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Abstract: Trademark image similarity detection plays a crucial role in protecting intellectual property. Traditional methods, particularly
those relying on Euclidean distance, often fail to capture subtle visual differences, leading to less accurate results. This study addresses
this issue by optimizing a Siamese Neural Network (SNN) with improved distance metrics. Specifically, Chi-Squared and Manhattan
distance methods are explored alongside the standard Euclidean approach to enhance trademark similarity detection. The objective is to
develop a more precise and reliable system for trademark analysis, essential for effective intellectual property enforcement. The research
utilizes a dataset of 255 trademark images across five classes, each with variations in color, texture, and design. To train and evaluate
the model, 2000 triplet samples—comprising an anchor image, a similar (positive) image, and a dissimilar (negative) image—were
generated, with 1600 pairs used for training and 400 for validation. The SNN model was built using the Xception CNN architecture
and trained with a triplet loss function to distinguish between similar and dissimilar images. Performance was assessed using accuracy,
precision, recall, and F1-score. Results demonstrated that the Chi-Squared distance metric outperformed the others, achieving an
accuracy of 0.96, compared to 0.92 for Euclidean and 0.74 for Manhattan. The Chi-Squared metric proved particularly effective in
capturing differences in color and texture, improving accuracy by 0.0435 over Euclidean. These findings highlight the significance of
selecting appropriate distance metrics for image similarity tasks, as they directly impact performance. This study advances traditional
trademark similarity detection by integrating optimized distance measures, making automated trademark protection more reliable. Future
research may explore hybrid metrics or novel approaches to further improve accuracy across diverse trademark datasets, strengthening
legal and business efforts in safeguarding intellectual property.
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1. INTRODUCTION
The protection of intellectual property, particularly

trademarks, has become increasingly significant [1]. Trade-
marks serve as a vital component for companies, ensuring
brand recognition and differentiation in a highly compet-
itive market [2]. The advantages of owning a trademark
are numerous. A registered trademark grants the owner
exclusive rights to use the mark, which can inhibit others
from using it without authorization [3]. This exclusivity
helps build brand loyalty and trust among consumers,
leading to increased business revenue [4], [5]. In addition,
trademarks can be valuable assets that appreciate over time
as the brand grows. They also offer legal protection against
infringement, enabling companies to pursue legal recourse
against unauthorized exploitation.

To be eligible for registration, a trademark must meet

certain criteria. It must be unique enough to differentiate
between the goods or services of different enterprises ([6]).
It should not be misleading, scandalous, or contrary to
public order and morality [7]. Additionally, it must not be
generic or merely descriptive without acquiring distinctive-
ness through use. Furthermore, the trademark should not
conflict with existing registered trademarks. As the volume
of digital content grows, so does the need for precise
and effective methods to identify and compare trademark
images, facilitating the enforcement of trademark rights and
preventing infringement.

Traditional methods for comparing trademark images
often rely on manual inspection, which is time-consuming
and prone to human error. To address these issues, several
studies have looked into using Siamese Neural Networks
for finding images based on their content and for detecting
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similarities between images.

For example, the study by Kumar and Madhavi used a
stacked Siamese neural network with a Euclidean distance
metric on the CIFAR-10 dataset, which showed superi-
ority over conventional CBIR methods with significant
improvements in accuracy. However, this study only ex-
plored one type of distance metric without comparing other
alternatives, [8]. Zhang and others created a Convolutional
Siamese Neural Network to tell the difference between CT
scan images of lung cancer and tuberculosis. They used
data from 719 patients and reached an accuracy of 94.7%, a
mean average precision (mAP) of 95.3%, and an area under
the curve score of 97.0% on their own dataset. Despite the
superior results, this study focused on medical data and
was limited in exploring distance metrics in non-medical
domains [9].

Devi et al. proposed a batch-normalized Siamese net-
work on the Fashion MNIST dataset with 30,000 images,
achieving 0.9191 accuracy, 0.9293 precision, and 0.9072
recall. The advantage of this study is the use of batch
normalization that improves training stability, but the disad-
vantage is the lack of comparison between distance metrics.
Meanwhile, Jalilian and Mateu used SNN with a dissimilar-
ity function to analyze spatial point patterns in 130 species,
showing superiority over intensity-based and K-function
methods. However, this approach was not applied in the
context of image matching, so its usefulness in trademark
detection remains untested. [10]. Meanwhile, Jalilian and
Mateu used SNN with a dissimilarity function to assess
the similarity of spatial point patterns in a dataset of 130
species. The results showed that this method was more
accurate than intensity-based and K-function techniques,
but this study was not applied to image matching, so its
relevance to the task of trademark similarity detection is
still limited [11].

In the specific task of trademark image similarity detec-
tion, previous studies by Suyahman et al. evaluated various
CNN architectures in a Siamese Network with Test-Time
Augmentation on a trademark dataset. The results showed
that VGG19 performed the best with 0.9882 accuracy, while
ResNet50 only achieved 0.5000 accuracy, indicating a sig-
nificant difference in the effectiveness of the architectures.
The advantage of this study is the use of various CNN
architectures to evaluate the performance of SNN, but the
disadvantage is the absence of a broader exploration of
distance metrics to improve accuracy and efficiency. [12].
However, this study has not explored various distance met-
rics in improving the accuracy and efficiency of trademark
image similarity detection.

Based on previous research, there is a gap that has not
been explored, namely the optimal comparison of various
distance metrics in the Siamese Neural Network architecture
for the task of detecting trademark image similarity. Most
previous studies have used only one or two types of

distance metrics without further analysis of their impact
on model accuracy and efficiency. Therefore, this study
contributes by exploring and optimizing various distance
metrics, including Chi-Squared distance, which is sensitive
to variations in the distribution of color and texture features,
and Manhattan distance, which is more robust to outliers
in high-dimensional space. With these optimizations, this
study aims to improve the accuracy and efficiency of trade-
mark image similarity detection, which ultimately supports
the trademark protection process more effectively.

2. METHODS
The method for detecting trademark similarity utilizing

a Siamese neural network is depicted in Fig. 1.

Figure 1. Research methods

The procedure initiates with the gathering and prepa-
ration of the initial dataset. The raw data is subject to
preprocessing steps to maintain quality and uniformity,
including steps like normalization and augmentation. Triplet
samples, which consist of an anchor, a positive, and a
negative image, are then selected from this preprocessed
data. Subsequently, the dataset is divided into training,
validation, and testing subsets. Evaluation is done using a
confusion matrix to calculate accuracy, precision, recall, and
F-1 Score. The research process is carried out using keras
in Jupyter Notebook.

In the training phase, the Siamese neural network under-
goes training using the training subset, where it is refined
to optimize a similarity metric through the use of triplet
loss. The validation subset serves to monitor the model’s
performance during training and to adjust hyperparameters
as necessary. Following the training phase, the network
is evaluated using the testing subset to gauge its overall



International Journal of Computing and Digital Systems 3

performance. In this study, the network employs triplet loss
alongside a specific distance metric, such as the chi-square
distance, to process the data.

Ultimately, the efficacy and accuracy of the model
in recognizing visual similarities between trademarks are
assessed. The aim of this approach is to forge an efficient
model capable of detecting trademark similarities utilizing
the methodology based on the Siamese neural network.

A. Dataset
The initial stage of this research involved collecting a

dataset of 255 trademark images taken from Google Im-
ages and registered in the Indonesian Intellectual Property
Database [13]. These images were carefully selected to
represent a wide range of trademark variations, divided into
five different classes, plus an additional set of 55 images
for testing. The selection criteria for these trademarks
were based on variations in design, color, and shape, as
well as real-world relevance in trademark registration and
infringement cases.

Specifically, the selected trademarks exhibit significant
variation within their classes, with some brands display-
ing visual similarities despite being registered as different
entities. These similarities often arise from shared design
elements, color schemes, or usage across different media,
making them challenging for traditional similarity detection
methods. Details of the trademark classes and the amount
of data used can be seen in Table I.

TABLE I. Dataset overview

Tardemark Training & Validation Testing
Miniso 40 11
Uniqlo 40 11
Grab 40 11
Gojek 40 11

Circle CI 40 11
Total 200 55

Within each class, the dataset includes one anchor
image, 20 positive images that are visually similar to
the anchor, and 20 negative images that are significantly
different. Positive images were selected to reflect subtle
variations in color, texture, or design, while negative images
were selected to represent trademarks that are strikingly
different.

This structure is designed to simulate real-world sce-
narios where trademarks may appear similar but are legally
distinct, or where subtle visual differences are critical to
distinguishing between brands. For convenient access and
integration with Google Colab, all images are stored in
Google Drive, with each image stored in a folder defined
by its respective class. This organization facilitates efficient
data handling and processing during the training and eval-
uation phases of this study. By combining trademarks with
high variability and visual similarity, this dataset provides a

solid foundation for evaluating the effectiveness of various
distance metrics in capturing subtle differences, which are
critical for accurate trademark similarity detection. Fig. 2.
illustrates samples of the trademark images used in the
study.

Figure 2. Trademark image

B. Data Preprocessing
Pre-processing measures were implemented to purify

and prepare the data for subsequent examination. This
included converting all images to the PNG format to en-
sure lossless compression and consistent quality across the
dataset. The images, which were in RGB color format, were
then resized to a uniform dimension of 128x128 pixels
to standardize the input size for the neural network. This
resizing step guarantees uniformity in image dimensions,
simplifying processing efforts and ensuring compatibility
with the model’s architecture. Additionally, the pixel val-
ues of the images were normalized to a scale of [0, 1]
by dividing each pixel value by 255, which aligns with
the neural network’s input requirements. Additionally, the
normalization step adjusts the pixel values to a scale that
is most conducive to neural network functionality, thereby
improving the model’s efficiency and expediting its conver-
gence rate [14].

C. Triplet Sampling
During the Triplet Sampling step, the data was arranged

into groups of three images known as triplets [15]. The
dataset initially consisted of 5 distinct trademark classes,
with each class containing 40 variations of the same trade-
mark. These variations included differences in color, texture,
shape, and design, reflecting real-world scenarios where
trademarks may appear similar but are legally distinct.

To create the triplets, the images were randomly sampled
to ensure diversity and robustness in the training process.
Each triplet consisted of an anchor image, a positive image,
and a negative image. The anchor image was a randomly
selected image from one of the 5 trademark classes. The
positive image was another image from the same class as
the anchor, representing a variation of the same trademark.
The negative image was an image from a different class,
representing a distinctly different trademark. The formation
process involved constructing all possible combinations of
these positive and negative images, resulting in a total of
400 unique triplet pairs for each trademark category. The
results of triplet sampling can be seen in Table II.

With 5 trademark classes, this amounted to a total
of 2000 triplet pairs for the entire dataset, which were
used for training and validation. This random sampling
approach ensured that the model was exposed to a wide
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TABLE II. Triplet sampling overview

Taremark Training & Validation Testing
Miniso 400 110
Uniqlo 400 110
Grab 400 110
Gojek 400 110

Circle CI 400 110
Total 2000 550

range of visual similarities and differences, enhancing its
ability to generalize across various trademark designs. By
systematically organizing the data into triplets, this method-
ology enriched the training dataset, thereby bolstering the
neural network’s ability to accurately identify similarities
and differences among trademarks [16].

D. Data Splitting
The dataset consists of 2000 triplet pairs, which were

strategically split into training and validation subsets with
a proportion of 80:20, respectively. This division resulted
in 1600 triplet pairs allocated for training and 400 triplet
pairs reserved for validation. This distribution is crucial for
the model’s development, as the training subset enables
the model to learn and adapt to data patterns effectively.
Meanwhile, the validation subset plays a critical role in
controlling overfitting by providing a separate data pool to
monitor and evaluate the model’s performance continuously
during training. This careful partitioning ensures compre-
hensive training while rigorously assessing the model’s
ability to generalize to new data. For testing, a separate
set of 55 images was used, distinct from the 400 triplet
pairs allocated for training and validation. These testing
images were not included in the triplet formation process
and were reserved exclusively for evaluating the model’s
performance after training. Adjustments based on validation
results enhance the accuracy and general reliability of the
model, leading to a robust and broadly applicable machine
learning model [17].

E. Model Training
In the training phase, a Siamese Neural Network (SNN)

employs a triplet loss function that leverages distance
metrics such as Chi-Squared, Manhattan, and Euclidean.
A Siamese Neural Network is a specialized neural network
architecture designed to learn similarity metrics between
pairs or groups of inputs [18]. Unlike traditional neural
networks that process individual inputs for classification
or regression tasks, SNNs are structured to process two
or more inputs simultaneously and compare their feature
representations [19]. These subnetworks process the input
pairs independently but share the same set of parameters
and weights. This weight-sharing mechanism ensures that
the feature representations of the inputs are extracted using
the same transformation, enabling a consistent and fair com-
parison. The outputs of these subnetworks are then mapped
into a shared embedding space, where the similarity or
dissimilarity between the inputs is computed using distance

metrics [20]. The function is designed to train the model to
reduce the distance between the anchor and its correspond-
ing positive image and increase the distance between the
anchor and the negative image. This mechanism ensures
effective learning by differentiating between similar and
dissimilar items [21].

Euclidean Distance is one of the most commonly used
distance metrics. The Euclidean distance between two fea-
ture vectors X and Y is defined as the straight-line distance
(hypotenuse) connecting two points in n-dimensional space.
This metric measures the direct distance between two points
in Euclidean space [22]. The smaller the Euclidean distance,
the more similar the two vectors are [23]. Euclidean distance
calculation uses the following equation:

D(X,Y) =

√√ n∑
i=1

(Xi − Yi)2 (1)

where Xi and Yi are the i-th components of vectors X
and Y , and n is the dimension of the vector.

Manhattan Distance, also known as city block distance
or taxicab distance, measures the distance between two
points by summing the absolute differences of their coordi-
nates [24]. This metric measures the total absolute distance
between the components of two vectors [25]. It is often
used in contexts where movement is restricted to straight
lines and vertical or horizontal directions. The calculation
of Manhattan distance is performed using the following
equation:

D(X,Y) =
n∑

i=1

|Xi − Yi| (2)

where Xi and Yi are the i-th components of the vectors
X and Y , and n is the dimension of the vector.

Chi-Squared Distance is primarily used in statistical
contexts and image processing. It measures the difference
between two distributions by comparing each element of
the vectors, normalizing the difference by the average value
of the two elements [26]. This metric accounts for the
magnitude of the difference relative to the combined size
of the two elements. It is particularly useful in situations
where we want to emphasize relative differences between
elements with low values. The following equation is used
to compute the Chi-Squared distance:

Dχ2 (X,Y) =
n∑

i=1

(Xi − Yi)2

Xi + Yi
(3)

where Xi and Yi are the i-th components of vectors X
and Y , and n is the dimension of the vector. This formula
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is very useful in situations where we want to emphasize
the relative difference between elements with low values,
because it takes into account the magnitude of the difference
relative to the combined size of the two elements.

The objective of the triplet loss function is to minimize
the distance between the anchor and the positive example
(which belong to the same class) while simultaneously
maximizing the distance between the anchor and the nega-
tive example (which belong to different classes). This is
achieved by maintaining a fixed margin, denoted by α,
which ensures that the positive example is closer to the
anchor than the negative example by at least this margin
[27]. Mathematically, the triplet loss function is designed
to push the model to learn embeddings where similar
images (anchor and positive) are clustered together in the
feature space, while dissimilar images (anchor and negative)
are pushed apart. The triplet loss function is particularly
effective in scenarios where the dataset size is small, as
it encourages the model to focus on relative distances
between samples rather than absolute feature values [28].
This relative comparison allows the model to learn more
discriminative features even with limited data, as it directly
optimizes the relationships between samples rather than
relying on large amounts of labeled data. By enforcing
a margin α, the triplet loss ensures that the model does
not simply collapse all embeddings into a single point but
instead learns a well-structured feature space where simi-
larities and differences are clearly defined. This calculation
of triplet loss is governed by a specific equation:

L(A, P,N) = max(0,D(A, P) − D(A,N) + α) (4)

In this formulation, D symbolizes the distance metric,
which can be Chi-Squared, Manhattan, or Euclidean. A
stands for the Anchor, P for the Positive, and N for the
Negative, with a fixed margin, α, of 1.0. The function
operates by increasing the distance between the Anchor and
Negative while decreasing the distance between the Anchor
and Positive. This approach effectively prompts the model
to develop representations that distinctly segregate different
data classes, enhancing its discriminative capability.

This research employs the Xception architecture within
a Siamese Neural Network, featuring three identical sub-
networks that share weights. Each sub-network includes
a sequence of convolutional layers, pooling layers, and
fully connected layers [29]. The Xception architecture was
chosen due to its efficiency and effectiveness in feature
extraction, particularly through its use of depthwise sep-
arable convolutions. Depthwise separable convolutions sig-
nificantly reduce the computational cost and number of pa-
rameters compared to traditional convolutional layers, while
maintaining high performance in capturing complex spatial
features [30]. This makes Xception particularly suitable for
image similarity tasks, where the ability to extract fine-

grained features, such as texture, color, and shape, is critical
[31].

Using identical hyperparameters for a fair compari-
son, the models were assessed concurrently with the Chi-
Squared, Manhattan, and Euclidean distance metrics [32].
This method highlights the influence of each metric on
improving the performance of the models. The details of
the specific hyperparameters used in this evaluation are
meticulously outlined in Table III, ensuring transparency
and replicability of the assessment process.

TABLE III. Hyperparameters of model

Hyperparameters Value
Batch Size 128

Epoch 15
Optimizer Adam

Learning Rate 0.001

Upon completion of its training, the model operates
by mapping new inputs into a predefined feature space.
Within this space, the distances, as learned from the training
process, serve to determine the similarity or dissimilarity
of the inputs. This determination is based on the criteria
established by the triplet configuration, effectively using the
learned distances to categorize inputs relative to each other.

F. Evaluation Metrics
Ultimately, the model’s performance is evaluated

through several metrics, including the confusion matrix[33].
This matrix is an essential instrument for gauging the accu-
racy of a classification model. It visually presents the count
of both correct and incorrect predictions in a structured
table format, providing a clear depiction of the model’s
predictive capabilities. This matrix is particularly valuable
in binary classification tasks. It consists of four elements:
True Positives (TP), where the model correctly predicts
the positive class; True Negatives (TN), where it correctly
predicts the negative class; False Positives (FP), cases
where the model incorrectly predicts the negative instance
as positive; and False Negatives (FN), where it fails to
recognize a positive instance, marking it as negative. These
elements help quantify the number of correct and incorrect
predictions made by the model, facilitating the calculation
of performance metrics such as accuracy, precision, recall,
and the F1-score.

Once the confusion matrix is obtained, the following
metrics will be calculated: accuracy, precision, recall, and
F1-Score, according to the specified formulas.

Accuracy =
T P + T N

T P + FP + T N + FN
(5)

Precision =
T P

T P + FP
(6)
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Recall =
T P

T P + FN
(7)

F1 − S core =
2 × Precision × Recall

Precision + Recall
(8)

Accuracy measures the overall correctness of the model
and is calculated as the ratio of correct predictions (both
true positives and true negatives) to the total number of
cases examined.

Precision assesses the accuracy of positive predictions
made by the model and is defined as the ratio of true positive
predictions to the total number of positive predictions (true
positives plus false positives).

Recall, also known as sensitivity, measures the ability of
the model to identify all relevant instances within a dataset.
It is calculated as the ratio of true positives to the sum
of true positives and false negatives, indicating how many
actual positives were correctly identified.

The F1-Score is a harmonic mean of precision and
recall, providing a single score that balances both the pre-
cision and the recall. It is particularly useful when dealing
with imbalanced datasets, where one class is significantly
underrepresented. The F1-Score is calculated as 2 times
the product of precision and recall divided by the sum
of precision and recall, offering a measure of the model’s
accuracy in terms of both precision and recall.

This comprehensive approach, from data preparation
to detailed evaluation, ensures a robust assessment of the
model’s ability to differentiate between various classes of
trademark images.

3. RESULT AND DISCUSSION
This section presents the results of the Siamese Neural

Network models trained using Euclidean, Manhattan, and
Chi-Squared distance metrics. It includes a detailed anal-
ysis and comparison of the performance of these models,
focusing on key metrics such as accuracy, precision, recall,
and F1-score.

A. Result
After image preparation and pre-processing steps, the

images are randomly organized into triplet sampling, re-
sulting in 400 triplet image pairs derived from 20 positive
and 20 negative images. An example of the triplet sampling
results can be seen in Fig. 3.

The triplet samples were trained using Siamese Neu-
ral Network models with Euclidean, Manhattan, and Chi-
Squared distance metrics. Fig. 4. presents the training loss
over 15 epochs for three distance metrics—Chi-Squared,
Manhattan, and Euclidean—employed in a Siamese neural
network.

Figure 3. Result of triplet sample

Figure 4. Training loss comparison

The Euclidean loss results show that at the beginning of
training, the loss value decreased significantly, indicating
that the model is in the process of learning and increasing
its accuracy. However, during the process, there are quite
striking fluctuations, where the loss value sometimes in-
creases before finally decreasing again. This phenomenon
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can be interpreted as an indication that the model may
have difficulty finding the right pattern or even potentially
overfitting on certain data. However, the general trend shows
an overall decrease in loss, meaning that the model is
gradually showing improvements in its capabilities. The
Euclidean loss graph can be seen in Fig. 5.

Figure 5. Training loss of Euclidean

Furthermore, the analysis of Manhattan Loss, as seen
in Fig. 6., shows more consistent results. The graph shows
a steady decrease in the loss value from the beginning to
the end of training, indicating that the model is learning
well from the given data. After reaching a certain point, the
loss value appears to stabilize around a very low number,
approaching zero, indicating that the model has achieved a
good level of accuracy and is not experiencing significant
overfitting. In addition, minimal fluctuations in the loss
value indicate that the model is not experiencing difficulties
in the learning process, thus providing confidence in the
effectiveness of the method used.

Figure 6. Training loss of Manhattan

Meanwhile, in the Chi-Squared Loss measurement, there
is a significant peak at the beginning of training, where the

loss value reaches its highest point around 0.7. This indi-
cates that the model may have difficulty learning from the
data in the early stages. However, after reaching the peak,
the loss value begins to decrease, indicating that the model
is starting to learn and improve its predictions. Although
there are some fluctuations between the lower loss values,
indicating challenges in finding consistent patterns in the
data, at the end of the graph, the loss value appears to be
stable around a lower number. This indicates that the model
has achieved a better level of accuracy, indicating significant
progress in the training process. The Chi-Squared loss graph
can be seen in Fig. 7.

Figure 7. Training loss of Chi-Squared

The accuracy results during training also show different
results for each distance metric used. A comparison of
model accuracy can be seen in Fig. 8.

Figure 8. Training accuracy comparison

In the Euclidean Accuracy measurement, as seen in Fig.
9., the graph shows quite significant fluctuations at the
beginning of training, with the lowest value around 0.75.
This indicates that the model may not have fully understood
the patterns in the data provided. However, after several
iterations, there is a gradual increase in accuracy, eventually
reaching a value above 0.90. This increase indicates that the
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model is starting to learn and improve its ability to predict
data. At the end of the graph, the accuracy appears stable
in the range of 0.90 to 0.95, indicating that the model has
achieved a good and consistent level of accuracy, which is
in line with the decrease in loss discussed earlier.

Figure 9. Training accuracy of Euclidean

Furthermore, the analysis of Manhattan Accuracy shows
a consistent increasing trend from the beginning to the
end of training. Starting from an accuracy of around 0.75,
the model shows a significant increase to nearly 0.925.
After several iterations, the accuracy appears stable with
little fluctuation, indicating that the model has learned well
from the data. At the end of the graph, the accuracy
reaches its highest value, indicating that the model can be
relied on to predict data with high accuracy. This reflects
the effectiveness of the training method applied and the
consistency in model performance. The accuracy graph per
epoch of Manhattan can be seen in Fig. 10.

Figure 10. Training accuracy of Manhattan

Finally, in the Chi-Squared Accuracy measurement,
there is a pattern similar to the previous measurement,
where the initial fluctuations appear quite significant with

the lowest value around 0.75. This indicates that the model
has difficulty learning from the data in the early stages.
However, after several iterations, the accuracy begins to
increase, reaching values above 0.90, indicating that the
model is starting to improve its ability to predict data. At the
end of the graph, the accuracy reaches its highest value near
1.00, indicating that the model can be relied on to predict
data with very high accuracy. This increase in accuracy
is in line with the previously observed decrease in loss,
indicating that the model is not only learning well, but is
also able to apply that knowledge effectively in predictions.
The training accuracy results of Ch-Squared are shown in
Fig. 11.

Figure 11. Training accuracy of Chi Squared

At the testing stage, model comparison is evaluated
using a confusion matrix. Table IV features the comparison
of confusion matrix for this model.

As seen in Fig. 12., The Euclidean results show that the
model correctly classifies 42.19% of similar images as True
Similar and 50.00% of different images as True Different,
demonstrating balanced performance in distinguishing both
classes. However, there was a 7.81% error rate where
different images were incorrectly classified as similar (False
Similar), while no instances were misclassified as different
when they were similar (False Different).

The Manhattan distance metric shows slightly higher
accuracy in identifying similar images with 45.90% (True
Similar), but lower accuracy of 29.49% for dissimilar
images (True Different). Notably, this metric suffers from
a higher misclassification rate for dissimilar images that
are misclassified as similar at 4.10% (False Similar) and
a significant misclassification rate of 20.51% when similar
images are misclassified as different (False Different). The
confusion matrix results from Manhattan can be seen in Fig.
13.

Finally, the Chi-Squared distance metric achieves the
highest accuracy in correctly classifying similar images at
50.00% (True Similar) and maintains good performance
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TABLE IV. Confusion matrix metrics comparison in testing

Metric Distance True Similar (%) False Similar (%) False Different (%) True Different (%)
Euclidean 42.19 7.81 0.00 50.00
Manhattan 45.90 4.10 20.51 29.49

Chi-Squared 50.00 0.00 3.52 46.48

Figure 12. Training loss of Chi-Squared Distance

Figure 13. Training loss of Chi-Squared Distance

with an accuracy of 46.48% for dissimilar images (True
Different), as seen in Fig. 14. This metric exhibits the lowest
error rate among the three metrics with no instances being
misclassified as similar (Incorrect Similar) and a minimum
of 3.52% similar images being misidentified as different
(Incorrect Different).

Table V and Fig. 15 summarizes the performance
comparison, showing that the Euclidean distance metric
exhibited strong effectiveness with an accuracy rate of
92%. This high level of accuracy suggests that the metric
performs well in correctly classifying both similar and
different images. The precision achieved was 84%, indi-
cating a strong likelihood that predictions of similarity

Figure 14. Training loss of Chi-Squared Distance

by the model are accurate. The model achieved a recall
rate of 100%, effectively identifying every true instance of
similarity, which resulted in a flawless F1-score of 1.00.
This score indicates exemplary performance, with the model
excellently balancing precision and recall.

Figure 15. Performance metrics comparison

The Manhattan distance metric demonstrated a moderate
level of effectiveness, achieving an overall accuracy of 74%.
Both precision and recall were nearly equivalent, at 75%
and 74% respectively, suggesting a balanced yet modest
proficiency in accurately identifying and capturing true pos-
itives. The F1-score, a direct reflection of this balance, stood
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TABLE V. Performance result of Euclidean, Manhattan, and Chi-Squared

Metric Distance Accuracy Precision Recall F1-Score
Euclidean 0.92 0.84 1.00 1.00
Manhattan 0.74 0.75 0.74 0.74

Chi-Squared 0.96 1.00 1.00 0.93

at 0.74, suggesting consistent but less optimal performance
across these metrics compared to the Euclidean distance.

Conversely, the Chi-Squared showed superior perfor-
mance with the highest accuracy of 96% among the metrics
evaluated. It achieved a precision of 100%, indicating that
every prediction of similarity was accurate. Similarly, the
recall was also perfect at 100%, showing that the metric
identified all similar images without fail. The F1-score, at
0.93, although slightly lower than the perfect scores, still
indicates an exceptionally high level of performance in both
precision and recall.

B. Discussion
The analysis of the trained Siamese Neural Network

model, which uses different distance measures to check
trademark image similarities, has revealed several important
results. The Chi-Squared metric shows the best performance
with an accuracy of 96% and a perfect precision of 1.00.
These findings confirm that this model is very effective in
identifying similarities between trademark images, which
is the main objective of this study. Thus, the application
of this model can make a significant contribution to pro-
tecting intellectual property rights and preventing trademark
infringement.

However, there are several limitations that need to be
considered. The model is accurate, but at first, the loss
and accuracy values using Euclidean and Manhattan metrics
fluctuate a lot. This suggests the model might struggle to
learn from the data early on. This could mean that the model
requires more training data or the application of better
regularization techniques to avoid overfitting. In addition,
although the Chi-Squared metric shows very good results,
its use may not always be optimal for all types of data or
application contexts, so further evaluation is needed.

Future research directions can be focused on several
aspects. First, exploration of different combinations of dis-
tance metrics can be done to improve model performance.
Combining multiple metrics in a single model can provide
more robust results. Additionally, research can focus on
creating better data enhancement methods to make training
data more varied. This will help the model learn more
effectively from the different types of data available. The
application of transfer learning techniques, where a model
that has been trained on a large dataset is tailored for the
specific task of trademark image similarity detection, can
also be an interesting approach to improve model accuracy
and consistency.

This study shows that Siamese Neural Networks are

effective for detecting similarities in trademark images. It
also suggests ways to continue researching this technology,
which could lead to its broader use in industry. Further
research is expected to overcome existing limitations and
improve model performance in a wider context.

4. CONCLUSION
This study has successfully developed and analyzed a

Siamese Neural Network model optimized using various
distance metrics for trademark image similarity detection.
The results obtained show that the Chi-Squared metric
provides the best performance, with an accuracy of 96% and
perfect precision. These findings demonstrate the enormous
potential of the model in practical applications, especially
in protecting intellectual property rights and preventing
trademark infringement.

Although the model shows promising results, there are
some limitations that need to be considered, such as initial
fluctuations in loss and accuracy values in the Euclidean
and Manhattan metrics. This indicates the need for further
development, including exploring different combinations of
distance metrics and implementing more sophisticated data
augmentation techniques.

Future research directions can focus on developing
transfer learning techniques and testing the model on more
diverse datasets to improve generalization and accuracy.
This study helps us understand how well Siamese Neural
Networks work for finding similar images. It also creates
chances for more research that can improve how this
technology is used in different industries.
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