
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 15, No.1 (Apr-24)

http://dx.doi.org/10.12785/ijcds/1501110

Revolutionizing Cloud-Based Task Scheduling: A Novel Hybrid
Algorithm for Optimal Resource Allocation and Efficiency in

Contemporary Networked Systems

Punit Mittal1, Dr. Satender Kumar2 and Dr. Swati Sharma3

1,2Department of Computer Science and Engineering, Quantum University, Roorkee, India
3Department of Information Technology, Meerut Institute of Engineering and Technology, Meerut, India

Received 27 Jan. 2024, Revised 14 Mar. 2024, Accepted 18 Mar. 2024, Published 1 Apr. 2024

Abstract: The need for cloud computing has increased in the age of contemporary networked systems, driving the pursuit of optimal
resource allocation and data processing. It is imperative in essential fields where security, such as transportation systems, depends
on computing performance. Even after much research has been done on managing resources in cloud computing, finding algorithms
that maximize job completion, minimize costs, and maximize resource consumption has remained a top priority. However, existing
techniques have shown limitations, which calls for new ways. Our work shows the novel hybrid approach that has the potential to change
the game completely. The Neural Network Task Classification (N2TC) is the result of merging neural networks with genetic algorithms.
This ground-breaking method skillfully applies the Genetic Algorithm Task Assignment (GATA) for resource allocation while utilizing
neural networks for task categorization. Notably, our algorithm carefully considers execution time, response time, costs, and system
efficiency to promote fairness, a defense against resource scarcity. Our method achieves a remarkable 13.3% cost reduction, a stunning
12.1% increase in response time, and a 3.2% increase in execution time. These strong indicators act as a wake-up call, announcing
our hybrid algorithm’s power and revolutionary potential in transforming the paradigms around cloud-based task scheduling. This work
represents a turning point in cloud computing, demonstrating an innovative combination of algorithms that not only overcomes current
constraints but also ushers in a new era of efficacy and efficiency with far-reaching implications outside the domain of transportation
systems.

Keywords: Cloud computing, Task Scheduling, Resource Allocation, Neural Network and Genetic Algorithm

1. INTRODUCTION
Recently, Cloud computing is a novel paradigm that

maximizes efficiency while reducing management interac-
tions [1]. This paradigm allows for distributed and paral-
lel computing and is the foundation for processing large
amounts of data, surpassing the capabilities of individual
machines limited by RAM capacities [2][3]. Nevertheless,
the exponential growth in cloud computing users and the
increasing demands of contemporary technology have made
resource allocation optimization in these environments even
more crucial [4]. At the same time, the convergence of
expanding vehicular networks and extensive cloud applica-
tions presents formidable cyber security challenges, given
the limited space and computing capacity of these networks.
The need for cloud services is growing daily, making
resource management increasingly important. A scheduling
algorithm based on a basic heuristic will not be employed
to meet consumer demands. While greedy and genetic

algorithms are effective in scheduling activities for neural
network applications, there is one significant drawback to
current methods: genetic algorithms have long execution
times [5][6]. Our research proposes a comprehensive strat-
egy to tackle this issue, which involves combining evolu-
tionary algorithms and neural networks to reduce computing
costs and optimize resource allocation [7][8].
Our suggested approach improves system efficiency and
maximizes resource use in various computing paradigms.
Our strategy guarantees comprehensive resource allocation
and scheduling by placing emphasis on justice, optimal
energy usage, minimized make span, load balancing, cost-
effectiveness, and system efficiency [9][10]. Unlike previous
methods, our approach uses neural networks to choose
jobs for scheduling using genetic algorithms. It dynami-
cally modifies resource allocation parameters for optimal
utilization, adapting flexibly to changing cloud computing
environments [11]. Additional research is required to ensure

E-mail address: punit.mittal06@gmail.com, deanacademics@quantumuniversity.edu.in
swati.sharma@miet.ac.in

https:// journal.uob.edu.bh/

http://dx.doi.org/10.12785/ijcds/1501110
https://journal.uob.edu.bh/

1552 Punit Mittal, et al.: Revolutionizing Cloud-Based Task Scheduling: A Novel Hybrid Algorithm...

that jobs are allocated to cloud resources in an efficient
manner, ultimately improving the quality of service criteria
and respecting service levels [12].
Efficient resource scheduling not only facilitates the com-
pletion of activities in a minimal amount of time but also
enhances the utilization ratio of resources, hence reducing
resource consumption. The allotment of jobs has set off an
important fact due to the rising burden felt by the cloud
data center. This growth in workload has the potential
to deplete cloud resources, therefore creating a shortage.
Therefore, the area of cloud is now in its early stages,
necessitating further investigation to effectively allocate
jobs to cloud resources and achieve the goal of schedul-
ing in order to enhance the quality of service criteria.
The objective of scheduling is to determine the optimal
allocation of resources for task execution. By doing so,
scheduling procedures can improve various QoS parameters
like task rejection ratio, resource utilization, reliability,
energy consumption, and execution cost. It is important to
achieve these improvements while ensuring that the service
level agreement (SLA) is not compromised. Additionally,
scheduling must take into account constraints such as dead-
lines and priorities and address the issue of load imbalance,
which refers to situations where resources are either over
utilized or underutilized.
The objective of our study are as follow:

• Meet the customer satisfaction in terms of execution
time, response time, utilization, and cost.

• Improve the scalability to adapt the changes occur
dynamically for the resources.

• Makes the use of neural networks to choose tasks
for evolutionary algorithm scheduling, dynamically
modifying resource allocation parameters for the best
possible use in changing cloud computing environ-
ments.

• Integrates evolutionary algorithms and neural net-
works to lower computing costs and improve resource
allocation, the research seeks to solve the difficulties
associated with resource allocation optimization in
cloud computing settings.

The major contribution of this paper are as follows:

• N2TC: Neural Network is used to classify the task
into different classes then they are fed to Genetic
Algorithm for scheduling. Our method can be used
dynamically in different cloud environments because
of the adaptability.

• GATA: Genetic Algorithm is used for scheduling of
task to virtual machines. This approach is dynami-
cally adapt the changes in demand of resources and
done allocation optimally.

• Our methods works on various factor such as execu-

tion time, response time, utilization, and cost for the
allocation of resources in data center.

• N2TC and GATA is used to improve the scalability
to meet the customer satisfaction by allocating the
optimal number of resources.

Furthermore, our N2TC and GATA provide insightful
data that enables cloud providers to strategically allocate
resources, thereby enhancing overall performance and cost
efficiency [13]. Our methodology outperforms advanced
methods, exhibiting notable improvements: a 3.2% reduc-
tion in execution time, a 13.3% cost reduction, and an
impressive 12.1% enhancement in response time. Effective
resource scheduling not only expedites task completion but
also reduces resource consumption.

The organization of rest of the paper are as follows;
Section 2, defines related work and provides a compre-
hensive analysis of existing literature and methodologies
relevant to cloud computing and task scheduling. In section
3, we introduced - N2TC and GATA, Elaborates task
classification using Neural Network with core principles be-
hind the modified Genetic Algorithm-based task-scheduling
algorithm. In section 4, discussing the configuration of
the CloudSim simulator and the integration of the hybrid
algorithm. Finally, in section 5, we discussed conclusion
and future works of the paper.

2. BackgroundWork
This section provides a brief synopsis of relevant works

divided into two categories: dynamic resource allocation
and meta heuristic-based resource scheduling.

A. Resource scheduling using heuristics
In [12], a Particle Swarm Optimization (PSO) algo-

rithm has been proposed, which assigns jobs to virtual
machines linked to physical data center equipment to max-
imize efficiency and prioritizes task scheduling in cloud
computing depending on work length. In a heterogeneous
machine-based data center, [14] used a parallel hybrid
evolutionary algorithm with an island model for job migra-
tion, concentrating on energy-aware scheduling to minimize
the makespan parameter. To reduce execution time and
concentrate the fitness function on elitism and generation
creation based on a threshold level, [15] presented a genetic
algorithm that uses a roulette wheel selection approach. An
integrated neural network and genetic algorithm technique
was given by [16], to minimize processor context switching
when managing simultaneous requests in a distributed sys-
tem, particularly in a federated cloud setting. The Growable
Genetic Algorithm (GGA) was presented by [17], combined
a Random Multi-Weight algorithm with a Heuristic-based
Local Search Algorithm (HLSA) to provide a growth stage
to the genetic algorithm, allowing individuals to evolve
along several growth paths. To augment the QoS param-
eters, [18][19] created a Directed Acyclic Graph (DAG)
scheduling model. This model uses resource provisioning

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 1551-1563 (Apr-24) 1553

and heuristic techniques to efficiently assign tasks to points
and arrange the running sequence of jobs.

B. Dynamic resource allocation
A load balancing technique aiming to minimize idle

time and makespan while limiting task migrations based
on VM load and leveraging task priority levels for QoS
in the cloud, simulated across sixteen data centers using
Cloudsim [20]. An energetic dynamic resource allocation
approach that considers arrival time and task size, en-
hancing response time, makespan, task completion ratio,
and resource utilization. Some limitations are apparent
in the research [21]. These include the lack of fairness
concerns, which may result in task starvation, and the use of
penalty functions in specific techniques, which may increase
computing overhead. Furthermore, some methods allocate
resources without considering crucial parameter balancing,
which leads to less-than-ideal scheduling. Our suggested
approach seeks to address these drawbacks.

C. Use of Genetic Algorithm
A crucial component of scheduling is managing the

distribution of resources for incoming activities, especially
in dynamic contexts where several jobs could occur at the
same time. [22] developed a queuing method to effectively
manage simultaneous task arrivals in order to overcome this
difficulty. With this method, jobs are queued up and wait
to be recalculated and reordered by the scheduling system.
The system works by processing jobs in the queue one after
the other, allocating them to the best resources possible
through the use of a Genetic Algorithm (GA). Its main
aim is to minimize execution time and maximize resource
consumption at the same time. It provides an algorithm
intended to address task scheduling difficulties by changing
genetic algorithms’ (GA) approaches. It also thoroughly
examines GA and its application to job scheduling inside
the Cloud computing area. The Max-Min technique is used
by the algorithm to generate the first population. This
strategy is purposefully meant to produce more optimum
outcomes, especially in terms of makespan. The purpose
of this change is to improve the efficacy and efficiency of
work scheduling procedures in cloud computing settings
[23]. The process of task scheduling is illustrated in Fig
1, whereby each user submits the tasks associated with
their application, and the Cloud provider utilizes several
methods to schedule these jobs. Optimization factors like
minimal makespan, resource usage, and minimum cost are
taken into consideration throughout the scheduling process.
Heuristic techniques like GA, PSO, and ACO are frequently
used to solve this optimization problem. These heuristic
algorithms optimize for different parameters, as mentioned,
providing workable solutions to the job scheduling puzzle
in cloud computing settings. The comparison of various
existing approach has shown in Table 1.

3. PROPOSED APPROACH
This section comprehensively describes our technique,

including the algorithms and architectural structure that

Figure 1. Task scheduling principles

Figure 2. Overview of the architecture featuring

form its foundation. A hybrid cloud architecture that com-
bined the features of public and private cloud services was
used to implement our approach.

A. Framework
The best thing in cloud computing is effective work

scheduling. Conventional schedulers are insufficient for this
purpose due to the variety of user applications [24][25].
Fig. 2 shows the framework of our proposed method, which
considers of 4 essential parts:

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1554 Punit Mittal, et al.: Revolutionizing Cloud-Based Task Scheduling: A Novel Hybrid Algorithm...

TABLE I. A Comparative study of existing method

Reference Approach Allocation Strength Drawback(s)

[12] Multi Adaptive Learning for Particle
Swarm Optimization

Static Makespan, Load Balanc-
ing

Dynamic and and real-
time scheduling are
missing

[14] Hybrid bi-objective discrete cuckoo
search algorithm (HDCSA)

Dynamic Makespan and Reliabil-
ity

Other dominance state-
of-the-art factors are
missing

[15] Hybrid Genetic Algorithm and En-
ergy Conscious Scheduling

Dynamic Minimized Makespan
and Energy

Other dominance state-
of-the-art factors are
missing

[16] RAA-PI-NSGAII Static Resource Utilization and
Allocation

Time consuming process

[18] Novel DAG scheduling model Workflow Makespan and Schedul-
ing

Limited to 26 tasks

[19] Hybrid heuristic Workflow Turnaround Time and
Response Time

Only 28 task is used

[20] Distributed load balancing algorithm Workflow Load Balancing Problem Consider only small
scale situations

[21] Multiple Adaptive-resource-
allocation Real-time Supervisor
(MARS) scheme

Workflow Response Time and Cost The proposed method
focus only IIoT

1) Scheduler: This module is the main engine for
job scheduling, managing all computing operations
in the system. It consists of two parts: N2TC and
GATA.

2) Dispatcher: Dispatcher oversees the allocation of
tasks to resources by evaluating resource conditions
and allocating tasks appropriately.

3) Resources: This group includes all server-side pro-
grammers and tools that are used to process requests
from clients, including file retrieval and computation.

4) Resource Table: Throughout the scheduling process,
it is crucial to keep an eye on the availability
of resources. This table displays the workload and
recent status of each resource.

B. Model Mathematical
Procedures and formulas used in the N2TC and GATA

module and two essential parts of the RAM module pub-
licized in Fig. 2 are outlined in this section. In spe-
cific, we include formulas compulsory for task weighting,
parameter-based categorization, and a fitness assessment.
The acronyms that are shown in Table 2.

The task weight TWi is determined by equation (1),
which takes cost, execution time, and system efficiency
characteristics into account. Depending on the state of the
system, each parameter’s starting weight is dynamically ad-
justed. Limited previous data is used to estimate parameter
values for a new task entering the network [26][27].

TWi = [WP(ET) ∗ ETi] + [WP(C)) ∗Ci] + [WP(S E) ∗ S Ei]
(1)

Where i = 1, 2, 3....n Whereas WP(C) indicates the weight

given to cost, WP(S E) indicates the weight given to system
efficiency, and WP(ET) shows the weight given to execu-
tion time. Task i’s execution time is shown by ETi , its cost
is indicated by Ci, and its system efficiency is indicated by
S Ei.

|TWi −CWi| <∈→ TCr = i ∪ TCr (2)

In order to minimize the value of this function, equation
(3) computes the fitness value for every task by taking
response time and cost into account. Class size is denoted
by TC[r], class number is denoted by q, and task number is
denoted by p. Task p within class q is indicated by TC[q,p].
F is a fairness-related parameter.

TC[q, p] = min[
r∑

q=1

S Cr∑
p=1

RT (CTq,p +C(TCq,p)) ∗ F] (3)

Equation (4) is used to increase the significance of
fitness function while a task i from the prior scheduling is
still in queue Q. The goal of this strategy is to increase the
probability of carrying out tasks, which have been queued
for the next iteration.

Fi =

{
0.9 ∀i ∈ Q
1 otherwise (4)

Tasks with comparable weights can be grouped into distinct
classes by using Equation (2), which compares a task’s
weight to the average weights of different task classes.
The notation TWi denotes the total weight of task i as
determined by Equation (1), CWr is the class r average
weight, and TWr is the total number of tasks in class r.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 1551-1563 (Apr-24) 1555

TABLE II. List of Abbreviation

Abbreviation Meaning

CW Class Weight
ET Execution Time
F Fairness

MR Minimum Resources required
Q Queue
r Class Number (1,3)

RT Response Time
SC Size of Class
SE System Efficiency
TC Tasks of Class
TW Weight of Task
WP Weight of Parameter

C. Proposed Scheduling Algorithm
The method is a suggested scheduling procedure with

an input task list. The method uses a three-class structure
to classify tasks into distinct groups according to weighted
features. If a job from the earlier scheduling step is still
in the Q after this classification, its class rank is raised.
For example, a job in the queue from the previous phase
that belongs to class 2 is transferred to class 1. Following
the assignment of each task to its proper class, the idle
network resources and class 1 jobs are compared. If the
quantity of idle resources is less than or equal to the total
number of tasks in class 1, the class 1 tasks are directed to
the GA.
Otherwise, there are also assignments from class 2. Tasks
from class 3 are considered if idle resources remain after
submitting assignments from classes 1 and 2. Because
idle resources are finite, their availability is critical, and
their quantity can change according to how many tasks
are engaged at any particular point in time throughout
execution. The chosen tasks are then fed into the GA. The
fitness function value for every chromosome is calculated,
and the first population is created at random. The gene’s
fitness function value for activities that were queued
up from the last scheduling is increased by 10%. Next,
chromosomes are arranged in descending order according
to their fitness ratings.
The method selects parents iteratively by utilizing two-
point crossover, modifying genes inside chromosomes,
and applying elitism. Searches conducted locally around
altered genes seek to find greater fitness values. This
method continues until the iteration count hits the preset
limit or an ideal task set is discovered. In terms of
temporal complexity, the initial nested loop increases the
total complexity by O(n), where n is the number of jobs.
The while loop’s complexity, which is determined by the
quantity of idle resources denoted by the symbol m, is
O(m). Sorting needs O(nlogn) time, the initial population
setup requires O(n) time, and the final while loop has
O(kn) complexity. O(nlogn+kn+m) is the total complexity
of the time evaluation. The complexity if k and m are

substantially smaller than n is O(nlogn).

Algorithm: Optimized Task Scheduler

Input: Number of inputs t
Output: Optimal data
1. for each inputs in t
2. for each class in [1,2,3]
3. if(homogeneous inputs class)
4. if(t in waiting and class > 1)
5. jump input to class (class - 1)
6. else
7. write inputs in class
8. while(n free assets > inputs)
9. inserting inputs from classes by scheduler
10. Initializing number of inputs
11. for each allele in the waiting queue
12. Updates the allele with fitness
13. Sorting components as per fitness
14. while((!Optimal data) or (iteration!=max))
15. Pick parent node highest fitness
16. Pick two-point hybridization
17. Transform allele within components
18. Build adjacent search for betterment of allele
19. Pick transformation
20. return optimal number of inputs

D. Neural Network Task Classification (N2TC)
1) Neural network infrastructure: N2TC is used for

cloud computing input task classification. A feed-
forward back-propagation neural network is utilized
in our model.

2) Data Preparation: To begin, divide the data into
three parts: seventy percent for training, 16% for net-
work validation, and 16% more for network testing.
While there isn’t a set ratio, the traditional split of
70:30 is frequently accepted as standard [28]. Data
for train tests and validation is chosen at random to
maximize performance across these stages.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1556 Punit Mittal, et al.: Revolutionizing Cloud-Based Task Scheduling: A Novel Hybrid Algorithm...

Figure 3. Equation-5 for transformation

3) Transformation: A derivative function, the sigmoid
logarithmic transfer function, is frequently employed
in back-propagation-trained multi-layer networks.
Equation (5) is a typical illustration of this function:

A =
1

1 + e−net (5)

Where:

• A represents the output of the sigmoid logarith-
mic transfer function.

• net is the result of the weighted sum of inputs:∑n
1 Wi ∗ Xi.

• Xi Denotes the input value.
• Wi signifies the weight associated with the

respective input.
The sigmoid function, shown in Fig. 3, which trans-
lates input to a range between 0 and 1, is the
activation function used in neural networks and is
described by this equation. It helps with non-linear
transformations and the learning of intricate patterns
in the data.

4) Training: During training, we iteratively update the
weights and biases using the scaled conjugate gradi-
ent approach. The following circumstances mark the
end of the training process:
• There are now more epochs than possible.
• Time goes beyond the set upper bound.
• Performance on the network declines below a

given level.
• The performance graph’s gradient is below the

minimum threshold.
• Validation performance confirmation indicates

a decrease from the last check.
5) Function of Performance: The efficiency function

is used in Equation (6) to calculate the average
squared errors between the target and the output.
Declining network performance is the reason for
the early termination of network training. Network
training ends when there is a greater difference

between the output and the aim.

per f ormance =
1
n

n∑
i=1

(Y∗(i) − Y(i))2 (6)

Memory reduction is another important factor taken into
consideration in this network, with the goal of acceler-
ating network execution. Although more layers result in
improved network accuracy, they also increase run-time.
Our thorough analysis revealed that the neural network’s
20 hidden layers produced the best outcomes. High-priority
jobs inside N2TC are sent to GATA and are divided into
three segments. The N2TC task classification standards en-
compass execution time, cost, and system efficiency. Tasks
from previous periods that are still in the waiting queue
are advanced one level so they can be completed in order
to prevent task hunger. Furthermore, in cloud computing,
if there are more tasks designated as first priority than
resources accessible, the lower priority activities are routed
to GATA to optimize resource usage inside the network.

E. Genetic Algorithm Task Assignment (GATA)
Our method uses cloud computing resources to cus-

tomize Genetic Algorithm Task Assignment (GATA) for
task selection. We go from a binary to a decimal repre-
sentation of chromosomes in order to maximize storage
efficiency. Each gene on a chromosome stores a decimal
number that represents the resources that are accessible.
This paper proposes a modified Genetic Algorithm (TS-GA)
to handle the problem of job scheduling in cloud computing
settings. Its goals are to maximize resource consumption,
minimize resource use costs, and improve job completion
times on virtual machines (VMs). This suggested algo-
rithm’s selection approach inside the population is where the
main novelty resides. In contrast to conventional techniques,
our strategy keeps solutions that might not be selected for
crossover but have excellent fitness. These fixes remain in
the population and are added back in during later rounds.
This approach has the benefit of preventing the premature
discarding of potentially optimum solutions, which raises
the possibility that the best solution will be found after
several rounds.

Initial Population: The population initialization in the
suggested TS-GA approach is carried out via random
generation utilizing encoded binary (0, 1). This approach
includes task-scheduling solutions represented as genes or
chromosomes, where each gene or chromosome has the
Virtual Machine (VM) ID and the associated ID for every
job that is scheduled to run on these VMs. Each virtual
machine (VM) and the tasks assigned to it are converted into
binary bits as part of the encoding process. This encoding
process serves as the foundation for the TS-GA technique,
which is essential for improving task scheduling methods in
cloud computing settings by enabling the systematic repre-
sentation of VM-task assignments inside the chromosomal
structure.
Selection Function: One notable feature of tournament

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 1551-1563 (Apr-24) 1557

Figure 4. Genetic Algorithm

selection is its parallel implementation, appropriateness, and
computational efficiency [29][30]. Tournament Selection is
used in the developed TS-GA method to overcome the
restriction related to population size limitations. Two people
are chosen at random from the population in this approach.
Next, a random integer between 0 and 1 is selected, rep-
resented by the letter r. The more fit of the two people is
picked as a parent if r < k, where k is a preset threshold;
if not, the less fit person is picked. The people who were
not selected are subsequently reincorporated into the initial
population and are still open to selection in later rounds.
This technique reduces the restrictions imposed by popula-
tion size limits while optimizing the selection process inside
the genetic algorithm framework, improving its capacity to
traverse complicated solution spaces efficiently.
Crossover: A unique crossover strategy used in the
proposed TS-GA algorithm differs from the traditional
crossover method used in the original GA. Here, the kids
that come from the crossing process of two chromosomes
are also considered as possible parents. Thus, this spe-

Figure 5. Representation tasks and VM

cific crossover mechanism produces four offspring from
the crossover process. The two best children are then
chosen from these four kids to be processed further by
the algorithm. This novel crossover strategy increases the
genetic variety and the likelihood of finding better solutions
within the population, improving the algorithm’s overall
performance in navigating complex solution spaces.
Mutation: In our scenario, the likelihood of a mutation is
5%. This change adds genetic material to the gene pool,
which might lead to new gene values. These newly added
gene values provide the genetic algorithm more exploration
power, which increases the possibility of producing better
results than previous iterations [31]. Mutation introduces
genetic variation and provides a technique to escape local
optima, which allows the algorithm to explore a more
extensive solution space and maybe converge towards better
answers.
Fitness Function: Task scheduling in the cloud is princi-
pally concerned with reducing the time needed to complete
all tasks on the available resources as quickly as possible.
Equation (7) [32] defines this completion time, Ti, j for job
i on V M j.

Ti, j = S j ∗Ci (7)

Where Ti, j taking into account i tasks and j virtual ma-
chines, denotes the maximum time for task i on V M j to
be completed. Ci is the Task’s computational complexity,
and S j is the virtual machine’s processing speed. It is
necessary to schedule the execution times of all tasks
among several virtual machines in order to minimize this
completion time, which is represented by Ti, j. Equation (8)
yields the processing time for a given job Pi on a chosen
virtual machine V M j:

ETi, j = S j ∗CiCi (8)

In this case, Task Pi’s processing time on V M j is rep-
resented as ETi, j. This calculation makes it possible to
evaluate execution duration for various activities and virtual
machines in detail, which serves as the foundation for
efficient scheduling techniques meant to reduce completion
times in cloud computing environments.

Equation (9) may be used to calculate the processing
time for each job in a virtual machine [32].

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1558 Punit Mittal, et al.: Revolutionizing Cloud-Based Task Scheduling: A Novel Hybrid Algorithm...

Figure 6. CloudSim Behavior [17]

f itness =
{ ∑n

i=1 RTi + MRi Taski < Q
0.9 ∗

∑n
i=1 RTi + MRi otherwise (9)

The minor level of the fitness value inside the fitness
function characterizes the chromosome’s optimality. The
necessary resources for the task i are indicated by MRi.
Tasks with lower resource requirements are more economi-
cal. Furthermore, RTi represents the response time for task
i, which should be as small as possible. Once each gene’s
fitness function has been established, the fairness parameter
determines if task i has remained in the queue from an
earlier schedule. The fitness value of tasks still in the queue
is increased by 10%, giving them more opportunities to get
resources and reducing the likelihood of famine. The goal
of this intervention is to keep resource allocation equitable.
Optimal Solution: Some solutions in the suggested TS-
GA method may have the best fitness functions but have
yet to be chosen in the crossover phase. A novel aspect
of this strategy ensures that these answers are not removed
from the population; instead, they are specifically selected
and reintroduced once the subsequent iteration begins. This
tactical move is essential because it keeps potentially valu-
able solutions in the population, raising the possibility that
the optimal solution may be found in later rounds. The
algorithm maintains variety and the possibility of finding the
best optimum solution across several iterations by keeping
and reincorporating these intriguing options.

The University of Melbourne has published the
CloudSim toolbox, which helps researchers simulate cloud
computing systems. CloudSim offers essential elements for
modelling and simulating many aspects of cloud computing
infrastructures. Within CloudSim, users send requests in the
form of cloudlets, distinguished by attributes like the size
of the file and the number of instructions to be performed.
After that, the broker receives these cloudlets and schedules
them into Virtual Machines (VMs) per the predetermined
scheduling policies. Because CloudSim uses broker-driven
regulations, scheduling tactics may be customized and flex-
ible. Virtual machines that may be constructed on hosts
are represented by the VM class in CloudSim. Most im-
portantly, CloudSim has a data center component that can
support a maximum number of hosts. The broker dynami-
cally sets up the hosts and virtual machines (VMs), enabling

flexibility in response to changing simulation needs [33].
For academics in the area, CloudSim’s architecture is a vital
resource since it offers a thorough and adaptable framework
for simulating and assessing cloud computing systems.
Tools used:

• CloudSim: To describe and simulate cloud settings,
we used CloudSim, an open-source simulation tool
for cloud computing. We were able to establish
virtualized data centers, hosts, virtual machines, and
scheduling policies with the help of CloudSim. To
correctly mimic the behavior of real-world cloud
systems, we modified CloudSim.

• TensorFlow and Keras: We used the TensorFlow
and Keras libraries to create the neural network-
based task classification (N2TC) module. These tools
provided us with an efficient processing capability to
handle massive datasets, as well as a high-level inter-
face for creating and training deep learning models.

• Genetic Algorithm Implementation: For job assign-
ment, we created a custom genetic algorithm (GATA)
implementation. This approach offered flexibility in
creating crossover, mutation, and selection procedures
customized to our study goals, and it made use of
Python’s NumPy module for numerical computations.

Configuration: To replicate a multi-tenant cloud system
with diverse virtual machines and workload patterns, we
set up CloudSim. We provide specifications for things
like network properties, job scheduling methods, and VM
provisioning procedures.
Workload Generation: We created a workload generator
module inside of CloudSim to provide artificial workload
traces. This module used statistical distributions drawn from
real-world data to produce resource needs and task arrivals.

4. EVALUATION AND EXPERIMENT RESULTS
To assess the performance of our suggested method in a

range of workload scenarios and system configurations, we
ran a number of tests. We experimented with many variables
to see how they affected system performance, including
workload intensity, virtual machine capacity, and scheduling
strategies.
We use the Google cluster-traces v3 dataset [29] for evalua-
tion purposes. This dataset needs more detailed information
about end users, their data, or storage systems and instead
focuses primarily on resource demands and utilization.
There are 405,894 rows of data in it. The dataset includes
workload statistics from a variety of applications, such as
databases, web servers, and scientific computing workloads,
spanning many months. Millions of task submissions with
different priority, resource needs, and execution durations
are contained in it. To eliminate outliers, normalize features,
and deal with missing values, we preprocessed the datasets
before utilizing them. To aid in the creation and assessment
of the model, we further divided the data into training,
validation, and testing sets. Table 3 outlines the hardware

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 1551-1563 (Apr-24) 1559

setup used to carry out the suggested method. Our method
is predicated on several suppositions, including:

• Task Independence: Each task in the system runs
separately from the others. Task i can be carried out
independently of task j’s prior completion.

• Lack of Deadlines: There are no set deadlines for
tasks to be completed.

• Non-Preemption of Tasks: In our network, tasks are
not preemptible, meaning that resources are allotted
and reserved until the job is finished.

Performance measures: They used measures like
makespan, fairness index, throughput, and resource con-
sumption to gauge performance. These measurements gave
us information about the effectiveness, scalability, and eq-
uity of our scheduling algorithms.

When a job was first added to the network, it was
queued up for scheduling. We chose ten jobs to be executed
based on predetermined criteria throughout the scheduling
process. We evaluated our technique using this collection
of 10 tasks, which we thought would be sufficient to
gauge its effectiveness. Within the framework of our genetic
algorithm, every gene on a chromosome is associated with
a particular purpose. Research like [31][32] has frequently
noted that genetic algorithms function best when only a few
genes are on each chromosome. However, it is essential to
recognize that chromosomal size increases the algorithm’s
computational complexity, placing restrictions on the sys-
tem because of higher processing requirements.
Metrics relevant to a task, like cost, execution time, and
reaction time, can vary. This section shows that the task set
selected by our model is better than those selected by other
methods. As indicated, N2TC obtains tasks and classifies
them according to parameters, including execution time,
system efficiency, and cost.

The graph of network performance is shown in Fig 7.
After 32 epochs, the graph ends, with epoch 26 showing
the greatest performance.

A test graph with a more significant curvature indicates
a higher probability of overfitting in the network. A graph
with a decreasing trend indicates excellent network per-
formance. Given GATA’s findings, the fitness function is
essential to the genetic algorithm’s architecture. Then, class
1 tasks and sometimes class 2 tasks are sent to GATA so that
it can select the best possible set of tasks to be completed.
The perfect set consists of 10 selected tasks. The fitness
function’s trajectory during determining this ideal task set is
depicted in Fig. 7. Within a chromosome, minimized fitness
values are correlated with task set optimality. The graph’s
downward trend indicates that the GATA arrangement is
appropriate. We then compared our suggested method and
well-known algorithms like Shortest Job First (SJF) and
First in First out (FIFO). For comparative analysis, these

Figure 7. Network Performance during the Validation, Testing,
and Training Stages Using cross-entropy to evaluate the model’s
development over a 32-epoch period in terms of individual epochs.

Figure 8. The Development of Task Selection Fitness Values
throughout Generations

benchmark methodologies provide insightful information.
The task execution times for each of the five techniques are
shown in Fig 9. Our suggested approach shows generally
decreased execution times across tasks for the 10 selected
tasks for each strategy.

The system utilization rate, a critical indicator of how
best to use the network’s resources, is shown in Fig. 10.
An optimal operating state is characterized by a greater
utilization rate, which indicates maximum utilization and
minimal idle resources. The approach suggested by [14] has
the lowest utilization rate of all the approaches under con-
sideration; in contrast, our method has the second-highest
utilization rate, highlighting its effectiveness in resource
allocation and consumption.
A comparison of the expenses related to task execution for
each of the five techniques is shown in Fig. 11. Interestingly,
when adding up the expenses of each action, our suggested
method shows the lowest total cost for carrying out all 11
chores.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1560 Punit Mittal, et al.: Revolutionizing Cloud-Based Task Scheduling: A Novel Hybrid Algorithm...

TABLE III. Specifications of the platform utilized

Abbreviation Meaning

Computer Dell
RAM 32 GB
OS 64-bit, Windows 10
CPU Intel® Core™ i7-3230M CPU @ 2.60 GHz

Figure 9. Ten Scheduled Tasks with Comparative Execution Times
Using Different Methods

Figure 10. Comparative Rates of System Utilization for Different
Scheduling Techniques

Figure 11. Comparative Costs of Using Different Methods to Com-
plete Various Tasks

Figure 12. Comparison of Response Times for Various Tasks Using
Different Scheduling Methods

The response time graph for each of the five scheduling
methods is shown in Fig. 12, showing the time between
when a job is submitted to cloud computing and when the
user receives their first network response.

When compared, our approach shows the fastest re-
sponse time for the majority of tests, except task 10. It is
clear from a collective analysis of the supplied graphs that
the suggested method performs better than the other options.
Because of its exceptional performance in various measures,
it is a good option for a wide range of applications. The per-
formance evaluation of the previously described solutions
is summarized in Table 4, which also shows the overall
average of the ten chosen tasks for each solution. The values
for each job have been transformed to a range between 0
and 1 to simplify the results. Notable improvements are
obtained by the suggested method compared to the average
performance of current advanced methods. In particular,
improvements of about 3.2% in response time, 13.3% in
expenses, and 12.1% in execution time have been noted.

Fig. 13 shows that nine out of 10 tasks, the suggested
solution outperforms alternative approaches in terms of
response time. It also shows the most economical imple-
mentation of all the techniques for each of the ten tasks.
Although our solution ranks second in utilization rate, it is
the best at optimizing execution time. The usefulness of the
suggested model in reducing task famine, increasing task
selection, and strengthening these previously mentioned
characteristics is supported by graphic findings. As a result,
the suggested strategy outperforms the previously listed
techniques, demonstrating its overall superiority.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 1551-1563 (Apr-24) 1561

TABLE IV. Comparison of Performance Evaluation of Various Algorithms

Methods Cost Response Time Utility Execution Time

FIFO 0.311 0.28 0.233 0.36
HDCSA [14] 0.441 0.357 0.118 0.41
SJF 0.262 0.296 0.279 0.45
MOHGA [15] 0.302 0.508 0.546 0.31
PROPOSED APPROACH 0.279 0.233 0.475 0.12

Figure 13. Performance Summary of existing and proposed approach
parameters

Evaluation Method: To confirm the resilience of our
strategy, we carried out a thorough cross-validation and sen-
sitivity analysis. To prove the superiority of our suggested
approach, we measured its performance against baseline
algorithms like first-come, first-served, SJF etc. scheduling.

Analysis: To evaluate the experimental outcomes, we
used qualitative judgments, statistical testing, and visualiza-
tion methods. We found patterns, trends, and trade-offs in
the way the system performed under various circumstances,
providing information about the advantages and disadvan-
tages of our method.

5. CONCLUSION AND FUTURE SCOPE
In conclusion, resource allocation in the cloud is still

a significant problem that requires constant research into
workable solutions. Heuristic techniques are becoming in-
creasingly common in more extensive contexts, which
is evidence of their effectiveness. Our suggested method
addresses resource assignment difficulties in cloud com-
puting by combining neural networks and evolutionary
algorithms in a novel way to achieve optimum solutions.
The overall objective of the developed TS-GA is to reduce
completion time and cost while optimizing resource use.
Significantly, lower completion times highlight the algo-
rithm’s effectiveness. These results highlight how well the

algorithm handles resource allocation problems, suggesting
that it may be used in real-world scenarios and further
developed for various uses. In comparison to HDCSA and
other benchmark algorithms, we found that our approach
produces a greater system utilization rate, Improved Per-
formance, Cost Effectiveness, Task Selection Optimization
and General Adaptability. This shows that our method
efficiently reduces idle resources and maximizes resource
use, improving system efficiency as a whole. The main
limitations of the suggested work is that, this algorithm
would not work well where workflows required highly
inter-process communication. For this reason, the scenarios
for highly communication-intensive workflows have been
purposefully left out of this paper. Although extensive, the
Google cluster-traces v3 dataset does not fully cover all
facets of actual cloud computing infrastructures. Additional
datasets that offer more in-depth details about end users,
data properties, and storage technologies may be gathered
and analyzed in future research. Future research should
focus on addressing privacy and security issues associated
with job scheduling in cloud systems. Creating scheduling
algorithms that protect privacy and making sure sensitive
data is secure while tasks are being completed are important
factors to take into account before implementing cloud
computing technology. Future versions of this approach
could manage more tasks with dependencies, prioritize tasks
with time limits, and improve load balancing within pre-
determined bounds. Moreover, the suggested cloud-based
scheduling model expands its possible uses beyond cloud
computing, becoming especially pertinent in strengthen-
ing cybersecurity in transportation networks. This strategy,
which uses the speed and flexibility of cloud computing,
can help with increased security monitoring and proactive
responses to cyberattacks on transportation infrastructure.

References
[1] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud

computing,” Gaithersburg, MD, USA, Tech. Rep., 2011.

[2] P. Gao, Z. Han, and F. Wan, “Big data processing and application
research,” in 2020 2nd International Conference on Artificial Intel-
ligence and Advanced Manufacture (AIAM), 2020, pp. 125–128.

[3] M. Manavi, Y. Zhang, and G. Chen, “Resource allocation in cloud
computing using genetic algorithm and neural network,” 2023.

[4] A. Belgacem, S. Mahmoudi, and M. Kihl, “Intelligent multi-agent
reinforcement learning model for resources allocation in cloud
computing,” Journal of King Saud University - Computer and
Information Sciences, vol. 34, no. 6, Part A, pp. 2391–2404, 2022.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1562 Punit Mittal, et al.: Revolutionizing Cloud-Based Task Scheduling: A Novel Hybrid Algorithm...

[5] Z. Chen, J. Hu, X. Chen, J. Hu, X. Zheng, and G. Min, “Compu-
tation offloading and task scheduling for dnn-based applications in
cloud-edge computing,” IEEE Access, vol. 8, pp. 115 537–115 547,
2020.

[6] D. Cui, Z. Peng, J. Xiong, B. Xu, and W. Lin, “A reinforcement
learning-based mixed job scheduler scheme for grid or iaas cloud,”
IEEE Transactions on Cloud Computing, vol. 8, no. 4, pp. 1030–
1039, 2020.

[7] C. Chen, B. Liu, S. Wan, P. Qiao, and Q. Pei, “An edge traffic flow
detection scheme based on deep learning in an intelligent trans-
portation system,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 3, pp. 1840–1852, 2021.

[8] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular
edge computing and networking: A survey,” Mobile Networks and
Applications, vol. 26, no. 3, pp. 1145–1168, Jun 2021. [Online].
Available: https://doi.org/10.1007/s11036-020-01624-1

[9] H. Liu, “Research on cloud computing adaptive task scheduling
based on ant colony algorithm,” Optik, vol. 258, p. 168677, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0030402622000936

[10] G. U. Srikanth and R. Geetha, “Effectiveness review of the
machine learning algorithms for scheduling in cloud environment,”
Archives of Computational Methods in Engineering, vol. 30,
no. 6, pp. 3769–3789, Jul 2023. [Online]. Available: https:
//doi.org/10.1007/s11831-023-09921-0

[11] H. Godhrawala and R. Sridaran, “Improving architectural reusability
for resource allocation framework in futuristic cloud computing
using decision tree based multi-objective automated approach,”
in Advancements in Smart Computing and Information Security,
S. Rajagopal, P. Faruki, and K. Popat, Eds. Cham: Springer Nature
Switzerland, 2022, pp. 397–415.

[12] P. Pirozmand, H. Jalalinejad, A. A. R. Hosseinabadi, S. Mirkamali,
and Y. Li, “An improved particle swarm optimization algorithm
for task scheduling in cloud computing,” Journal of Ambient
Intelligence and Humanized Computing, vol. 14, no. 4, pp.
4313–4327, Apr 2023. [Online]. Available: https://doi.org/10.1007/
s12652-023-04541-9

[13] J. Xing, “Network security optimization method based on genetic
algorithm,” in Innovative Computing, J. C. Hung, J.-W. Chang,
Y. Pei, and W.-C. Wu, Eds. Singapore: Springer Nature Singapore,
2022, pp. 1359–1366.

[14] Y. Asghari Alaie, M. Hosseini Shirvani, and A. M. Rahmani,
“A hybrid bi-objective scheduling algorithm for execution of
scientific workflows on cloud platforms with execution time and
reliability approach,” The Journal of Supercomputing, vol. 79,
no. 2, pp. 1451–1503, Feb 2023. [Online]. Available: https:
//doi.org/10.1007/s11227-022-04703-0

[15] G. Agarwal, S. Gupta, R. Ahuja, and A. K. Rai, “Multiprocessor
task scheduling using multi-objective hybrid genetic algorithm in
fog–cloud computing,” Knowledge-Based Systems, vol. 272, p.
110563, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950705123003131

[16] J. Chen, T. Du, and G. Xiao, “A multi-objective optimization for
resource allocation of emergent demands in cloud computing,”
Journal of Cloud Computing, vol. 10, no. 1, p. 20, Mar 2021.
[Online]. Available: https://doi.org/10.1186/s13677-021-00237-7

[17] G. Zhou, W. Tian, R. Buyya, and K. Wu, “Growable genetic
algorithm with heuristic-based local search for multi-dimensional
resources scheduling of cloud computing,” Applied Soft Computing,
vol. 136, p. 110027, 2023. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1568494623000455

[18] R. Rajak, S. Kumar, S. Prakash, N. Rajak, and P. Dixit, “A
novel technique to optimize quality of service for directed
acyclic graph (dag) scheduling in cloud computing environment
using heuristic approach,” The Journal of Supercomputing,
vol. 79, no. 2, pp. 1956–1979, Feb 2023. [Online]. Available:
https://doi.org/10.1007/s11227-022-04729-4

[19] M. B. Gawali and S. K. Shinde, “Task scheduling and resource
allocation in cloud computing using a heuristic approach,” Journal
of Cloud Computing, vol. 7, no. 1, p. 4, Feb 2018. [Online].
Available: https://doi.org/10.1186/s13677-018-0105-8

[20] A. Semmoud, M. Hakem, B. Benmammar, and J.-C. Charr, “Load
balancing in cloud computing environments based on adaptive
starvation threshold,” Concurrency and Computation: Practice and
Experience, vol. 32, no. 11, p. e5652, 2020, e5652 cpe.5652.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
cpe.5652

[21] Y. Shin, W. Yang, S. Kim, and J.-M. Chung, “Multiple adaptive-
resource-allocation real-time supervisor (mars) for elastic iiot hy-
brid cloud services,” IEEE Transactions on Network Science and
Engineering, vol. 9, no. 3, pp. 1462–1476, 2022.

[22] R. S and N. Ealai Rengasari, “Dynamic scheduling of data using ge-
netic algorithm in cloud computing,” INTERNATIONAL JOURNAL
OF COMPUTING ALGORITHM, vol. 2, pp. 11–15, 06 2013.

[23] S. Singh and M. Kalra, “Scheduling of independent tasks in cloud
computing using modified genetic algorithm,” in 2014 International
Conference on Computational Intelligence and Communication Net-
works, 2014, pp. 565–569.

[24] A.-N. Zhang, S.-C. Chu, P.-C. Song, H. Wang, and J.-
S. Pan, “Task scheduling in cloud computing environment
using advanced phasmatodea population evolution algorithms,”
Electronics, vol. 11, no. 9, 2022. [Online]. Available: https:
//www.mdpi.com/2079-9292/11/9/1451

[25] S. Shukla, A. K. Singh, and V. Kumar Sharma, “Survey on im-
portance of load balancing for cloud computing,” in 2021 3rd In-
ternational Conference on Advances in Computing, Communication
Control and Networking (ICAC3N), 2021, pp. 1479–1484.

[26] L. Shi, J. Xu, L. Wang, J. Chen, Z. Jin, T. Ouyang, J. Xu, and
Y. Fan, “Multijob associated task scheduling for cloud computing
based on task duplication and insertion,” Wireless Communications
and Mobile Computing, vol. 2021, p. 6631752, Apr 2021. [Online].
Available: https://doi.org/10.1155/2021/6631752

[27] V. K. Sharma, S. Sharma, M. Rawat, and R. Prakash,
Adaptive Particle Swarm Optimization for Energy Minimization
in Cloud: A Success History Based Approach. Singapore:
Springer Nature Singapore, 2023, pp. 115–130. [Online]. Available:
https://doi.org/10.1007/978-981-99-6034-7 7

[28] B. Tutumlu and T. Saraç, “A mip model and a hybrid genetic
algorithm for flexible job-shop scheduling problem with job-
splitting,” Computers Operations Research, vol. 155, p. 106222,
2023. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0305054823000862

https:// journal.uob.edu.bh/

https://doi.org/10.1007/s11036-020-01624-1
https://www.sciencedirect.com/science/article/pii/S0030402622000936
https://www.sciencedirect.com/science/article/pii/S0030402622000936
https://doi.org/10.1007/s11831-023-09921-0
https://doi.org/10.1007/s11831-023-09921-0
https://doi.org/10.1007/s12652-023-04541-9
https://doi.org/10.1007/s12652-023-04541-9
https://doi.org/10.1007/s11227-022-04703-0
https://doi.org/10.1007/s11227-022-04703-0
https://www.sciencedirect.com/science/article/pii/S0950705123003131
https://www.sciencedirect.com/science/article/pii/S0950705123003131
https://doi.org/10.1186/s13677-021-00237-7
https://www.sciencedirect.com/science/article/pii/S1568494623000455
https://www.sciencedirect.com/science/article/pii/S1568494623000455
https://doi.org/10.1007/s11227-022-04729-4
https://doi.org/10.1186/s13677-018-0105-8
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5652
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5652
https://www.mdpi.com/2079-9292/11/9/1451
https://www.mdpi.com/2079-9292/11/9/1451
https://doi.org/10.1155/2021/6631752
https://doi.org/10.1007/978-981-99-6034-7_7
https://www.sciencedirect.com/science/article/pii/S0305054823000862
https://www.sciencedirect.com/science/article/pii/S0305054823000862
https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 1551-1563 (Apr-24) 1563

[29] J. Wilkes, “Google cluster-usage traces v3,” Google Inc., Mountain
View, CA, USA, Technical Report, Apr. 2020, posted at https://
github.com/google/cluster-data/blob/master/ClusterData2019.md.

[30] M. Gupta, P. Singh, and V. K. Sharma, “Loan eligibility prediction
model using machine learning algorithms,” in Artificial Intelligence,
Blockchain, Computing and Security Volume 2. CRC Press, 2024,
pp. 20–26.

[31] L. Jia, L. Yisheng, S. Ying, and L. Jian, “Solving resource-
constrained project scheduling problem via genetic algorithm,”
Journal of Computing in Civil Engineering, vol. 34, no. 2, p.
04019055, Mar 2020. [Online]. Available: https://doi.org/10.1061/
(ASCE)CP.1943-5487.0000874

[32] P. Devarasetty and S. Reddy, “Genetic algorithm for quality of
service based resource allocation in cloud computing,” Evolutionary
Intelligence, vol. 14, no. 2, pp. 381–387, Jun 2021. [Online].
Available: https://doi.org/10.1007/s12065-019-00233-6

[33] W. Khan, M. Kadri, and Q. Ali, “Optimization of microchannel heat
sinks using genetic algorithm,” Heat Transfer Engineering - HEAT
TRANSFER ENG, vol. 34, 01 2013.

Punit Mittal is the Research Scholar in
the Department of Computer Science and
Engineering, Quantum University, Roorkee,
India. Currently, He is pursuing a Ph.D.
in Computer Science and Engineering. He
has completed his M.Tech (IIITM Gwalior,
India) and B.Tech in Computer Science
and Engineering. He has published many
research papers in reputed Scopus-Indexed
journals, IEEE, and Springer Conference.

His area of expertise is Machine Learning and Cloud Computing.

Dr. Satender Kumar is the Dean Academic
of Quantum University and Head of the
Department of Computer Science & Engi-
neering and Computer Application Depart-
ment. He has more than 19 years of expe-
rience in teaching. He has published 16 re-
search articles in National and International
peer reviewed Journals, authored 3 books
contributed 3 book chapters and owned 9
patents.

Dr. Swati Sharma is the Professor and
Head in the Department of Information
Technology, Meerut Institute of Engineer-
ing and Technology, Meerut, India. She has
completed Ph.D. in Computer Science. An
academician with more than 13 years of
teaching experience authored more than a
dozen of research papers in reputed SCI,
Scopus-indexed journals, International Jour-
nal, IEEE Conferences, patent and copyright

to her credit. Her areas of interest are machine learning, data
science, and deep learning. She is currently doing research in the
area of Data Analysis.

https:// journal.uob.edu.bh/

https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000874
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000874
https://doi.org/10.1007/s12065-019-00233-6
https://journal.uob.edu.bh/

	INTRODUCTION
	Background Work
	Resource scheduling using heuristics
	Dynamic resource allocation
	Use of Genetic Algorithm

	PROPOSED APPROACH
	Framework
	Model Mathematical
	Proposed Scheduling Algorithm
	Neural Network Task Classification (N2TC)
	Genetic Algorithm Task Assignment (GATA)

	EVALUATION AND EXPERIMENT RESULTS
	CONCLUSION AND FUTURE SCOPE
	References
	Biographies
	Punit Mittal
	Dr. Satender Kumar
	Dr. Swati Sharma

