies. The
study relied on the underlying continuous learning models,
which could update their detection parameters as new IoT-
based threats emerge. The work showed that IoT-specific
features should be embedded in machine learning if there
is any need to enhance the detection capability of those
models. Haner and Knake[2] performed the quantitative
analysis of the different approaches in the focused fight
against botnets. They discussed and compared the indi-
vidual, technical, isolationist, and multilateral approaches.
They sustained that the effective defense could be reached
only with a multi-layer approach supported by machine
learning. The study highlighted significant weaknesses of
classic anomaly detection systems and presented the idea of
machine learning methods as a means for increasing quality
in the identification of threats and reducing the response
times. This would affirm their research, providing evidence
that collaboration and sharing of information among orga-
nizations is an essential way of developing strong defenses.
The literature also places significant emphasis on feature
selection and data preprocessing. Recent studies, such as
those by Zhang et al. [17], have highlighted the critical role
of input feature quality in determining model performance.
In their work, they discuss various feature engineering
techniques, including Principal Component Analysis (PCA)
and feature scaling, which have been shown to enhance the
performance of machine learning models such as gradient
boosting and random forest.

They have reiterated that in order to make a model
generalizable over different network environments, their
respective training should be held on different datasets.

Most recently, several works studied deep learning usage
in the detection of DDoS. In particular, deep learning
models like CNN and RNN further improve the capacity
for manipulating complex traffic patterns, though their com-
putation cost is significantly higher. Kim et al. [3] showed
that although the deep learning-based models achieve high
detection accuracy, this drains very high processing power,
which is often impractical in real-time applications. After
the study, it was realized that hybrid models—strokes that
utilize the best of traditional machine learning algorithms
with deep learning techniques—are required. Ensemble
models have continued to remain popular, as they are able
to jointly provide the best results of several algorithms.
For instance, Lee [18] has identified several advantages of
XGBoost or AdaBoost models performing DDoS detection.
Generally, such models had a good false-positive rate with
high recall—which is very important for not misclassifying
legitimate traffic as malicious. The authors also pointed out
that the interpretability of those models is an important
factor since security professionals need to understand the
process of decision-making behind each classification. A
particularly successful method is real-time detection, which
has garnered much attention in recent years. Alqahtani et al.
[19] developed an adaptive DDoS detection system using
real-time machine learning methodologies. Their technol-
ogy can identify harmful traffic patterns in milliseconds
by using dynamic feature selection and real-time analytics,
ensuring rapid threat detection without sacrificing accuracy.
This study is especially pertinent in contexts where minimal
latency is essential, such as financial networks and health-
care systems. Nguyen et al. [20] present another novelty in
presenting a new deep learning-based intrusion detection
system further optimized for high-speed network DDoS
attack detection. They showed that combining deep neural
networks with feature extraction techniques dramatically
improves the rate of detection with a minimum ratio of false
alarm cases. Further, Alqahtani et al. [21] have presented a
systematic review that featured an adaptive learning mecha-
nism wherein the proposed model leverages both historical
and real-time data to adapt dynamically to changing attack
patterns. It is also in the area of research for diminishing
false positivity. With false alarms, security teams are over-
whelmed, hence resource wastage. Efficient DDoS detection
models should have a balance between sensitivity and
specificity, according to studies by the Ponemon Institute
[3]. The economic implication of cybersecurity breaches,
therefore, including DDoS, is very significant, while the
cost of service outages, for large enterprises, reportedly
amounts to hundreds of thousands of dollars per hour. The
models in that line, which minimize false positives while
retaining high rates in terms of detection, create a bigger
value for the industry. Therefore, the literature review on
machine learning indicates that there is consensus on the
efficiency of machine learning in the detection of DDoS.
On the other hand, studies also acknowledge looming
challenges—for instance, developing models that ought to
change with DDoS attacks. In this respect, integration with
feature selection techniques, the development of hybrid
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models, and the updating of algorithms from time to time
will be very important to keep pace with new threats. The
current work builds on these foundations, carrying out a
comparative examination of the Random Forest, SVM, and
Gradient Boosting models by providing insights into their
practical applications and limitations.

Recent years have seen substantial progress in DDoS
attack detection research, particularly with the advent of
sophisticated machine learning methodologies, including
federated learning, edge computing, and enhancements in
adversarial robustness. Federated learning has emerged as a
viable method to improve privacy and security in detection
systems by facilitating model training on decentralized data
without requiring centralized data aggregation.

A comprehensive analysis carried out by [22] focused on
the method’s promise, demonstrating notable enhancements
in model performance in varied settings. A recent investiga-
tion presented a framework for immediate DDoS detection
that combines edge computing with federated learning. This
method minimizes dependence on centralized systems and
improves data confidentiality.

However, edge computing has emerged as a practical
way for modern networks to deal with data volume and
latency issues. The study presented in [23] focused on
improving the efficiency of detection systems through the
use of edge computing, suggesting the implementation
of machine learning models on edge devices to enhance
response times. Over the past several years, this approach
has shown to improve detection performance and reduce
operational cost. In [24], a work showed a system based
on Federation Learning and Edge Computing to detect
DDoS in real-time, highlighting the great potential that the
integration of those technologies showed for improving the
efficiency of cybersecurity systems.

The growing complexity of DDoS attacks necessitates
that detection systems incorporate adversarial robustness to
ensure their reliability in design. [8] focused on enhancing
the strength of machine learning models in the face of
adversarial attacks by implementing innovative methods to
bolster model resistance against efforts to mislead detection
systems. Also, [25] added another study that focused on
adversarial training methods aiming to improve the model
performance on the attack surface (to lower the error rates)
and contribute towards making detection systems more ro-
bust and therefore contributing towards improved detection
results. These developments indicate that enhancing model
robustification may be vital in defending against evolving
cybersecurity threats.

3. Methodology
The following section is dedicated to a detailed de-

scription of the methodology applied in the work for the
evaluation of the efficiency of various machine learning
models in DDoS-attack detection shown in Algorithm 1.
It includes data collection and analysis, an application

of different machine learning models, and performance
evaluation with the help of appropriate metrics.

The experimentation was done using the CICIDS2017
dataset, which is considered one of the most recognized
datasets in the field of cybersecurity. This dataset provides
a realistic network environment with a variety of attack
scenarios, thus making it appropriate for the most compre-
hensive and influential model performance evaluation. The
attention has been focused on finding out the DDoS attacks
among several other types of network traffic, including
various malicious and benign activities.

The preparation of data is a very critical step, as most
of the data quality will reflect the success of the machine
learning model. The dataset applied in this work consists
of network traffic records representative of many patterns in
DDoS attacks, added to normal traffic. These were obtained
from publicly available and reputed sources such as the
CICIDS and CAIDA datasets, which offer realistic and
high-quality traffic logs for effective model training and
evaluation.

We evaluated the machine learning models’ performance
using the following metrics:

1. Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Table I illustrates the confusion matrix, where:

• TP: True Positives

• TN: True Negatives

• FP: False Positives

• FN: False Negatives

2. Precision:

Precision =
TP

TP + FP
(2)

3. Recall (Sensitivity):

Recall =
TP

TP + FN
(3)

4. F1 Score:

F1 Score = 2 ×
Precision × Recall
Precision + Recall

(4)

5. Cohen’s Kappa Index:

κ =
po − pe

1 − pe
(5)

where:
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• po: Observed agreement

• pe: Agreement expected by chance

Confusion Matrix
Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

TABLE I. Confusion Matrix

Preprocessing of the data was done with great care to
make sure that the data would be qualitative and reliable. A
random sample of a fraction representative of the original
dataset was chosen to reduce the computational overhead
without losing the integrity and accuracy of the results.
Textual labels were changed into numerical values, and
missing or anomalous values were treated with due care
to avoid adverse impacts on model performance. Then,
standardization techniques were performed to normalize the
data into features of equal magnitude, making them more
suitable for model training. The dataset had previously been
divided into training and testing subsets, with a portion
allotted for the latter, which would allow a fair evaluation of
the models. Random Forest, Support Vector Machine, Deep
Learning, and Gradient Boosting were four central models
explored within the methodology. Each model was chosen
for specific unique characteristics that it had, as well as
their overall proven efficiency in handling such complex
classifications, such as those in distinguishing between
benign and DDoS traffic. The Random Forest gets good
performance by combining a large ensemble of decision
trees. The support vector machine, on the other hand, pro-
vides high accuracy by maximizing the margin between data
classes. Finally, gradient boosting generates incremental
performance through the enhancement of its prediction by
focusing on previously misclassified instances. Performance
metrics included accuracy, precision, recall, F1 score, and
Cohen Kappa index, which was the metric of agreement
between predicted and actual labels. The ROC curve and
AUC were used to assess the discriminatory power of these
models. Besides these metrics, the time it took for each
model to train was checked with the view of establishing
computational efficiency, hence allowing a view on the
trade-offs between accuracy and speed. The results have
been visually presented with model accuracy, F1 score, and
training time comparative bar charts. Confusion matrices
were used to give the details on classification errors, while
the ROC-AUC curve came in handy, showing the different
abilities of each model to handle class discrimination.
Such analyses provided very important insights into the
strengths and weaknesses of each model when it comes
to DDoS attack detection within the network traffic. The
final results were detailed, recording all visualizations and
results produced in a readable format for eventual further
analysis. In this way, a holistic approach was performed to
strongly validate the applied machine learning models for
the detection of DDoS attacks, enabling room for future

Algorithm 1 Deep Learning and Traditional Model Classi-
fication Analysis

1: Input: Dataset D = {X, y} where X is the feature set and
y are the labels; Models M = {MDL,M1,M2,M3} where
MDL is the deep learning model (e.g., Neural Network)
and M1,M2,M3 are traditional models (e.g., Random
Forest, SVM, Gradient Boosting)

2: Output: Classification metrics R =
{Accuracy, Precision,Recall, F1, AUC,Training Time}
for each model.

3: begin
4: Phase 1: Data Preparation
5: Load dataset D.
6: Preprocess labels y using label encoding
7: Split X and y into training and testing sets

(Xtrain, Xtest, ytrain, ytest)
8: Handle missing values in X and standardize Xtrain and

Xtest using StandardScaler
9: Phase 2: Deep learning model training and evalua-

tion
10: Initialize and define the deep learning model MDL
11: Compile MDL with Adam optimizer and binary cross-

entropy loss
12: Train MDL on (Xtrain, ytrain) and measure training time
13: Predict labels ypred on Xtest using MDL.
14: Calculate evaluation metrics for MDL.
15: Phase 3: Traditional model Training and Evaluation

16: for each traditional model Mi in M1,M2,M3 do
17: Initialize training timer
18: Fit Mi on (Xtrain, ytrain)
19: Compute training time
20: Predict labels ypred on Xtest using Mi
21: Compute probabilistic output yprob for positive class

in Xtest
22: Calculate evaluation metrics for Mi.
23: end for
24: Phase 4: Performance comparison and visualization

25: Generate confusion matrix and ROC curve for each
model

26: Plot comparison graphs for accuracy, F1 score, and
training time for all models

27: end

research and improvements in cybersecurity.

Data pre-processing
This section examines the strategies used to process the

data utilized in the different categorization models. These
steps illustrate how to prepare the data to ensure the best
performance of the models and their optimal use as shown
in the Block Diagram of Proposed System figure 1.

1) Data cleaning
The original data contains many attributes that may be

irrelevant or contain inappropriate values. Initially, we ex-
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clude characteristics that are irrelevant or non-contributory
to categorization, including those with undefined labels like
“Unnamed,” as well as columns such as “Flow ID,” “Source
IP,” “Destination IP,” “Source Port,” “Destination Port,”
“Timestamp,” “Flow Bytes,” and “Flow Packets.” Upon
eliminating these superfluous columns, we retain just the
pertinent properties that aid in the assault detection process.
We also processed empty values and undefined values (such
as values containing NaN or infinity) and replaced them
with the average of the other values to ensure continuity
of the calculations and that these values do not affect the
accuracy of the models.

2) Label encoding
The models we use require values to be numeric only,

so we had to convert the categorical labels to numeric
values. The column containing the label, which includes the
different categories (such as “BENIGN” and “DDoS”), was
encoded using numeric encoding. We used LabelEncoder
to convert these categories to numeric values that the
model can handle, allowing the models to understand the
relationships between patterns and multiple attacks.

3) Data normalization
The CICIDS2017 dataset includes characteristics ex-

hibiting significant fluctuation between their lowest and
maximum values, such as ”Flow Duration,” ”Flow IAT
Std,” ”Flow IAT Max,” and ”Bwd IAT Min.” To overcome
the problem of variation in values and ensure improved
performance, we implemented data normalization using
StandardScaler. Normalization reduces the impact of
large variations between different features, which helps
improve model accuracy and training speed as the values
are converted to a new standard range suitable for modeling
operations.

During the Data Normalization stage, feature values
are scaled to a predefined range (typically between 0 and
1, or -1 and 1). This helps to mitigate the influence of
extreme values and simplifies the model training process.
To normalize a dataset using Min-Max Scaling, use the
following formula:

Zi =
Xi − Xmin

Xmax − Xmin

where Xmax is the feature’s maximum value and Xmin is
the feature’s minimum value.

After using this technique, all numbers will be between
0 and 1, making the data more consistent and limiting the
impact of extremely high or low results.

Autoencoder and feature extraction
This part employs our suggested autoencoder as an

unsupervised learning model for feature extraction. An
autoencoder comprises an input layer, an output layer, and
many hidden layers, exhibiting a symmetrical layout. The

Figure 1. Block Diagram of Proposed System.

output layer in this design comprises an equivalent number
of neurons as the input layer. Nonetheless, the concealed
layers, especially the compression layer, have a reduced
quantity of neurons. The core layer contains the compressed
representation of the input data, referred to as the latent
space, which is a low-dimensional variant of the original
features.

1) Encoding
In the encoding phase, each input sample x (an m-

dimensional vector, x ∈ Rm) is transformed into the bot-
tleneck representation h as follows:

h = f1(W1x + b1)

where W1 is the weight matrix, b1 is the bias, and f1 is an
activation function.
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2) Decoding
In the decoding step, the bottleneck layer h is mapped

back to a reconstruction of x using:

x̂ = f2(W2h + b2)

where f2 is the decoder’s activation function, W2 the weight
matrix, b2 the bias, and x̂ the reconstructed sample.

3) Loss function
The reconstruction error is minimized by calculating the

Mean Squared Error (MSE) loss:

L(x, x̂) =
1
n

n∑
i=1

(xi − x̂i)2

where n is the number of training samples.

4) Feature extraction
Equations (1), (2), and (3) illustrate the functioning of

a single-layer autoencoder (AE). The size of the bottleneck
feature embedding h depends on the number of neurons
in the bottleneck layer k (typically, k < m). Through
backpropagation, AE minimizes the difference between x
and x̂, finding optimal values for the weight matrices W1
and W2, and biases b1 and b2. The final layer with the fewest
neurons is used as the feature vector for our classification
models.

PCA (Principal component analysis)
Alongside AE, Principal Component Analysis (PCA)

is utilized for feature extraction through dimensionality
reduction. PCA converts the data into a new collection of
orthogonal components that optimize variance, facilitating
dimensionality reduction while maintaining critical infor-
mation.

The mathematical steps in PCA are as follows:

1. Data transformation

Z = X ·W

where Z is the reduced dataset, X is the original data, and
W is the matrix of principal components.

2. Variance calculation
Each principal component retains a portion of the data’s

variance Var(Zi) = λi, where λi represents the eigenvalues
associated with each component Wi.

Deep learning for ddos attack detection
Deep learning is a cutting-edge subfield of AI that uses

artificial neural networks with several layers to decipher
complicated data sets and reveal previously unseen patterns.
This study uses deep learning to identify Distributed Denial
of Service (DDoS) attacks, namely by dividing network
traffic into two types: those that are harmless and those
that are malicious.

The encoding phase of the deep learning model in this
study, which compresses input data in a bottleneck layer,
and the decoding phase, which reassembles the original data
from the compressed version, are crucial components. In
order to minimize the loss function, the model uses the
backpropagation technique to update the parameters and
weights dynamically.

The Mean Squared Error (MSE), a loss function, mea-
sures how much the reconstructed data differs from the
original data. It may be stated mathematically as:

MSE =
1
n

n∑
i=1

(yi − ŷi)2

where n signifies the number of samples, yi represents
the original data, and ŷi is the reconstructed data.

The model performed exceptionally well, with a 99.92%
accuracy rate, thanks to the use of deep learning in this
study. It was also quite good at differentiating between
normal traffic and DDoS assaults, and it showed excellent
results when balancing sensitivity and accuracy. The con-
fusion matrix showed that the model got the classifications
right most of the time with very few mistakes.

4. Results and analysis
In this section, we present a performance analysis of

four machine learning models, namely Random Forest,
Support Vector Machine, Deep Learning, and Gradient
Boosting, to analyze the results after using the proposed
method to detect DDoS attacks. This includes accuracy,
confusion matrix, F1 score, and training time features that
will be compared for the four classifiers. This will identify
which model is the best and most efficient in distinguishing
attack types from benign data.

A. Accuracy comparison between models
A comparison of the accuracy performance of the mod-

els could be done, and the results can be seen in Figure 2.
From here, one notices that all models achieved consider-
able accuracy, with values very close to 100%. Due to this
excellent performance of the models, the classification of
data could be done correctly, meaning the optimization of
each model was appropriate against the given network data.
There were no significant differences among the three best
models in terms of accuracy, showing that all are capable of
continuing to make dependable and accurate classifications.

B. Confusion matrix for gradient boosting
We utilized the confusion matrix in Figure 3 to analyze

the Gradient Boosting model in depth. This figure illustrates
that the model accurately classified 19,542 benign instances
(BENIGN) and 25,594 DDoS attack cases, with only 11
misclassifications where DDoS attacks were incorrectly
identified as benign. However, the model incorrectly classi-
fied 2 benign cases as DDoS attacks. This indicates a very
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Figure 2. Model Accuracy Comparison

high accuracy in detecting attacks, with a minimal margin of
error. The outstanding performance of the Gradient Boost-
ing model makes it an excellent choice for applications
requiring high accuracy in distinguishing between the two
classes.

Figure 3. Confusion Matrix for Gradient Boosting

C. Confusion matrix for random forest
Figure 4 shows that the Random Forest model accu-

rately classified 19,543 benign instances (BENIGN) and
25,603 DDoS attack cases, with only 2 misclassifications
where DDoS attacks were incorrectly identified as benign.
However, the model incorrectly classified 1 benign case
as a DDoS attack. Despite these minor errors, the model
performs admirably in detecting DDoS attacks with high
accuracy, making it an excellent choice for scenarios that
require a balance between accuracy and training speed.

D. Confusion matrix for SVM
Figure 5 shows the confusion matrix for the SVM

model. It indicates that the model’s performance is slightly
lower compared to other models. The SVM correctly classi-
fied 19,500 benign instances (BENIGN) and 25,580 DDoS
attack cases. However, the model misclassified 44 benign
cases as DDoS attacks and 25 DDoS attacks as benign.
This suggests that the SVM struggles to balance sensitivity
and specificity effectively with the given dataset, resulting
in higher error rates.

Figure 4. Confusion Matrix for Random Forest

Figure 5. Confusion Matrix for Support Vector Machine

Figure 6. Confusion Matrix for Deep learning

E. Confusion matrix for deep learning
The confusion matrix of the deep learning model is

illustrated in Fig. 6. The matrix illustrates the model’s
classification efficacy, demonstrating a substantial quantity
of accurately classified instances. The model precisely iden-
tified 19,535 out of 25,585 DDoS events as BENIGN.The
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model erroneously classified 20 innocuous events as DDoS,
while 20 DDoS assaults were actually benign. The results
indicate that the deep learning model achieves an optimal
equilibrium between sensitivity and specificity, yielding
minimum false positives. This outcome demonstrates the
model’s ability to differentiate between authentic and fraud-
ulent occurrences, hence validating its reliability as a DDoS
detection instrument.

F. F1 Score comparison between models
Besides accuracy, the performance of the models with

respect to the F1 score was also investigated, since it
quantifies the balance between precision and recall. All the
models, including the newly added deep learning model,
had very high F1 scores close to 1.0, as can be seen from
Figure 7. This demonstrates a balanced performance of the
models, indicating their capacity to sustain high accuracy
and recall concurrently. These results accurately show that
the models can put data into groups without favoring one
group over another. This proves that each model works well
at finding assaults using a fair method.

Figure 7. Model F1 Score Comparison

G. ROC Curve comparison between models
In Figure 8, we can see the ROC curves shown for

each model, including the recently integrated deep learning
model. It is worth mentioning that all models show an AUC
of 1.0, which means they function flawlessly when it comes
to differentiating between normal instances and DDoS
assaults. The ROC curves precisely align with the top-
left edge, confirming the models’ effectiveness in reducing
false alarms and boosting true positive rates. These results
show that the models are capable of accurate and efficient
classification in the context of cyber threat detection.

H. Training time comparison between models
Figure 9 compares the training times of the models

before and after applying Principal Component Analysis
(PCA). It is evident that the use of PCA significantly
reduced the training time for all models. For instance, the
Random Forest model was the fastest to train, followed by
Gradient Boosting, while the SVM model took the longest.
This indicates that dimensionality reduction through PCA
can greatly enhance computational efficiency.

On the other hand, Figures 10 and 11 illustrate the
impact of PCA on model accuracy. In general, a slight

Figure 8. ROC Curve for Different Models

decrease in accuracy was observed after applying PCA,
which is expected due to the reduction in the number of
dimensions. However, this decrease in accuracy may be
acceptable if it is accompanied by a significant improvement
in training time.

Figure 9. Training Time Comparison

It follows from the above analysis that all the models
used gave very promising results in terms of accuracy and
F1 score, while there is slight variation in terms of training
time. In case of any requirement for time efficiency, the
Random Forest model will be the best option. The gradient
boosting model gives extraordinary accuracy with just a few
classification errors. The SVM model also shows slightly
higher rates of misclassifications but still gives relatively
promising results.

These models are capable, considering their high ac-
curacy and efficiencies in classifying data, of fulfilling
what is expected for a practical scenario that involves
precise differentiation between the two classes: BENIGN
and DDoS.
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Figure 10. Training Performance Before using AE and PCA.

Figure 11. Training Performance After using AE and PCA.

I. T-Test comparison between models
Finally, we provide a comparison of the statistical sig-

nificance of several ML models using t-test p-values. The
p-values for the deep learning, random forest, support vector
machine (SVM), and gradient boosting models are shown
in Figure 12, which represents the comparison.

Figure 12. T-Test Comparison Between Models.

An essential statistic in hypothesis testing, the p-value
shows the likelihood of getting the observed findings if
the null hypothesis were correct. Lower p-values show

greater statistical significance, indicating stronger evidence
against the null hypothesis. The deep learning model has the
most statistically significant result (lowest p-value) among
all the models evaluated, as illustrated in Figure 12. This
indicates a notable disparity in performance between the
deep learning model and the baseline or alternative models
being assessed.

The random forest model exhibits a lesser level of
statistical significance in comparison to deep learning, as
evidenced by its elevated p-value. A significantly higher p-
value in the support vector machine model suggests that
there is insufficient evidence to reject the null hypothesis.
The Gradient Boosting model exhibits the lowest statistical
significance, as evidenced by its highest p-value, and the
comparison concludes.

Pragmatic implementations and scalability issues
The quality of data preparation greatly influences the

effectiveness of machine learning models in detecting DDoS
attacks. Techniques like autoencoders (AEs) and principal
component analysis (PCA) have shown to be highly ef-
fective in enhancing data quality by reducing noise and
dimensionality, hence augmenting the performance of both
deep learning and traditional models. As an example, the
Random Forest model’s training time was reduced from
2.76 seconds to just over 1 second when PCA was applied
in the study, demonstrating how dimensionality reduction
effectively improved scalability. The shorter training time is
a clear benefit of preprocessing, particularly when working
with large datasets, and it has the potential to increase
efficiency and accuracy.

Despite these benefits, the challenge of scalability
emerges during actual application. As data becomes more
abundant, we anticipate a significant increase in the com-
putational resources needed for data preparation and model
training, particularly for complex models. Furthermore, the
identification of DDoS attacks requires quick processing;
however, any delays in preprocessing caused by an increase
in data volume may impact overall performance. The use
of more advanced preprocessing methods may challenge
existing security measures.

In response to these concerns, other remedies have been
suggested:

• Distributed computing: Platforms like Apache
Spark and Hadoop enable concurrent data processing
and drastically reduce training and inference dura-
tions, solving two of the key issues encountered by
modern techniques.

• Cloud computing: Cloud-based solutions offer scal-
able resources that can be adjusted according to
workload demands, providing adaptability as data
volumes increase.

• Edge computing:Edge computing minimizes latency
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TABLE II. Results Summary of Machine Learning Models for DDoS Detection

Model Accuracy Precision Recall F1 Score AUC-ROC Cohen Kappa Training Time (s)
Random Forest 0.9989 0.9987 0.9990 0.9989 1.0000 0.9977 2.7594
Support Vector Machine 0.9891 0.9902 0.9877 0.9889 0.9995 0.9778 23.3852
Gradient Boosting 0.9996 0.9995 0.9996 0.9995 1.0000 0.9991 16.9705
Deep Learning Model 0.9992 0.9991 0.9993 0.9992 1.0000 0.9988 49.5118

TABLE III. Results summary of machine learning models for DDoS detection using AE and PCA.

Model Accuracy Precision Recall F1 Score AUC-ROC Cohen Kappa Training Time (s)
Random Forest 0.9989 0.9987 0.9990 0.9989 1.0000 0.9977 1.0179
Support Vector Machine 0.9891 0.9902 0.9877 0.9889 0.9995 0.9778 10.3509
Gradient Boosting 0.9996 0.9995 0.9996 0.9995 1.0000 0.9991 15.4209
Deep Learning Model 0.9992 0.9991 0.9993 0.9992 1.0000 0.9988 48.7971

by processing data nearer to its source, hence enhanc-
ing detection and reaction times.

• Model optimization: Techniques like dimensionality
reduction or the use of efficient algorithms can signif-
icantly improve scalability and reduce computational
overhead.

These innovations ensure that DDoS detection models
can manage rapidly growing data loads, seamlessly integrate
with existing systems, and sustain efficient real-time perfor-
mance. This study applies these strategies to enhance the
development of scalable, realistic DDoS detection systems
suitable for deployment in various settings. By leveraging
distributed computing, cloud infrastructure, edge comput-
ing, and model optimization, organizations can build robust
and adaptive cybersecurity defenses capable of handling the
increasing complexity and volume of network traffic.

5. Conclusion and future recommendations
This paper provides a detailed review of several machine

learning models—Random Forest (RF), Support Vector
Machine (SVM), Gradient Boosting (GB), and a Deep
Learning (DL) model—for identifying Distributed Denial
of Service (DDoS) attacks. The results indicated uniformly
excellent accuracy across all models, each exhibiting dis-
tinct advantages. Random Forest is very efficient, making
it ideal for applications that need real-time detection. On
the other hand, Gradient Boosting provides the highest
accuracy, making it best for situations that require precise
results. Despite the Support Vector Machine’s commend-
able performance, it demonstrated elevated misclassification
rates relative to the other models. Table II shows a detailed
overview of the performance measures, including precision,
accuracy, recall, F1 score, AUC-ROC, Cohen’s kappa coef-
ficient, and training time. These measurements highlight the
models’ capacity to accurately distinguish between genuine
and malicious traffic.

The use of dimensionality reduction methods, includ-
ing autoencoders (AE) and principal component analysis
(PCA), significantly improved the models’ efficiency. These
methods substantially decreased training duration while

maintaining elevated performance standards. For instance,
Random Forest attained a training duration of a little
more than one second, but SVM and Gradient Boosting
models finished training in about ten and fifteen seconds,
respectively, as seen in Table III. This efficiency improve-
ment illustrates the efficacy of dimensionality reduction in
enhancing model performance for practical cybersecurity
applications.

A. Studies’ limitations
This study has certain restrictions even if its findings are

encouraging:

1) Model generalization: Though the models per-
formed well on the test dataset, their adaptability
to unforeseen, developing DDoS assault variations
is yet unknown. Investigating adversarial robustness
testing will help one assess the models’ resistance
against advanced evasion strategies.

2) Feature selection impact: Although PCA and
Autoencoders improved computing efficiency, their
influence on classification accuracy over several
datasets need more evaluation.

3) Scalability and deployment: The study concen-
trated on controlled experimental environment model
evaluation. High-speed data streams and changing
threat environments mean that applying these models
in real-world IDS might provide scaling issues.

B. Future areas of research
Future research should take into account these con-

straints and help machine learning-based DDoS detection
to be advanced.

1) Real-Time implementation: Evaluating these mod-
els under live network settings and deploying them
in real-time security systems.

2) Adversarial defense mechanism: Creating methods
to thwart adversarial assaults aiming at avoiding
detection models.

3) Federated learning for privacy-preserving detec-
tion: Examining distributed training approaches to



International Journal of Computing and Digital Systems 13

improve privacy and lower reliance on centralized
datasets.
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