&P International Journal of Computing and Digital Systems
[::} ISSN (2210-142X)
= Int. J. Com. Dig. Sys. 15, No.1 (Jan-24)

o5
2,
L

oy

http://dx.doi.org/10.12785/ijcds/150109

Decision Tree Induction Using Evolutionary Algorithms: A

Survey
Maryam H. Bahar ! and Hadeel Noori Saad >

'Information Technology College/ Babylon University, Babil, Iraq
2Department of Computer;, Faculty of Education for Women, University of Kufa, Najaf, Iraq

Received 2 Jun. 2023, Revised 17 Oct. 2023, Accepted 16 Nov. 2023, Published 1 Jan. 2024

Abstract:An evolutionary methods for an induction-based decision trees made a wide step development in machine learning field. In
this context, the majority of researches recently concentrates on techniques that use developing decision trees as an alternative to the
traditional heuristic top-down divide-and-conquer strategy. Evolutionary algorithms play an important role in improving decision tree
classifier parts. The main contributions of our article are twofold, first it provides a survey of evolutionary algorithms with decision
trees. Second, it reviews a taxonomy that encompasses techniques mentioned above as a backbone in creating enhanced decision trees,
and an evolved construction components of decision trees. The article covering researches in the period 2011-2023, these researches
proposed different evolution paradigms encompasses :feature categorization, splitting nodes , complex to simple decision rules, tree size,
etc parameters of DT. Finally, a detailed scenarios and results had been analyzed, highlighting the weaknesses and areas of strength

with respect to processing time, accuracy, and required space.

Keywords: Classification, Decision tree, Evolutionary algorithms, Genetic algorithms, Machine learning, Survey

1. INTRODUCTION

The candidate solutions that are represented by a pop-
ulation of individuals (referred to as chromosomes) evolve
in evolutionary algorithms (EAs). Individuals are able to
reproduce and are prone to genetic variations. Better-
adapted individuals have a greater probability of surviving
and passing to the next generation due to their effectiveness
(represented as a fitness function value) influenced by envi-
ronmental pressure. After a population has been subjected
to genetic operators, the resultant individuals are examined
for fitness, and then the solutions that will be preserved
throughout iteration will be chosen or reproduced by a
selection method. A predetermined number of generations
or extra intricate stopping criteria are often created as an
evolution algorithm starting criteria. It is very clear that
EAs was drawn inspiration from biological evolution and
do not attempt to reproduce nature completely. The most
well-known and significant methods are as follows[1] [2]:

e Genetic algorithms [3], typically work with binary-
coded, fixed-size chromosomes. Standard genetic op-
erators are preferred in this representation. Crossover,
which allows two individuals to share their genetic
material, this is the (core operator) that is frequently
implemented on the chromosomes, whereas the muta-
tion operator has a low probability (minor operator).

e Evolutionary strategies [4]: continuous function opti-
mization, use representations that are specific to the
problem, like a real values vector. Mutation play as
the primary operator, where’ve its ranges are self-
adapting. Based on population sizes and selection
criteria, different types of strategies are defined by the
relationships between the parent population and the
modified individual’s population. Parents can com-
pete with mutants or ignore them.

e Genetic programming [5]: was proposed as a mech-
anism for automating the evolution of computer
procedures. A dynamically evolving syntax tree is
often used to represent the program. The program’s
variables and constants (referred to as terminals) are
leaves, while the arithmetic operations are represented
by the internal nodes (referred to as functions). So, the
program’s alphabet is determined by its terminals and
functions. Many types of specialized discrimination
operators can be proposed, with the most major being
an exchange of subtrees between two trees and a
mutation in a subtree.

Evolutionary programming [6]: An often detailed represen-
tation of the problem domain (originally, individuals that
can emulate finite state machines). Similar to evolutionary
techniques for optimizing real value vectors, a series of

E-mail address: maryam@itnet.uobabylon.edu.iq, hadeel.jrew @uokufa.edu.iq

https://journal.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/150109
https://journal.uob.edu.bh

¢
& 1\&5

e

%Y
Ray «

30 Alisy;
%,

&

100

Maryam H. Bahar; et al.: Decision Tree Induction Using Evolutionary Algorithms: A Survey.

-

Initialization

v

Fitness evaluation

- ~
-~

" Termination . Yes
’ - condition?

-
.
S

The best
individual

“
S
S

No
Mutation & crossover

7

Fitness evoluation

v

Selection

Figure 1. Typical evolutionary (genetic) algorithm process [7]

real values is developed. New individuals can only be
produced through mutations, which often involve inserting
random variations from a predetermined distribution to a
parents. Figurel shows a schematic representation of the
EA’s standard iterative procedure. Although the specific
realizations may alter significantly, the essential elements
and actions remain essentially constant [7]. At the beginning
of the procedure, the population is initialized. The initial
population that arises should be extremely diverse and cover
the whole search region, because this will surely assist
evolution. Normally, a random number might be utilized to
generate an individual. The algorithm’s main loop can start
after these new individuals have their fitness functions eval-
uated. Selection of individuals for reproduction is followed
by the employment of differentiation operators, evaluation
of the altered or newly created individuals, and succession
when the next population is formed. At the end of each
generation, a termination condition is checked. Imposing
time limitations or simulating a specific number of iterations
is the most basic situation. When the anticipated pattern is
satisfied, the process is ended for more complex solutions,
where specific population attributes committed to the algo-
rithm’s convergence may be seen. The individual with the
highest finding of fitness is the algorithm’s final output. Ge-
netic operators are used to separate the individuals in each
generation. There are two common operators: crossover and
mutation. The main mechanism of the evolutionary search is
individual differentiation, which should ensure that a good
balance between exploitation (diligent searching close to the
current place) and exploration (checking out new, frequently
distant areas) is retained. The mutation fragmentarily dis-

rupts a single chromosome at random, and more often than
not, this causes the original individual to move somewhat in
the search space. Obviously, more alterations are possible
if the modifications reach the most important regions of
the chromosomes. In a crossover, since the parents are
often fully recombined, naturally, the number of mutations
is greater than in a local mutation; hence, the children
are often more unique from their parents. This results in
remote transpositions, which may be useful when it’s crucial
to explore new territory. Selection mechanisms are the
primary factors that drive this kind of simulated evolution.
Individuals who are more fit and, hence, better acclimated
to their surroundings should have a higher probability of
survival than those who are less fit. The descendants will
only be produced by individuals who have been chosen
and reproduced. This mechanism has a significant impact
on search strategies and may determine how efficiently
and effectively evolution proceeds. It’s important to find
a decent balance between ensuring that a population is
sufficiently diverse and elevating the most talented individ-
uals. If the best individuals are given too much attention,
only locally optimal solutions may converge too quickly.
The search will move much more slowly and take up
more computer resources if the better contenders aren’t
given enough encouragement. Although maintaining the
proper balance throughout the algorithm’s various phases
is undoubtedly a difficult endeavor, selection algorithms
created over time have made it possible to accomplish this
goal [7]. Going above and beyond to create a specialized
EA is frequently advantageous when trying to apply the
evolutionary approach to a particular situation. The best
outcomes are attained if the algorithm can be modified
to take into account the specifics of the problem [2] and
use this information to choose the elements that are most
appropriate for the problem from among a large variety of
options. This makes it possible to significantly reduce the
search space in many applications, which accelerates the
search for superior solutions. It is important to select the
values (from the standard technique) of various regular as
well as additional control parameters in such a unique way,
as is desired (concerning the specialized elements). Despite
assertion that EAs are rather resistant to tiny changes
in fundamental parameter values, the optimal settings are
typically discovered through many experiments with various
parameter values. Although automatic tuning is predicted to
be more effective than manual tuning, it obviously requires
more processing power. In EAs, many methods of parameter
control are addressed [8]. The following paragraphs will
explore the roadmap of this article, where the attention is
focused on decision tree, and EAS constructions (area of
interest). The rest of the paper will organized as follows
: Advantage and disadvantage of implementing evolution
algorithms on decision trees will discussed to clarify the
limitations of the of each case construction, section 6 gives a
detailed review that covering the state-of-the- art researches
under considerations, these researches implements evolution
strategies with decision trees.

https://journal.uob.edu.bh

https://journal.uob.edu.bh

¥

2. DECISION TREE

A decision tree (DT) is a classifier that is a tree represen-
tation in a form that resembles a flowchart. Because of their
understandable nature and resemblance to human reasoning,
DTs are frequently used to illustrate classification models.
In comparison to other learning algorithms, DT induction
algorithms provide a number of pros, including resistance to
noise, a light computation’s cost for model construction, and
low capacity to handle redundant features. Additionally, the
induced model typically has a strong capacity for general-
ization [9]. The majority of DT induction methods use a top-
down construct, greedy, recursive partitioning technique.

&
55:_-,9 J'-;)\J
& ke iy
Int. J. Com. Dig. Sys. 15, No.1, 99-113 (Jan-24) “=>" 101
Dataset preparation:
Preinduction -Feature selection and
(Data preinduction) = reduction
-Subsampling
-Oversampling
v DT induction:
Induction -Attribute selection
-Discretization
-Test selection (in-node)
A 4
Postinduction el OIl’)l E:Eifatmu:
(Optimization) d - _ £

Several impurity metrics, like information gain, are used
to select a discriminating property that is associated with
an internal node, gain ratio, Gini index, and distance-based
metrics. The fact that a greedy search frequently results
in less-than-ideal solutions is a significant disadvantage.
Additionally, small data sets for attribute selection at a
tree’s deepest nodes due to recursive data partitioning may
result in data overfitting. The insertion of an ensemble
of trees is one of the solutions that have been suggested
to address these issues. The final classification is usually
determined via a voting system, and ensembles are produced
by inducing several trees from trained samples, Ensembles
have the drawback of losing the simplicity of understanding
the analysis of a single DT. Indeed, it is frequently the
case that categorization models merged in an ensemble are
somewhat inconsistent with one another; this inconsistency
is important to raise the ensemble’s forecast accuracy. So,
where comprehensibility is important; ensembles aren’t the
good choice for applications. An induced DTs are becoming
more popular because they explore global solutions rather
than local ones and manage attribute interactions better than
greedy methods [10].

3. DTS- EAS CONSTRUCTION

Evolution Algorithms for evolving DTs, must be used
with knowledge of both processes, Evolution Algorithms
and DT. The whole induction of the DT process is seen in
Figure 2. The procedure is broken down into three stages:
the preinduction stage, which involves the production of
data for use in the induction and evaluation of DTSs; the
induction stage, which involves inducing DTs with the
help of the prepared data; and the postinduction stage,
which involves optimizing the DTs that have been induced
[11]. The standard procedure for using EAs to resolve a
problem is shown in Figure 3. Setting up the environment
comes first, followed by selecting the genetic operators,
control parameters. The initial population of humans can be
produced after the setup in order to begin the evolutionary
process. The evolutionary cycle then begins, in which every
individual assessed using the fitness function is defined, a
choice is made based on the evaluation of fitness, and the
selected individuals go through cross-over and mutation to
produce offspring, which act as placeholders for the subse-
quent generation of individuals. The evolutionary process
keeps going until the specified termination conditions are
satisfied. The fitness function is crucial for determining each

Figure 2. The overall construction method for DTs. [11]

individual’s quality and, as a result, for arriving at a globally
ideal solution. Given that DTs are classifiers, classification
accuracy is the obvious fitness function. The fitness function
typically has multiple objectives (accuracy, size, cost, etc.)
[11].

4. THE ADVANTAGES OF EAS WITH DT INDUC-
TION

The main advantage of evolving DTs is their ability to
avoid the local optimum. EAs are less likely to converge
on local optima since they can conduct a strong search
in the space of potential solutions to reach a global min-
imum. Additionally, as a result of this global search, EAs
typically handle attribute interactions better than greedy
techniques [10], allowing them to identify intricate attribute
correlations that the greedy evaluation method missed. The
ability to intentionally bias the search space through multi-
objective optimization is another benefit of evolving DTs.
The ability of EAs to organically optimize several objectives
may be essential in a number of application domains. Cost-
sensitive classification, which is one of the major medical
classification issues, may benefit from optimizing strategies
that address multiple mistake costs. Another crucial com-
ponent that may be easily added to a multi-objective EA
for DT induction is parsimony pressure [11].

5. THE DISADVANTAGE OF EAS IN DT INDUCTION

Time restrictions are the fundamental drawback of the
evolutionary induction of DTs. EAs are a reliable but
expensive computational heuristic. Nevertheless, as time
went on, quicker processing resources made it possible for
EAs to be used in a wider range of applications. Because
of advancements in parallel processing, EAs can now be
better examined within reasonable execution times. The
time required to prepare the data for data mining purposes
typically takes far longer in real-world applications than the
time required to induce a classification or regression model.
As a result, the lengthy processing times of EAs are not
always the process’s bottleneck in real-world applications.
The size of parameters that must be achieved in order

https://journal.uob.edu.bh

https://journal.uob.edu.bh

\)
A
N

Lk

%,

(a0 ks,

Baas
102 "'”'Mj Maryam H. Bahar; et al.: Decision Tree Induction Using Evolutionary Algorithms: A Survey.

Preparation:
Set-up > -Representation
Phase -Evolutionary parameters
: Population Preparation:
[mtm.l » -Initial (random) DT
Population induction
v
- FF used:
Fitness > -Multi-objective FF
function (FF) Cost sensitive
Y B
P Selection used:
Selection N -Tournament
-Roulette wheel
Genetic EA operation used:
Operation -Crossover, Mutation
Termination criteria:
& -FF threshold
Termination [—% -Generation count
-Time

Figure 3. EAs’ fundamental method (for DT construction) [11])

to conduct a complete EA settings is another drawback.
Although they believe it to be a secondary issue, Espejo
et al. [12] acknowledge this issue in GP-based classifiers.
Since genetic algorithms and genetic programming share
many of the same factors, the same problem arises for them
[13].

6. REVIEW

In this section, we provide a comprehensive survey of
evolutionary algorithms and their application to decision
trees, which can serve as a valuable resource for researchers
and practitioners in the field, and present a taxonomy of
techniques related to decision tree construction, including
those that enhance decision trees and evolve their compo-
nents, which can help in organizing and understanding the
different approaches used in the literature. R. C. Barros, M.
P. Basgalupp, et al. [13] presented a survey of evolutionary
algorithms designed for decision tree induction from the
beginning until 2011. Which this study covers a period
from 2011 to 2023, which ensures a comprehensive analysis
of the relevant literature in the domain of evolutionary
algorithms and decision trees. This approach allows the
authors to present a detailed and up-to-date review of the
state-of-the-art techniques. Work in [14] proposed Mutual
information and the t-statistic. They used the best 10 and 20
genes to evaluate GP and DT predictions, as well as those
made using genetic programming and evolved DTs. Genetic
programming fared better as a classifier for this set of data
based on mutual information-based feature selection and

TABLE I. DISCIPULS-Based Genetic Programming Parameters [14]

Parameter Value
Size of population 500
Frequency of mutation 95%
Frequency of recombination 50%
Size of max program 512 bytes

TABLE II. GA-Tree genetically evolved DT parameters [14]

Parameter Value
Generations 100
Population 100

Probability of cross over 0.99
Probability of mutation 0.01

the area under the receiver operating characteristic curve
(AUC). The DISCIPULUS genetic programming system
was used (Demo Version). They classified the datasets using
the GP tool after applying the feature selection criteria
(t-statistics and mutual information). The majority of the
parameters were configured using the software’s default
(preset) settings (Table 1). The settings include the specified
numbers for the random population size, maximum program
size, mutation rate, and recombination rate. While the
programs are evolving, the GP tool includes the opportunity
to rank the attributes. This feature was utilized to cross-
check the accuracy of forecasts for the top 10 and 20
genes based on t-statistics and MIFS’s top 50 genes. This
was accomplished by selecting subsets with the highest
input impact values. After characteristics were determined
using the t-statistic and mutual information, when using the
program, the majority of the default options (preset param-
eters) were utilized (see Table 2). (Prefer More Accurate
Trees) is a tree size parameter. The data was pre-processed
using colon cancer benchmark dataset downloaded from the
(Kent Ridge Biomedical Datasets) website. Before using a
classifier, the raw data was normalized for feature selection.
Two techniques were used to pick the features: mutual
information using non standardized data and t-statistics
using standardized data. The 50, 20, and 10 best genes
from each feature selection approach were fed into genetic
programming and genetically evolved DTs, respectively.
When the prediction accuracy of genetically developed DTs
was evaluated, mutual information feature selection-based
genes outperformed t-statistic-selected genes. The predic-
tion accuracy for the 10 best genes selected based on mutual
information 88.33% is the highest among genetic-based
evolved DTs associated with t-statistic feature selection and
mutual information techniques. Particularly when applied
to the colon cancer dataset, genetic programming performs
better overall than genetically evolved DTs. The authors in
[15] focus on evolutionary DTs (EDTs) to tackle medical
problems. The majority of the unique evolutionary DT
construction algorithms are investigated on an intensive data
sets from diverse areas using data sets from the UCI library.

https://journal.uob.edu.bh

https://journal.uob.edu.bh

¥

A0)

Uy

10 Allgy

Gle fiiay
Int. J. Com. Dig. Sys. 15, No.1, 99-113 (Jan-24) o’ 103

They showed that tree’s individual nodes were optimized to
result in the formation of very complex nodes. As a result,
it becomes considerably more challenging to analyze indi-
vidual decisions (at each node). Where, simple conditions
are simpler to understand than complex neural networks or
calculations. Such method reduces a DT classifier’s core
features (readability) and turns it into a (black box) clas-
sifier. Black-box classifiers are generally less appropriate
for usage in the medical industry. The improvement of
the training set selection procedure and DT construction
are two crucial study areas for employing evolution to
improve DT performance for medical applications, requires
scaling issues with enormous data sets, selecting training
data chunks, representations of training sets inspired by
evolution, imbalanced data sets, and sampling training data
features are all investigated in [15] related to evolutionary
optimization (EO) of training sets. The research has shown
an improvement on the training set’s evolutionary opti-
mization which enhanced the performance of the resulting
classifier. Furthermore, it has little effect on the critical
components of a DT classifier (comprehensiveness, high
dimensionality, etc.). With many trials, the resulting trees
are pruned and perform at least as well as classically formed
DTs. Even if the identical algorithm and genetic parameter
values are used in each run, the outcome may differ since
the evolutionary process contains uncertainty. This tech-
nique required numerous executions in order to evaluate
the results. In [11], the authors analyze the evolutionary
design of DTs with the most prevalent strategies. They
take a step-by-step case study that uses data from (UCI)
machine learning repository initially describes the general
technique before using it to show how it works. This case
study employs the provided methods in an instructional
and clear case study in order to provide a fundamental
overview of the evolutionary approach to DT creation, in
addition to outlining the most significant advancements and
methodologies in this field. Numerous solutions have been
found, with just minor differences between all of their
features (accuracy, tree size, used attributes, etc.). They
chose one of these methods because it balanced accuracy
and complexity well (number of nodes, depth, and different
attributes utilized). The test set of unforeseen events with
19 decision nodes is 85.63% accurate (leaves). It is fas-
cinating to compare this result to that of other well-used
categorization techniques. The UCI repository provides
classification data (classification accuracy) for 16 different
algorithms, 11 of which were employed in their experiment
using the original train/test split. Their solution placed third
with 85.63%, whereas FSS NB and NBTree, two modified
Naive-Bayes approaches, obtained the best classification
accuracy 84.95% and 84.90%, respectively. All the other
methods earned lower scores than the k-Nearest Neighbor
algorithm, which had the lowest accuracy 78.58 percent.
The current classical DT induction processes achieved an
accuracy of 85.54 percent when using C4.5 algorithm, on
WEKA benchmark for classical, statistical DT induction.
The J48 method induced a DT for another comparison (the
source code of the C4.5 algorithm in Weka, which is used

Meta-training set

Initia_l H» Evaluation [p| Tournament |«
population selection
vV Pr v Pc v Pm
No | Reproduction || Crossover H Mutation ‘
Best <4 Stop? 4+ New_
individual |yeg ves| Population |ao
complete?
Test Meta-test set

Figure 4. HEAD-DT evolutionary scheme [16].

widely). 564 decision nodes and 85.84% test-set accuracy
their evolutionary-created DT is simpler (3% of traditionally
produced DT) and almost as accurate (only a 0.21 percent
difference). They may claim that the evolutionary process
provides a better solution because inducing DTs produces a
highly trustworthy (high accuracy) and simple (pruned) tree.
In [16] suggest HEAD-DT, a hyper-heuristic EA, evolves
top-down decision-tree’s components induction techniques.
A new paradigm DT research, in which an automatic design
decision-tree induction algorithms learned a certain sort
of classification data sets (or application domain). Hyper-
heuristics are defined as an automated way for choosing
or creating heuristics that address difficult computational
search issues. In actuality, hyper-heuristics have the power
to build new heuristics that are appropriate for a certain
problem or class of problems on their own. An EA is
used to combine human-designed heuristic components, or
(building blocks). Hyper-heuristics were created to expand
the number of search techniques available. Instead of uti-
lizing a standard meta-heuristic technique, an EA is used
to find the optimal decision-tree induction algorithm that
can be successfully applied to a range of classification
issues, increasing the generality level in the context of
DTs. HEAD-DT is comparable to a traditional generational
EA in which decision-tree induction techniques are coded
as collections of top-down individuals. Figure 4 illustrates
its evolutionary strategy. Use common EA operators, such
as competition selection and genetic operators (mutation,
crossover, and reproduction) that are mutually exclusive,
and an established stopping condition that puts an end
to evolution after a certain number of generations. Each
gene in a HEAD-DT individual can have a value within a
specific range because they are integer vectors (see Figure
5). Four gene categories were identified: Split, stopping
criteria, missing value, and pruning genes are presented
to summarize the design elements of a top-down decision-
tree induction technique. HEAD-DT should design a new,
maybe better DT algorithm for a certain application area.
HEAD-performance DTs were compared to C4.5, CART,

https://journal.uob.edu.bh

https://journal.uob.edu.bh

¢
& 1\&5

e

Ty

@05,

5

104

Maryam H. Bahar; et al.: Decision Tree Induction Using Evolutionary Algorithms: A Survey.

Criterion
Parameter
Split
Distribution
Classification
Method
Parameter

Criterion
Binary Split

4 t t

—

$ 4

N (>
— (=

IS 4T 2]7[1[3]10
Split | Stopping Missing values | Pruning
Genes Criteria Genes Genes

Genes

Figure 5. Linear-genome for evolving DT algorithms [16].

and REPTree utilizing microarray gene expressions and 35
real-world data sets. In terms of predicted accuracy and
F-measure, HEAD-DT algorithms beat manually created
decision-tree algorithms. In [17] Gives an introduction to
the concept of multi-test DTs (MTDT), a new, strong
language for representing DT's. A multi-test tree’s structure
is identical to that of a typical DT, such as C4.5. Every
split in non-leaf nodes of a multi-test tree is referred to
as a multi-test split and is made up of a collection of
univariate tests. These simple tests are univariate and when
combined demonstrate how our strategy differs significantly
from conventional multivariate splits, such as oblique splits.
All univariate test components have the same weight during
classification, and the majority voting process determines
how the MTDT splitting criterion is applied. A multi-test
that separates the data in the node into Class A and Class
B is depicted in Figure 6. The three different attribute tests
in this multi-test are [(f1 < 2), (f2 < 5), (f3 < 8)]. In
this example, the majority voting process resulted in at
least two out of the three univariate tests being statistically
significant. Figure 7 shows actual trees. Although both
induced trees correctly classified cases from the training
set, they performed very differently on the test set. Even
in cases where there is no effect on later multi-tests and
both alternate trees have identical primary tests, the sug-
gested strategy is effective. Surrogates’ effect on multi-test
decision-making explains MTDT’s good performance with
N = 7. The surrogate tests mt1,j(1 < j < N) in MTDT with
N = 7 must outvote the primary tests mtl,1 in the nodes
and correctly categorize 6 out of 15 cases. This increased
the Armstrong dataset classification accuracy from 86%
to 100%. This study offers a multi-test DT classification
method for categorizing gene expression data. A unique
splitting criterion was developed to improve classification
accuracy and reduce DT underfit on specific types of data.
The suggested method highly competitive with all tested
competitors. It was determined through analysis of actual
microarray data that the biological literature backed up the
information learned through MTDT. By using this (white
box) method, scientists can develop precise and biologically
relevant classification models and find brand-new regulari-
ties in biological data. The crucial algorithmic traits of our

<) O\

| (B=5)
BB e

-

T\

Class B

Class A

Figure 6. A multi-test split illustration that includes a number of
univariate tests [17]

e el
= 7 {103779<=2929.5; AB020674<=3314;

(\ J03779<=2929.5 /) (U59423<=1501.5; U48959<=45.5; Z49194<=1796)/

N US9912<=1275 5; AF084481<=69.5)

o) i 20ALL '(,\}xsxsé;;e;v;s;ntiob ~
(M68864<=1638.5 // "/ D88435<=3899; US083: 5 20ALL

o N I6MIL | _— \
(X69699<=2977 | (X69699<=2977; X00088<=2544.5; N\
= - g [Us8063=5719; §74221<=2025; 103600<=281; \/‘ 16MLL

\J02621<=15956.5; HG4120HT4392=631) "
| 20AML |

Y\
Figure 7. MTDT in a single node with N=1 and N=7 tests [17].

N L41067<=1655.5; U75362
_AA675900<=80755} -

| IMLL |

A: MTDT with n=1 B: MTDT with n=7

strategy were uncovered by our extensive empirical inquiry
and evaluated from a machine learning standpoint. In the
article [18] a multi-objective evolutionary method EVO-
Tree (EA for DT Induction) has been proposed. It gives new
trend of grow a binary DTs for categorization, When more
than one target needs to be optimized, various objectives are
mapped into one multi-objective function using a predefined
weight. A single solution is obtained in a single run using
such a weighted aggregation. EVO-Tree uses an EA-based
training approach that analyses a population of potential
tree architectures that have been encoded into chromosomes
that resemble trees. The misclassification rate and tree
size are two objective factors that the training procedure
seeks to minimize. Utilizing multiple open UCI data sets,
evaluate the EVO-tree ability and contrast the outcomes
with various cutting-edge classification algorithms. The size
and accuracy of trees are chosen as the global metrics for
the EVO-Tree algorithm. By removing parts of a classifier
that might be based on false data, this method reduces the
complexity of the final classifier without lowering predicted
accuracy. Additionally, rather than focusing on how to

https://journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 15, No.1, 99-113 (Jan-24)

¥

R
%)
Gle fiiay

“u’ 108

2,

10 Allgy

induce a tree, one may focus on the conditions that a
tree must meet (which impurity measure to select, how
to prune, etc.). The authors in [19] create and put into
practice a parallelization of evolutionary induction of DTs
based on graphics processing units (GPUs). They use a
programming paradigm for the Compute Unified Device
Architecture, which provides general-purpose processing on
a GPU (GPGPU). While the evaluation of the population’s
members is carried out in parallel, there is still a sequential
execution part comprises selection and genetic operators.
The data-parallel technique is used, distributing the compo-
nents of a dataset across GPU cores. The assigned portion
of the data is processed by each core. Finally, the output
from each GPU core is combined, and the CPU is informed
of the desired tree metrics. Experimental validation of
the suggested approach’s computational performance using
synthetic and real-world datasets. Evolutionary induction of
DTs assisted by GPGPU can be greatly sped up (even up
to 800 times), which enables processing of much bigger
datasets, as compared to the standard CPU version. This
study suggests parallelizing DT’s evolutionary induction
using GPUs. They focus on classification, and they are
particularly interested in evolutionary-induced univariate
categorization trees. To their knowledge no study has been
conducted on how to employ GPGPU to accelerate the
evolution of DTs. Although the GPU computational model
differs from the traditional CPU model, the method they
use is comparable to the master-slave paradigm. EA phases
are carried out by the CPU (master), which delegates the
computation-intensive duties to the GPU. On its cores,
which are essentially slaves, the GPU conducts the jobs
in parallel. In this manner, the original sequential algorithm
is maintained while preserving so-called global parallelism
[20]. The proposed method is used in conjunction with
a system known as a global DT (GDT). Finance [21]
and medicine [22] are two real-world applications for the
GDT solution paradigm. Its framework can be utilized for
evolutionary classification induction [23] and regression
trees [24]. The primary goals of this effort are to speed
up the GDT system and enable effective DT evolution
on massive data sets. For these reasons, the suggested
parallelization makes successful use of the ability of con-
temporary GPUs to perform computationally heavy tasks
like fitness computation and leaves the CPU in charge
of the evolutionary flow management and communication
chores. A hybrid MPI+OpenMP strategy was used in earlier
attempts to parallelize the GDT solution [25].This is an
alternative parallel paradigm. To expand the GDT system,
they suggest GPU-based parallelization in this study. The
required induction time can be reduced by more than
two orders of magnitude with their technique, even on
a standard PC with a medium-class graphics card. The
studies done on the supplied fake and real-world datasets
demonstrate that our method is quick, scalable, and capable
of exploring big data. In [26], suggested method known
as the Evolutionary Multi-Test Tree (EMTTree), which has
the ability of structure self-adaptation with the data being
examined at the time, is described. Their solution’s better

model stability and higher forecast accuracy are without a
doubt its greatest strengths. The long tree induction time
and a few adjustable input parameters are the EMTTree’s
minor flaws, which come from utilizing an evolutionary
technique. The number of parameters that must be adjusted
is small, and gene expression data are still scarce. One of
the EMTTree framework’s features are evolutionary tree
induction as an alternative to top-down greedy algorithm.
Using this comprehensive strategy, they were able to avoid
the problematic pruning procedure and concurrently search
for tree structure and multi-test splits, generating a novel
algorithm in the process: The concept of gene clusters is
formed, and a new dimension to the multi-test is provided
by combining local optimizations with specialized EA to
find the most uniform multi-tests, including the top-ranked
genes: Every single-variable test in a multi-variable test has
a unique fitness function that favours minimizing tree error
over minimizing tree size, as is the typical strategy for DT.
This fitness function contains information about the ability
of genes to discriminate. They also include information on
gene ranking and split resemblance to prevent the predictor
from stuck in problem of underfitting/overfitting to data,
especially in the bottom regions of the tree. Figure 8 depicts
the flowchart for the EMTTree technique. According to a
comprehensive series of computational studies employing
35 real-world data sets in gene-expression, one of the
top DT-like classifiers for gene expression data at the
moment seems to be the EMTTree method. Importantly,
EMTTree keeps the predictive structures’ patterns under-
standable while not significantly expanding the tree’s overall
complexity. In [27] Since feature indices are also encoded
using real values and decoded using the finding the minimal
operation, they provide a method that transforms a DT
into a real-valued homogenous vector. With this method,
a variety of optimization techniques, including differential
evolution and evolution strategies can be used. Provide a
novel method in this study for building axis-parallel DTs
for classification issues utilizing EAs. Each node in axis-
parallel trees divides the dataset in accordance with the
following principle:

_ 1 ifa; <t
fx) = {O otherwise M

The two parameters that describe each node of the tree are
the threshold value and the index of a feature. Consider
the case when they have a real-valued vector with a fixed
length and values between [0, 1]. This vector’s two equally
long halves, the first of which holds feature indices whereas
the second encodes threshold values. Keep in mind that all
object features fall between [0, 1]. If not, they Normalize
the features. Finding the point in the first section of the
vector with the least value allows to determine the index of
a feature by figuring the remainder after integer division by
the number of features. The threshold value for the pertinent
node is represented by the value of the second component
of the vector at this point. The following step is to identify
a threshold value, the vector’s next-smallest value, and the

https://journal.uob.edu.bh

https://journal.uob.edu.bh

%
A0
>
§% u A

ol
o,k

Baas
106 1”’%%; Maryam H. Bahar; et al.: Decision Tree Induction Using Evolutionary Algorithms: A Survey.

v

Initialize P indivisuals with semi-
random top-down strategy

Evaluate indivisuals (fitness
calculation)

Convergence criteria satisfied
|-
I>

else

Perform ranking selection with
elitist strategv

v

Apply genetic operations to
generate new solutions

Figure 8. MTDT in a single node with N=1 and N=7 tests [26].

accompanying feature index in the node. This procedure is
continued until the entire vector has been utilized. A DT
without leaves can be made by successively connecting the
nodes while using the feature indices and their threshold
values for each node. The training dataset and the majority
rule are then used to add leaves to the DT. Consequently,
they can build a DT from a real-valued vector and assess
its properties. The population under the method of evolution
strategies, in contrast to the method of differential evolution
[28], consists of single individual:

p~x ©))
The following relation gives the individual initialization:
X =)a}u'n + r(x;nax _ xt}u‘n) (3)

r € [0, 1]: Uniformly random number distributed. Then, they
move the individual in the gradient-approximating direction
of the weighted total offsets.

n

x e x+ “n_l(g Z f(x + e;)e;)

i=1

a and o constants that user-specified. Bagging and boosting
are two of the most commonly used methods for creating
DT ensembles. A technique that employs a bagging ap-
proach is Random Forest, whereas a technique that uses a
boosting approach is AdaBoost. They suggest using the pre-
viously published EAs to replace the traditional algorithms
used in these methods to infer DTs. As a result, they now
have two new methods: evolutionary boost (EvoBoost) and
evolutionary random forest (EvoRF), which are analogs of

AdaBoost and Random Forest, respectively. Additionally,
they consider the (EvoEnsemble) method, which combines
the vectors from each ensemble tree to represent the en-
semble as a whole by having each population member act
as a representative of the entire ensemble. This method,
evolutionary ensemble, optimizes the entire ensemble si-
multaneously, so theoretically a better result should oc-
cur. On prominent datasets from the UCI repository, the
suggested algorithms outperform conventional methods like
CART, random forest, and AdaBoost in terms of quality, but
they require more time to produce comparable results. This
is because, in contrast to classical algorithms, techniques
using EAs build trees and assess their quality multiple
times during training. In [28], they suggested nonlinear
DT (NLDT) to represent a nonlinear function of features
at each non-terminal conditional node, which would be
used to build a split-rule. The data will be split using each
split-rule into two separate, non-overlapping subgroups.
The tree is permitted to continue growing until one of
the termination conditions is satisfied as these subsets are
divided up in ever more hierarchical ways. In their opinion,
by making nonlinear split rules available at conditional
nodes, a more adaptable DT will be created (instead of the
single-variable-based rules included in conventional ID3-
based DTs). (Having fewer nodes). Second, a unique bilevel
optimization approach is utilized to construct the split rule
at a particular conditional node, treating the learning of the
rule’s structure and related coefficients as two hierarchically
connected optimization tasks. Thirdly, the approach they
propose is specialized for addressing classification issues,
leading to a computationally efficient bilevel optimization
procedure. Fourth, to ensure that the rules we obtain are
likewise clear, they emphasize the growth of simple rule
structures using our unique bilevel optimization method.
For their proposed technique, Figure 9 depicts a nonlinear
DT (NLDT) as an interpretable classifier. Conditional (or
non-terminal) nodes and terminal leaf nodes make up the
DT (DT). The results demonstrate the effectiveness of the
bilevel-based NLDT strategy for classification problems,
which reduces the size of the rules set to a level comparable
to the standard DT (for example, CART) and is more
straightforward than a single complex rule produced by an
SVM algorithm. As a result, their nonlinear rules have a
low level of complexity, making them easier to understand
and useful for both basic classification tasks and improving
classifier comprehension. In the paper [29], DT Improved
by Multiple-Splits with EA for Discretization (DIMPLED),
aunique EA, is offered as a method for global discretization.
The suggested DIMPLED method maintains the proper
amount of interpretability with a single DT while gradually
enhancing the discretization technique for better perfor-
mance. Additionally, when used with k-means clustering
for DIMPLED enables a tree augmentation with a variety
of splits that can be meaningful and understandable for
practitioners. The entire structure is first presented, and then
each individual phase is thoroughly explained. A synopsis
of the suggested DIMPLED framework may be found in
Figure 10. The proposed DIMPLED method preserves the

https://journal.uob.edu.bh

https://journal.uob.edu.bh

i
LN
%)

Ll faas

Uy

10 Allgy

Int. J. Com. Dig. Sys. 15, No.1, 99-113 (Jan-24) = 107

Bilevell

Node 3
PP Bilcvels
No

fi<=0
Yes f -~
v

Bilevel2 N
\
'
’

Node 2
fofx)<=0

Yes
‘ Class-1 | Class-2

Bileveld |id Yes

i
5
0

Figure 9. A Non-linear DT (NLDT) classifier is demonstrated for a
two-class problem. A specific bilevel-optimization technique is used
to evolve the split-rule function fi(x) for a given conditional node i
[28].

Start

-
N

‘ Create the initial pobulation |

Evaluate fitness values

P Ao
il e
Yes _— Is the termination
-~

T condition met'.’/

No

Select survivors

Reproduce chromosomes with
mutation and crossover

< Terminate

Figure 10. Overall Framework of DIMPLED [29].

appropriate degree of explicability with a single DT while
gradually improving the evaluation technique for improved
performance. When combined with k-means clustering for
global, DIMPLED allows a tree to have many clear and
relevant splits. The DT that was enhanced by DIMPLED
performed better than single-decision-tree models (C4.5
and CART), which are routinely employed in practice,
and it was compete with ensemble approaches, which use
several DTs. Experimental findings employing two real-
world sensor datasets served as proof of this. Although
group techniques may occasionally produce somewhat bet-
ter performances, the suggested method has a more obvious
structure while maintaining a suitable performance level.
The authors in [30] suggest a Baldwinian evolutionary
strategy to improve the state-action function and the tree’s
structure at the same time. In contrast to Darwinian evo-
Iution and Lamarckian evolution, the evolutionary theory
known as Baldwinian evolution holds that an individual’s
life experiences are not passed on to their descendants.
The individual’s knowledge may, nevertheless, represent an
evolutionary advantage that changes the fitness landscape.
They do this by employing an evolutionary approach to
evolve the DT’s structure and Q-learning to train the state-
action function. In this method, they look for trees that
divide the state-space in such way that, when the agent takes
the best possible actions, the reward is maximized. The

Grammatical Evolution is the EA that they employ (GE).
Figure 11 displays a block diagram that demonstrates how
the proposed approach functions inside. The evolutionary
processes that are part of our method are depicted in blue,
while the reinforcement-learning processes are shown in
red. The findings indicate that the suggested method can
produce DTs that are much more interpretable and out-
performs the non-interpretable state-of-the-art. The results
of this study also suggest that interpretable models may
be competitive with cutting-edge approaches and that the
generally accepted performance-interpretability trade-off is
not necessarily true. This calls for encouraging study in
the area. The authors in reference [31] seek to enhance the
performance of decision trees (DTs) through the integration
of an evolutionary algorithm (EA) with interpretable rein-
forcement learning (RL) techniques. As the evolutionary
algorithm (EA) progresses, it refines the architecture of
the decision tree (DT), while the reinforcement learning
(RL) algorithm seeks to optimize the actions executed
by the terminal nodes. The researchers utilize the Multi-
dimensional Archive of Phenotypic Elites (MAP-Elites)
algorithm to enhance the diversity of hybrid models across
a feature space that encompasses both the complexity of
the model and its variability in behavior. MAP-Elites, also
known as MAP-Elites, is a quality-diversity algorithm that
maintains a collection of optimal solutions that exhibit dis-
tinct characteristics based on a specified feature descriptor.
The inclusion of a descriptor is an essential component of
the MAP-Elites algorithm as it enables the categorization
of individual solutions and facilitates the storage of diverse
solutions inside the archive. It is imperative to recognize
that the terminology employed to describe a solution need
to be detached from the solution’s level of effectiveness.
Indeed, if the chosen attributes exhibit a strong correlation
with the fitness measure, the illumination pattern would
not hold substantial relevance. The researchers conducted
experiments using two tasks, Cart Pole and Mountain Car,
sourced from the Open AI Gym collection. They proceeded
to compare the outcomes achieved by the MAP-Elites
approach with those produced through the use of Genetic
Algorithms (GE). The subsequent analysis focused on the
outcomes of the two evolutionary algorithms (EAs) in
relation to their performance and capacity to provide illu-
mination.” This evaluation was conducted within the context
of a feature space that was delineated by model complexity
and behavioral variability. The researchers noted that in both
challenges, MAP-Elites was able to identify solutions that
effectively solved the task while also efficiently illuminating
the feature space, in comparison to GE. Furthermore, it is
worth noting that both evolutionary algorithms (EAs) gen-
erated models with low complexity, hence enhancing their
interpretability. However, in the context of the Mountain
Car challenge, it was seen that the ME algorithm identified
that one specific action was not essential for successfully
accomplishing the objective.

https://journal.uob.edu.bh

https://journal.uob.edu.bh

%
AR
>
= -
ieﬂJ-‘J
& >

o

Baas
108 1”’%%} Maryam H. Bahar; et al.: Decision Tree Induction Using Evolutionary Algorithms: A Survey.

TABLE III. Illustrates the chronology of EAs for DT induction

Ref

Year

Evolutionary
Techniques

Dataset

Work Summary

[14]

2011

Genetic
programming
Generally evolve
DT t-statistics
mutual information

Kent ridge
biomedical
dataset

Comparison between GP and Generally evolve DT. Shows that
GP has the opportunity to rank the attributes. This feature was
utilized to cross-check the accuracy of forecasting.The perfor-
mance of the Gaussian Process (GP) model, combined with
feature selection, demonstrated exceptional results, achieving
an average accuracy ranging from a minimum of 98.33% (when
employing t-statistic for feature selection) to a maximum of
100% (when utilizing mutual information for feature selection).
And the GATree algorithm, when combined with feature selec-
tion, demonstrated exceptional performance, with average ac-
curacies ranging from a minimum of 85.00% (when employing
t-statistic for feature selection) to a maximum of 88.33% (when
utilizing mutual information for feature selection).

[15]

2012

EDTs

UCI medical
datasets

Using (EDTs) for medical problem-solving gives more inter-
pretability for individual decisions than black-box complex
decisions in neural networks classifiers.

(11]

2013

Evolutionary
approaches

UcCI
repository

This analysis aims to evaluate the evolutionary design process
of decision trees (DTs) with respect to their key properties,
such as accuracy, tree size, and utilized attributes. The selection
of a particular method necessitates a careful consideration of
striking a balance between accuracy and complexity. Among
the available options, they opted for the one that exhibits the
most favorable balance between complexity factors such as the
number of nodes, depth, and the utilization of various qualities,
and accuracy. The decision tree model consists of 19 decision
nodes, also known as leaf nodes. When evaluated on a test set
containing unseen cases, the model achieves an accuracy of
85.63%.

[16]

2013

HEAD-DT

Microarray
gene
expression
data from 35
real-world
datasets

Evolves hyper-heuristic top-down decision-tree induction de-
sign components in light of recent advances in autonomous
machine learning algorithm design. It automatically creates
categorization data set specific to decision-tree induction ap-
proaches (or application domains).The performance of HEAD-
DT was evaluated using two distinct predictive performance
measures, namely accuracy and F-measure. The results of the
experimental analysis indicate that the decision-tree induction
algorithms developed by HEAD-DT demonstrated superior
performance compared to the three baseline approaches (CART,
C4.5, and REPTree) in 9 out of 10 experiments. In relation to
statistical significance, the predictive performance of HEAD-
DT was shown to be considerably greater than that of all three
baseline methods in two trials. Additionally, it was observed
that HEAD-DT never exhibited a significantly poorer predictive
accuracy compared to any of the three baseline methods in any
experiment.

https://journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 15, No.1, 99-113 (Jan-24)

<

S
A0)

Lle faa;
s,
K

%,

10 Allgy

109

Datasets of

The classification process for gene expression data is discussed.
A unique splitting criterion was developed to improve clas-
sification accuracy and reduce DT underfit on specific types
of data.All classifiers, including the MTDT algorithm, were
utilized using the default parameter values on all datasets. The
findings indicate that employing the Minimum Total Deviation
Tree (MTDT) algorithm with a total of seven tests in a single
node resulted in the highest average accuracy of 82.20%
across all categorization tasks. In a general sense, it is evident
that more intricate techniques such as Random Forest (RF),
AdaBoost (ADA), and Bagging (BG) exhibit superior perfor-
mance compared to conventional non-ensemble algorithms that

[17) 2014 MTDT actual _ sene produce simpler solutions. The MTDT approach successfully
expression . : . X
attained a high level of accuracy, while ensuring the preser-
vation of complete classification rules by the utilization of
uni-variate tests in multi-test splits. Based on the findings of
the Friedman test, a statistically significant distinction (p-value
of 0.0215) has been observed among the evaluated classifiers.
According to the findings of Dunn’s Multiple Comparison Test,
there exists a statistically significant distinction in quality when
comparing the MTDT (with a sample size of 7) to both the
BF and j48 trees. The AD classifier was not included in the
statistical analysis due to its inability to be applied to a dataset
with multiple classes.
An evolutionary method with many objectives is suggested to
develop binary DTs for categorization. The overall high accu-
racy of the EVO-Tree algorithm demonstrates its strong capa-
bility in handling datasets characterized by a limited number of
features in comparison to a large number of characteristics. The
Public UCI EVO-Tree training technique has demonstrated superior effi-
[18] 2014 EVO-Tree d cacy in extracting valuable information and generating decision
ata sets . . 2 .
rules from challenging datasets, in comparison to traditional
decision tree algorithms. It is believed that the usefulness of
employing evolutionary algorithms (EA) lies in their ability
to optimize tree structures, hence preventing the occurrence
of local minima. This is particularly advantageous as classical
decision tree induction procedures are prone to such limitations.
35 freely
accessible (EMTTree) may help molecular biology uncover biomarkers,
datasets gene-gene interactions, and high-quality predictions, which
for gene | significantly improved the DT’s accuracy and stability and
expression, kept predicted structural patterns understandable by not in-
[26] 2019 Evolutionary Multi- | The creasing tree complexity. EMTTree has demonstrated superior
Test Tree (EMTTree) | information performance in classification accuracy over a range of over 20
relates to | datasets. On average, it has achieved a classification accuracy
various that surpasses state-of-the-art solutions by more than 6% and
cancer outperforms the latest algorithm (HEAD-DT) specifically cre-
subtypes ated for gene expression data by 4%.
or kinds.

https://journal.uob.edu.bh

https://journal.uob.edu.bh

110

ey

§’~+:1J'-uj

AL
%,
Ry

&

RIS

Baas
j Maryam H. Bahar; et al.: Decision Tree Induction Using Evolutionary Algorithms: A Survey.

(19]

2017

GPU-based
parallelization of
DT evolutionary
induction

The
experimental
validation,
carried

out using
synthetic
datasets of
various sizes

The objective is to enhance the efficiency of the GDT system
and enable effective induction of DTs through evolutionary
processes. To do this, it is proposed to implement parallelization
techniques that leverage the computing capabilities of modern
GPUs. This approach would allow the GPUs to handle compu-
tationally intensive tasks such as fitness calculation, so freeing
up the CPU to perform other responsibilities.The researchers in
this study exclusively emphasized the temporal performance of
the GDT system, therefore omitting the inclusion of results per-
taining to classification accuracy. Nevertheless, the GDT system
successfully generated trees with optimal architectures and
achieved nearly flawless accuracies (99-100%) for all simulated
datasets that were examined. The experimental results obtained
from both simulated and real-life datasets demonstrate that
our proposed approach exhibits high efficiency and scalability.
Specifically, our solution is capable of effectively handling
large-scale data, as seen by the successful execution of tree
induction on a dataset comprising 20,000,000 instances within
a time frame of 20 minutes. In contrast, the sequential technique
would require almost 8 days to do the same task.

(27]

2020

Building an ensem-
ble of DTs

Several
well-known
datasets from
the UCI
collection

Encoding a DT as a real-valued- homogeneous vector since
feature indices are also real numbers, and decoding by finding
the minimum. This method supports differential evolution,
evolution strategies, and other optimization methods. This
method demonstrates superior quality compared to traditional
approaches such as CART, random forest, and AdaBoost.
However, it is worth noting that in order to attain these elevated
performance levels, the proposed algorithms require a greater
amount of computational time in comparison to the classical
algorithms.

(28]

2021

DIMPLED

CNC and pas-
teurizer

Increases discretization performance while maintaining inter-
pretability with a single DT. DIMPLED allows a tree to have
many meaningful splits when used with k-means clustering for
global discretization. The findings indicate that while CART
and DIMPLED have comparable interpretability capabilities,
DIMPLED demonstrated superior performance in both training
and test accuracies compared to CART. Moreover, the DIM-
PLED framework has the capability to discover the underly-
ing factors that contribute to a particular issue, as well as
the relationships and connections between these factors. The
DIMPLED method demonstrates superior interpretability in
comparison to other tree-based algorithms. Furthermore, it can
be observed that DIMPLED demonstrates the ability to enhance
the decision tree through the employment of an evolutionary
process for global discretization. This is evidenced by the tree’s
notable superiority in terms of performance when compared to
the C4.5 and CART algorithms. Moreover, the model and its
discretized properties possess a high degree of transparency
and interpretability, hence enhancing the comprehensibility of
manufacturing systems.

https://journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 15, No.1, 99-113 (Jan-24) =

0
£y

A0)

Ll faas

2,

10 Allgy

111

There are: e
2 real-world
classification
tasks e 3
real-world
optimization Each non-terminal conditional node represents a nonlinear
challenges e | characteristic function for a split rule. Each split rule separates
4 custom test | data into two sections that don’t overlap. The tree grows
1291 2020 NLDT (nonlinear | problems e | hierarchically until one of the termination requirements is met.
DT) 1 multi-class | The effectiveness and practicality of the suggested method have
problem e | been extensively shown by the achieved outcomes on well-
8 multi- | established classification benchmark problems and a real-world
objective single objective problem.
problems
totaling
between 300
and 500
features.
Op en Al Gyrg DT-based interpretable reinforcement learning. Two-level opti-
environments: o . .
o e CartPole- mization thaF comt'nn'es EAS and Q-learning. The autho.rs put
Baldwinian vl R forth a two-tier optimization approach for the purpose of induc-
[30] 2023 evolutionary M . ing decision trees in reinforcement learning environments. The
ountainCar- . TR .
approach v0 o | trees acquired exhibit similar (or, superior) efficacy compared
L to cutting-edge methodologies, while possessing significantly
unarLander- . -
v greater interpretability.
The application of an evolutionary algorithm (EA) in conjunc-
tion with interpretable Reinforcement Learning (RL) is em-
ployed to iteratively refine Decision Trees (DTs) by leveraging
the Multi-dimensional Archive of Phenotypic Elites (MAP-
Elites) framework. Evolutionary algorithms (EA) are responsi-
ble for the evolution of the decision tree (DT) structure, whereas
reinforcement learning (RL) focuses on optimizing the actions
Open AI Gym | performed by the terminal nodes of the tree. The MAP-Elites
[31] 2023 MAP-Elites library, e Cart | algorithm is a quality-diversity (QD) approach that preserves
algorithm Pole e Moun- | a repository of optimal solutions, utilizing a specified feature
tain Car descriptor. The findings of the study indicate that the MAP-
Elites algorithm shown superior efficiency in solving the tasks
as compared to the Genetic Algorithm (GE). Additionally, both
evolutionary algorithms (EAs) yielded models that exhibited
low complexity and high interpretability. Nevertheless, it was
found that in the context of the Mountain Car task, there
existed an action that was deemed superfluous in achieving the
objective.
Q-leaming

Initialization

‘ Genotype ‘_,| Phenotype " Environment
Reward

Figure 11. A diagram showing the suggested algorithm’s internal

structure. [30].

7. CONCLUSIONS

Decision trees are a popular classifier representation. In
recent years, greedy divide-and-conquer algorithms for de-
cision tree induction have grown less popular. Decision tree
evolution has been studied extensively. This paper reviews
the literature on evolutionary algorithms and decision trees.
We also defined key steps of an evolutionary algorithm
for decision tree induction and component evolution, which
might help interested readers create their own EAs using
a wide list of design options and techniques. The paper

https://journal.uob.edu.bh

https://journal.uob.edu.bh

112

&

v

W

Lk

30 My,
%,
W

&

Baas
"’”'wj Maryam H. Bahar; et al.: Decision Tree Induction Using Evolutionary Algorithms: A Survey.

addresses important factors for evaluating the proposed ap-
proaches, including processing time, accuracy, and required
space. This comprehensive evaluation enables readers to
understand the strengths and weaknesses of different meth-
ods and make informed decisions when applying them in
practical scenarios.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Z. Michalewicz and Z. Michalewicz, GAs: Why Do They Work?
Springer, 1996.

N. Tohidi, C. Dadkhah, and R. B. Rustamov, “Optimizing persian
multi-objective question answering system,” International Jour-
nal on Technical and Physical Problems of Engineering (IJTPE),
vol. 13, no. 46, pp. 62-69, 2021.

R. Samsami, “Comparison between genetic algorithm particle
swarm optimization and ant colony optimization techniques for nox
emission forecasting in iran,” International Journal on “Technical
and Physical Problems of Engineering”(IJTPE), International Or-
ganization of I0TPE, pp. 80-85, 2013.

John

H.-P. Schwefel, Numerical optimization of computer models.
Wiley & Sons, Inc., 1981.

J. R. Koza, “G6. 1 classifying protein segments as transmembrane
domains using genetic programming and architecture-altering oper-
ations.”

L. J. Fogel, A. J. Owens, and M. J. Walsh, “Artificial intelligence
through simulated evolution. john willey & sons,” Inc., New York,
1966.

T. Blickle and L. Thiele, “A comparison of selection schemes used in
evolutionary algorithms,” Evolutionary Computation, vol. 4, no. 4,
pp- 361-394, 1996.

A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control
in evolutionary algorithms,” IEEE Transactions on evolutionary
computation, vol. 3, no. 2, pp. 124-141, 1999.

M. Kamber and J. Pei, Data mining. Morgan kaufmann, 2006.

A. A. Freitas, Data mining and knowledge discovery with evolu-
tionary algorithms. Springer Science & Business Media, 2002.

V. Podgorelec, M. Sprogar, and S. Pohorec, “Evolutionary design of
decision trees,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 3, no. 2, pp. 63-82, 2013.

P. G. Espejo, S. Ventura, and F. Herrera, “A survey on the application
of genetic programming to classification,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 40, no. 2, pp. 121-144, 2009.

R. C. Barros, M. P. Basgalupp, A. C. De Carvalho, and A. A. Freitas,
“A survey of evolutionary algorithms for decision-tree induction,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 42, no. 3, pp. 291-312, 2011.

A. Kulkarni, B. N. Kumar, V. Ravi, and U. S. Murthy, “Colon cancer
prediction with genetics profiles using evolutionary techniques,”
Expert Systems with Applications, vol. 38, no. 3, pp. 2752-2757,
2011.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

P. Kokol, S. Pohorec, G. §tiglic, and V. Podgorelec, “Evolutionary
design of decision trees for medical application,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 2,
no. 3, pp. 237-254, 2012.

R. C. Barros, M. P. Basgalupp, A. A. Freitas, and A. C. De Carvalho,
“Evolutionary design of decision-tree algorithms tailored to microar-
ray gene expression data sets,” IEEE Transactions on Evolutionary
Computation, vol. 18, no. 6, pp. 873-892, 2013.

M. Czajkowski, M. Grze$, and M. Kretowski, “Multi-test decision
tree and its application to microarray data classification,” Artificial
intelligence in medicine, vol. 61, no. 1, pp. 3544, 2014.

D. Jankowski and K. Jackowski, “Evolutionary algorithm for deci-
sion tree induction,” in Computer Information Systems and Indus-
trial Management: 13th IFIP TCS International Conference, CISIM
2014, Ho Chi Minh City, Vietnam, November 5-7, 2014. Proceedings
14. Springer, 2014, pp. 23-32.

K. Jurczuk, M. Czajkowski, and M. Kretowski, “Evolutionary induc-
tion of a decision tree for large-scale data: a gpu-based approach,”
Soft Computing, vol. 21, pp. 7363-7379, 2017.

E. Alba and M. Tomassini, “Parallelism and evolutionary algo-
rithms,” IEEE transactions on evolutionary computation, vol. 6,
no. 5, pp. 443-462, 2002.

M. Czajkowski, M. Czerwonka, and M. Kretowski, “Cost-sensitive
global model trees applied to loan charge-off forecasting,” Decision
Support Systems, vol. 74, pp. 57-66, 2015.

M. Grzes and M. Kretowski, “Decision tree approach to microarray
data analysis,” Biocybernetics and Biomedical Engineering, vol. 27,
no. 3, pp. 29-42, 2007.

M. Kretowski and M. Grzes, “Evolutionary induction of mixed de-
cision trees,” in Data Warehousing and Mining: Concepts, Method-
ologies, Tools, and Applications. 1GI Global, 2008, pp. 3509-3523.

M. Czajkowski and M. Kretowski, “Evolutionary induction of global
model trees with specialized operators and memetic extensions,”
Information Sciences, vol. 288, pp. 153-173, 2014.

M. Czajkowski, K. Jurczuk, and M. Kretowski, “A parallel approach
for evolutionary induced decision trees. mpi+ openmp implemen-
tation,” in Artificial Intelligence and Soft Computing: 14th Inter-
national Conference, ICAISC 2015, Zakopane, Poland, June 14-18,
2015, Proceedings, Part I 14. Springer, 2015, pp. 340-349.

M. Czajkowski and M. Kretowski, “Decision tree underfitting in
mining of gene expression data. an evolutionary multi-test tree
approach,” Expert Systems with Applications, vol. 137, pp. 392-404,
2019.

E. Dolotov and N. Zolotykh, “Evolutionary algorithms for con-
structing an ensemble of decision trees,” in Analysis of Images,
Social Networks and Texts: Sth International Conference, AIST
2019, Kazan, Russia, July 17-19, 2019, Revised Selected Papers
8. Springer, 2020, pp. 9-15.

S. Jun, “Evolutionary algorithm for improving decision tree with
global discretization in manufacturing,” Sensors, vol. 21, no. 8, p.
2849, 2021.

Y. Dhebar and K. Deb, “Interpretable rule discovery through bilevel
optimization of split-rules of nonlinear decision trees for classifica-

https://journal.uob.edu.bh

https://journal.uob.edu.bh

b
N

&)

%
’%

10 Allgy

X
Int. J. Com. Dig. Sys. 15, No.1, 99-113 (Jan-24) ”’*w-j 113

[30]

[31]

tion problems,” IEEE Transactions on Cybernetics, vol. 51, no. 11,
pp- 5573-5584, 2020.

L. L. Custode and G. Iacca, “Evolutionary learning of interpretable
decision trees,” IEEE Access, vol. 11, pp. 6169-6184, 2023.

A. Ferigo, L. L. Custode, and G. Iacca, “Quality diversity evo-
lutionary learning of decision trees,” in Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing, 2023, pp. 425—
432.

Maryam Hussein Bahar : Birthday:
24/10/1994 Birth Place: Najaf, Iraq Bache-
lor: Computer Science, Department of Com-
puter, Faculty of Education for Women, Uni-
versity of Kufa, Najaf, Iraq, 2012 Master:
Computer Science, Software Department,
Collage of Information Technology, Uni-
versity of Babylon, Babil, Iraq, 2016 The
Last Scientific Position: Assist. Lecturer As-
sist./Lecturer (Doctorate) Student, Software
Department, Collage of Information Technology, University of
Babylon, Babil, Iraq, Since 2020 Research Interests: Machin
learning, Image processing, Data Mining Scientific Publications:
2 Papers .

Hadeel Noori Saad : Birthday: 3/11/1973
Birth Place: Najaf/Iraq Bachelor: Computer
Science, Computer Science, Faculty of Sci-
ence, University of Babylon, Babylon, Iraq,
1995 Master: Computer Science, Computer
Science, Faculty of Science, University of
Babylon, Babylon, Iraq, 2001 Doctorate:
Computer Networks Iraqgi Commission for
Computers and Informatics Institute for
Postgraduate Studies, Baghdad, Iraq, 2006
The Last Scientific Position: Prof., Department of Computer
Science, Faculty of Education for Women, University of Kufa,
Najaf, Iraq, Since 2001 Research Interests: Computer Networks,
Machine Learning, Data Mining Scientific Publications: 7 Papers

https://journal.uob.edu.bh

https://journal.uob.edu.bh

	INTRODUCTION
	DECISION TREE
	DTS- EAS CONSTRUCTION
	THE ADVANTAGES OF EAS WITH DT INDUCTION
	THE DISADVANTAGE OF EAS IN DT INDUCTION
	REVIEW
	CONCLUSIONS
	References
	Biographies
	Maryam Hussein Bahar :
	Hadeel Noori Saad :

