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Abstract: Crop classification plays a vital role in crop status monitoring, crop area estimation, and food production. Remote sensing
data is widely accepted for crop classification at remote locations. However, crop classification is challenging due to spectral and spatial
similarities, complex land structures, temporal inconsistencies, and environmental parameters. Machine learning models must be robust,
particularly when dealing with a variety of crop types and changing environmental factors. This study examines the extent to which
various algorithms generalize, emphasizing the importance of adaptability to various farming systems and geographical conditions. It
explores transfer learning and ensemble approaches as possible ways to improve the resilience and flexibility of the model. In the present
study, an effort has been made to identify, classify, and map multiple crops from the complex environment using the Sentinel-2 dataset
and advanced machine learning methods such as random forest, Spectral Angle Mapper (SAM), Maximum Likelihood Classifier (MLC),
K-means clustering and Iterative Self-Organizing Data Analysis Technique (ISODATA). The crop spectral features were identified using
the Normalized Difference Vegetation Index (NDVI). The NDVI outcomes ranged between -0.91 and 0.54, which were then used to
identify crop areas. Ground reference data, Google map, and Google Earth data were used to determine the crop classes, train the data,
and validate the results. The five major crops viz. Cotton, Paddy, Orchard, Yellow split Pigeon peas, Chickpeas, and Other crops were
identified and classified efficiently. According to the experimental results, the random forest approach had the best overall accuracy,
87.71%, and a kappa value of 0.86 than other methods. Alternatively, the ISODATA method provided an overall accuracy of 85.01%
with a kappa value of 0.82. The agricultural decision-makers can use the results of this study for decision-making and management.

Keywords: Crop types mapping, Sentinel-2 data, Machine learning, Random Forest,NDVI.

1. Introduction
Agricultural productivity must be improved with the

latest techniques to fulfill future food demand and sustain-
ability goals. In this case, precision farming is increasing
rapidly due to its high performance in growing crops and
enhancing food production. Precision farming comprises a
wide variety of technical capabilities, such as satellite data,
unmanned aerial systems applications, machine learning,
route planning, and conversation, with a focus on assisting
farmers and maintaining a healthy atmosphere to attain sus-
tainable development, climate-related goals, and financial
gains [1]. Farmers are more conscious about crop growth,
water or fertilizer use, hazardous infections, and food
production. Thus identification of crops and their diseases
is essential in crop monitoring, crop area estimation, and
crop classification [2] for better food production. However,
crop identification and its classification is a challenging task
by traditional methods. Recently, remotely sensed satellite
images [3] play an essential role in agricultural practices to

attain precision agriculture goals with satisfactory accuracy.
Remote sensing technology offers multi-temporal datasets
that can be used in crop monitoring, allowing farmers
to react quickly before possible problems proliferate and
negatively affect crop production. The crop identification
and mapping are enhanced using multi-temporal remote
sensing imagery, which changes reflectance as a result
of plant phenology, i.e., stages of plant growth to facili-
tate classification. Therefore, multi-temporal remote sensing
sensors are required to monitor the crops throughout the
growing season. Furthermore, crop classification is a useful
tool for crop insurance and agricultural yield modeling.
Given the growing emphasis on crop insurance in India,
field-level stakeholders must have access to geographic data
about crop stress, crop health, and crop type [4]. Moreover,
vegetation fingerprints are measured by remote sensing
to assess the impact of regional and global droughts on
agricultural productivity. In some places, the NDVI method
can also be used to differentiate between cultivated and
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wild plants. The vegetation indices help distinguish between
areas with and without vegetation as well as between living
and dead vegetation. To generate a vegetation index, spectral
values from multiple bands are often combined, multiplied,
or split [5]

However, crop identification and classification remain
challenging due to the complexity of agricultural land-
scapes and the comparable spectral signatures of different
crops [6]. Therefore, the use of high spatial and spectral
resolution satellite data for crop classification is essential.
The Sentinel-2 satellite has been launched recently and
has 13 multispectral bands. Its short revisit time makes
it a valuable tool for mapping vegetation [7]. With some
restrictions, research on the classification of crops using
satellite images has been carried out in this field. For
instance, in the research paper [2], vegetation and land
cover in a specific region of Italy were detected using
Sentinel-2 multispectral data. Significant vegetative growth
information and geographical NDVI patterns were utilized
to evaluate crop phenological cycles using the most accurate
multi-temporal imagery that was selected using the sepa-
rability measure [2]. The crop areas were determined by
using the NDVI data, according to the research findings [8].
The extraordinary rainfall increased crop area and enhanced
agricultural conditions [8]. The NDVI crop forecast model
was also used to determine and monitor crop status [9].
Additionally, the vegetation cover was classified using K-
means clustering algorithms after the NDVI values were
computed using Sentinel-2 data [10]. A distinct study [11]
claims that the red-edge band 1 and near-infrared band 1
of Sentinel-2 are better at classifying crops than the other
bands. The paper’s authors [12] used multispectral images
with Sentinel-2 imagery to improve the spatial resolution for
precisely identifying crop field borders in small, fragmented
agricultural areas.

Absence plots, such as those including crops, water
bodies, or impermeable areas, can be generated using
comparatively large geographical remote sensing data to
evaluate the accuracy of natural vegetation maps [13].
The implementation of spectral indices improved classi-
fication accuracy, according to the research result [14];
nevertheless, the combined use of spectral indices with
reflectance increased the negative effects of large sets of
related elements and decreased accuracy. [15] state that each
variable’s relevance indicates how much it contributes to the
categorization process.

According to authors [16], integrating red-edge bands
and combining SWIR can greatly increase crop identifica-
tion accuracy when compared with using traditional bands
for visible and NIR bands [16]. Nonetheless, few studies
have used machine learning methods to categorize crops.
For instance, the RF classification techniques help manage
land, categorizing crops, identifying regions with erroneous
labels, and categorizing a variety of crop species [17].

Higher accuracy in crop classification has been shown
using the SVM on GLSM-based spatial features and high-
resolution IRS-LISS-IV images [18]. The excellent preci-
sion of the results, particularly for times of vegetative de-
velopment, highlights the significance of merging Sentinel-
2 data with ML algorithms to identify rice crops [19]. The
unsupervised ISODATA and NDVI methods were used for
harvested area estimate using Sentinel-2 data [10]. The work
[20] focused on crop area classification using IRS-LISS-III
pictures, maximum likelihood classification, and advanced
fuzzy convolution. The study found that crop types may
be effectively classified using machine learning approaches
including SVM, ANN, and RF [4].

On the other hand, NDVI-based vegetation cover clas-
sification was the main focus of earlier research. These
investigations have also employed low-resolution datasets,
which yield little information. Low-resolution records make
it difficult to identify several crops in complicated locations,
and the topic is not well-researched. These works concen-
trated on low-resolution datasets for crop recognition with
a moderate level of accuracy, together with supervised or
unsupervised approaches.

Models developed for one place cannot be transferred
to the other region and vice versa due to spatiotempo-
ral changes. It is challenging to distinguish and classify
the different crops from the complex locales. Therefore,
the current study detects and classifies many crops from
complex locales using NDVI, supervised and unsupervised
algorithms, high-resolution Sentinel-2 data, and various
other methodologies. This work mapped crop kinds using
a range of advanced machine learning algorithms, such as
MLC, Random Forest, K-means clustering, ISODATA, and
SAM, using the Sentinel-2 dataset.

The current study used machine learning (ML) ap-
proaches to identify crop types using Sentinel-2 data,
choosing them according to their distinct qualities and
capacities. As Random Forest can handle complicated, high-
dimensional data with exceptional precision and robustness,
it is a good choice for utilizing the extensive spectrum
data that the Sentinel-2 bands provide. Because the SAM
can assess spectral similarity, it is used. This skill comes
in particularly handy when working with crops that have
different spectral fingerprints. The Maximum Likelihood
Classifier (MLC) is a straightforward method that works
well if classes have a normal distribution within the feature
space because of its simplicity and interpretability.

A technique for handling big datasets and identify-
ing natural geographical patterns in Sentinel-2 images is
presented using the K-means clustering technique. The
ISODATA approach is used in scenarios where the number
of clusters cannot be fixed and may vary over the terrain
due to its adaptability in dynamically altering cluster shape
and size during clustering. Together, these algorithms aim to
offer a complete crop-type mapping solution that addresses
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the different challenges posed by the dynamic and intricate
nature of agricultural landscapes.

Our goal is to retain fast and accurate crop classification
while minimizing dependency on large sample datasets. The
primary goals are:
(1) to use Sentinel-2 satellite data,
(2) to use the NDVI approach for determining the crop
features
(3) to apply supervised and unsupervised machine learning
methods such as random forest, SAM, MLC, K-means
clustering, and ISODATA for multiple crop classification,
(4) To evaluate crop mapping’s potential at a regional level,
and
(5) To evaluate and compare the accuracy.

The current paper is organized into five sections. Back-
ground information, prior study limitations, and the signif-
icance of the current investigation are covered in the first
section. In part two, the examined area and datasets are
provided. Section three is devoted to the adopted method-
ology. In section four, the findings are discussed in previous
research. In the final section, the investigation is concluded
and future scope is discussed.

2. Study area and data
A. Study Area

The Nagpur district of Maharashtra, India, was chosen
as a study area between 21°9’ 9.432” N latitudes and 79°
5’ 17.52” E longitudes as shown in Figure 1. The Nagpur
District covers approximately 9897 km2 area. The forest
region covers 28 percent of the area, with an average
altitude of 274.5 meters to 652.70 meters above sea level.
The spatial reference (projection) was set to be Universal
Transverse Mercator (UTM) zone 43 North with WGS-84
datum. The cultivated land of Nagpur district falls into three
categories such as watered or garden land, rice lands, and
dry cropland. However, due to irregular monsoon, the dry
agricultural lands are classified as Rabi (late monsoon) and
Kharif (early monsoon).

Figure 1. The satellite image of study area

The major Kharif crops of the studied region are
Gossypium, Sorghum bicolor, Oryza sativa, Arachis hy-
pogaea, Vigna mungo, Vigna radiata, Sesamum indicum,
Ricinus communis, Macrotyloma uniflorum, Capsicum an-
nuum Cowpea, Cucurbitaceae, Solanum melongena, Abel-

moschus esculentus, and green vegetables. The Kharif sea-
son begins in the middle of June and ends in the middle of
July. These crops are typically harvested during October and
December. The Rabi season begins in the middle of October
and concludes in the middle of February. However, the Rabi
crops are more essential in the middle region of the district,
which includes the southern half of Ramtek Tehsil and the
eastern parts of Nagpur and Umrer Tehsils. The southwest
monsoons are few and unpredictable [16] [21].

B. Sentinel-2 data
The European Space Agency (ESA) launched the

Sentinel-2 satellite on June 23, 2015, from the Copernicus
programme to deliver a plethora of data and imagery. The
Sentinel-2 is an optoelectronic multispectral sensor with 13-
spectral bands with 10m, 20m, and 60 m resolutions in
the visible, NIR, and SWIR spectral regions. The details of
Sentinel-2 data are listed in Table 1, along with their names,
spatial resolution, and wavelengths [10].

This study obtained a Level 1C Sentinel-2 image on
19 November 2021 from ESA scientific hub. Sentinel-2’s
four bands (band 8 (NIR), band 4(Red), band 3 (Green),
and band 2 (Blue)) at 10m resolutions were used for crop
identification. These four high spatial resolution bands have
provided better features and a wide range of spectral data to
describe crop topology. Every pixel in the Sentinel-2 image
has provided the best features which were used in crop
classification.

C. Ground truth dataset
The ground dataset for 300 sample points was collected

from road travel from October 10 to December 4, 2021,
covering about 500 kilometers of area. A specific quantity
of ground truth samples is required to ensure crop classifica-
tion accuracy. During the field study for the Nagpur district
area was carried out using a portable GPS Map Camera
App with a positioning precision of ± 2 m. The 300 fields’
boundaries were subsequently identified by utilizing Google
Earth’s high spatial resolution images.

The image training was done based on comprehensive
information about specific spots, such as identifying crop
classes [22] and their labeling. The information, such as
GPS points, terrestrial objects, and crop types, was obtained
from various field sites. Simultaneously, discussions were
done with local farmers to confirm the cropping patterns.
The latitude/longitude values and crop type information
were collected at the point location to validate the crop
classes. The ground samples were collected within the large
continuous regions of specific terrestrial objects. As shown
in Figure 2, the Latitude and longitude information were
gathered along with crop information in the field. During
the season, the main crops identified were wheat, cotton,
chicken peas, oranges, and vegetables.

The figure 2 displays the training reference samples that
were gathered during field survey. In this study, every effort
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Table I: List of multispectral bands of Sentinel-2
Bands Name Central Wavelengths (µm) Spatial Resolution (m)

Coastal aerosol- Band1 0.443 60
Blue - Band 2 0.49 10

Green - Band 3 0.56 10
Red- Band 4 0.665 10

Vegetation Red Edge - Band 5 0.705 20
Vegetation Red Edge - Band 6 0.74 20
Vegetation Red Edge - Band 7 0.783 20

NIR- Band 8 0.842 10
Vegetation Red Edge- Band 8 A 0.865 20

Water vapour- Band 9 0.945 60
SWIR – Cirrus- Band 10 1.375 60

SWIR- Band 11 1.61 20
SWIR- Band 12 2.19 20

Figure 2. Ground truth images gather using smart phone and GPS
MAP CAMERA APP during the field survey of Nagpur region.

is taken to gather data covering all class variations in order
to improve the machine learning algorithms’ accuracy.

In addition, the standard False Color Composite (FCC)
of the Sentinel-2 image was generated and used for crop
identification and classification. The ground sampling was
done based on Google Maps, which was used for detecting
the road network and regular footpaths. Every five or ten
kilometers, either by car or on foot, the sample positions
were selected along the road networks. Figure 3 illustrates a
standard FCC of the studied area generated from Sentinel-2
images where NIR (8th band), Red (4th band), and Green
(3rd band) bands are displayed in red, green, and blue colors
accordingly.

A single-season cropping system is applied between
October to December. The studied areas’ crop classes were

Figure 3. Standard false color composite of the study region
derived from the Sentinel-2 image (RGB (8-4-3))

divided into several classes such as Cotton, Chickpeas,
Paddy, Yellow split Pigeon peas, Orchard, and other crops.
The term ”orchard” refers to a group of trees planted in the
form of a fruit garden, such as guava, orange, and mango
trees, in the field and along the fields’ margins. Other crops
include mixed crops such as trees and cotton, chickpeas and
yellow split pigeon peas, and vegetable crops (Cauliflower,
Radish, and Cabbage). The main crops in the study area are
Cotton, Paddy, Yellow Split Pigeon Peas, and Chickpeas.
Table 2 shows the available crop calendar specifying the
sowing and harvest period followed in the studied region.

3. The methodology
The implemented methodology and workflow are pro-

vided in four sections: data pre-processing, crop feature
extraction using the NDVI method, data classification in dif-
ferent crops with supervised and unsupervised algorithms,
and accuracy assessment of classification. Figure 4 shows
the process of the implemented methodology. In this study,
we have used QGIS 3.10 software for the processing of
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Table II: Phenological calendar of major crop types followed in the Nagpur District
Crop Type Code Sowing Period Harvesting Period

Cotton CO June - July December-February
Chick pea CH June - July December-January

Paddy PA June - July Mid - September
Pigeon pea PP June - July January-February

Orchard OR Early June October-December

Sentinel-2 data and results evaluation.

A. Data pre-processing
To correct the crucial information, the data that was

downloaded was first preprocessed. Level-1C formatted raw
data was accessible; level-2A formatted data must be trans-
formed. Top of Atmosphere (TOA) reflectance was con-
verted to Bottom of Atmosphere (BOA) reflectance, which
produced the original Sentinel-2 data [23]. ROIs were used
to crop the study area’s geographic subset. The Sentinel-2
image was corrected for atmospheric and radiometric fac-
tors using QGIS software. After the data products’ spectral
bands were recovered, atmospheric alterations were made to
each band to improve it. Furthermore, the information was
converted into a Level 2A version for additional processing
[10]. The raw image was transformed into an appropriate
format through preprocessing. At a spatial resolution of
10m, band stacking (NIR, Red, Blue, and Green) was
performed on the preprocessed image. Ultimately, NDVI-
based crop feature extraction, feature selection, and feature
integration were carried out using these preprocessed and
stacked image data (level-2A).

Figure 4. The implemented methodology’s workflow

B. NDVI-based crop feature extraction:
A useful tool for distinguishing between areas that are

not vegetated and those that are, as well as among living
and dead vegetation, is a vegetation index. Among the most
popular indices used in several types of research is the
NDVI [24]. Consequently, the NDVI approach was used
in the current study to extract the crop features for every
category of interest from Sentinel-2 data. Equation 1 was
used to take into consideration for red bands and the NIR
ratio when applying the NDVI to Sentinel-2 data [10].

NDVI = ρ(B8)−ρ(B4)
ρ(B8)+ρ(B4) (1)

Where ρ is the reflectance value for the corresponding
band, B8- NIR band, and B4-Red band. Equation 1 is
based on the fact that vegetation leaves absorb the red band
and strongly reflect infrared light due to their chlorophyll
concentration. Healthy and well-nourished vegetation will
receive the majority of visible wavelengths and reflect a sub-
stantial proportion of NIR light. In contrast, poor or weak
vegetation will reflect less NIR and more visible wavelength
light. As a result, a significant variation between the red
and NIR values of the same pixel is obtained [5]. These
NDVI-based spectral features were used in differentiating
various crops. Vegetated areas in the study region are stated
as pixels with an NDVI value ranging between -0.76 and
0.80. Figure 5 depicts the thematic map derived using the
NDVI method. The crop features have provided positive
values near the positive one (0.034 to 0.545) and other class
values were negative (Figure 5). The crop features were
successfully identified and provided to the classification
methods. The NDVI-based spectral features have given
relevant information on various crops that were used in
classification.

Figure 5. The thematic map derived from NDVI method

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


1750 Atiya Khan et al.:Mapping crop types at a 10m scale using Sentinel-2 data and Machine Learning methods

C. Data classification
In the present study, three supervised methods, such

as random forest, SAM, and MLC, and two unsupervised
methods, such as ISODATA and K-means clustering, have
been implemented on pre-processed Sentinel-2 data for
the classification of different crops. The goal of both ap-
proaches is to reveal the spatial distribution of various crops.
The supervised and unsupervised classification approaches
required some understanding of the subject matter. The
essential factors are (1) the spectral data quality to be used
in the classification process and (2) the depth of class detail
necessary for classification.

1) Random forest (RF) method
The RF is one of the popular algorithms based on

Breiman’s ensemble concept, which uses many decision
trees or classification regression trees to classify the features
[25]. The Gini index (Eq. 2) has been used in the random
forest method to determine the connections between the
nodes on a decision tree branch.

Gini = 1 −
∑c

i=1 (pi)2 (2)

Where c is the no. of classes and pi is the relative
frequency of the class in the dataset. Eq. 2 determines the
Gini of each branch on a node depending on the class and
probability and then decides which branch is better for that
class. Additionally, entropy is used to determine how the
nodes in a decision tree branch are based on the probability
of a particular outcome. The entropy was calculated using
Eq. 3.

Entropy =
∑c

i=1 − pi ∗ log 2(pi) (3)

The random forest approach has effectively reduced
the model fitting by providing randomization to training
samples and classification variables [11]. Two elements
were modified for RF: (i) the number of trees formed by
simply picking samples from the training data is given
by the n-tree parameter, and (ii) the number of parame-
ters required for tree node splitting is given by the m-
tree (m-try) parameter. The Gaussian process was used
to find the best combinations of these hyperparameters.
The Bayesian optimization techniques are widely used to
tune hyperparameters in machine learning techniques [14].
The n-tree parameter was set to 1000 for the data. Since
earlier research has shown trees based on randomly selected
samples, there is no rise in the number of faults above
1000. We utilized a Sentinel-2 image using ten bands in
this investigation to identify crops, hence the input data
consisted of ten variables. Several values (m-try=1:10; n-
tree=100, 200) were verified for all datasets to identify the
best RF classifier parameters.

2) Spectral Angle Mapper
Another supervised approach used in this study is the

SAM method, also known as a spectral similarity metric.
It determines the degree of spectral similarity between
reference or end members and the spectra of each image
pixel. In SAM, the image’s pixels are matched to the
reference spectra using the n-D angle. Discrimination is
determined by the angle that is the smallest between two
spectra; that is, a closer match is seen between reference
and image pixels that correlate with a smaller angle. For
classification, other pixels were disregarded. The method
calculates the ”spectral angle” between both spectra and
reads them as vectors inside a space whose dimension
equals the number of bands to find their similarity (nb).
The SAM classification technique received the trained ROIs
as input. To calculate the degree of similarity between an
unknown spectra t and a reference spectra r, the SAM
approach has been applied using Equation 4 [26].

α = cos−1
[ ∑nb

i=1 tiri

[∑nb
i=1 t2i]1/2[∑nb

i=1 r2i]1/2

]
(4)

where, α- spectral angle, t- the test spectrum, nb- band
numbers, and r- the reference spectrum. In QGIS, the SAM
approach is applied by considering the number of train
classes or reference spectrum derived from the selected ROI
area. As a result, a classified image is created for every pixel
with the most vital SAM matches. The rule images show
greater striking similarity with the reference spectrum and
lighter pixels at smaller spectral angles.

3) Maximum Likelihood Classification
Bayes’ decision-making theorem and the normal distri-

bution of cells in every category sample in multidimensional
space serve as the foundation for the MLC technique. An
algorithm for multivariate statistical classification is called
the MLC. Conversely, the MLC technique analyzes the
variance as well as the covariance of the test dataset,
assigning each pixel to a certain class that is defined in
the training set. The discriminant functions that need to
be applied to each pixel of a picture to attain maximum
likelihood classification are found using Eq. 5 [24], [27].

gi(x) = lnp(ωi)–1/2ln|
∑

i|–1/2(x − mi)T
∑−1

i (x − mi)
(5)

Here, class is denoted by i, x is n-dimensional data, n
is the number of bands, p(ωi) is the chance that class, ωi,
occurs in the image and is taken to be the same for all
classes,

∑
i is the determinant of the covariance matrix of

the data in class ωi,
∑

i-1 is its inverse matrix, and mi is
the mean vector.

4) K-means clustering
By randomly allocating samples to the cluster centroid

that is closest to each sample, as measured by Euclidean
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distance, the K-means clustering technique divides n sam-
ples into k groups. The cluster centroids are adjusted using
the cluster average of observations [28]. The strategy makes
use of a simple technique to categorize a given data set into
a predefined number of clusters (assuming k clusters). The
idea is to establish k centers, one for each cluster. Reducing
the squared error function, or total intra-cluster variance, to
the lowest possible level is the aim of k-means clustering
[10]. To calculate the k-means clustering technique, use
equation 6.

J =
∑

j=1 k
∑

i=1 n ∥ xi ( j)−c j∥2 (6)

Where: J=objective function, k = no. of clusters, n =
no. of classes, cj = centroid for the cluster j.

5) ISODATA
Except for allowing for a variable number of clusters,

the ISODATA algorithm and the k-means clustering algo-
rithm are quite similar. However, the k-means algorithm
requires that the number of clusters be known prior.

4. Analyzing the accuracy of the classification
To evaluate the acquired categorization accuracy, QGIS

software was employed. The confusion matrix has been
used to assess how accurate satellite image classification
is. Moreover, the mapping of producer and user accuracy
(PA) has been done through the computation of overall
accuracy (OA). The testing samples were used to perform
the accuracy assessment. The confusion matrix has been
used in conjunction with the kappa coefficient to produce
PA, OA, and user’s accuracy (UA) [24]. The efficacy of
each class was evaluated using the producers’ and users’
accuracy methodologies. The kappa coefficient is calculated
within the range of -1 to 1 to express the precision. [29]
states that an accuracy of more than 0.70 is considered
suitable. Equations (7) are used to calculate the OA, PA,
UA, and kappa coefficient, respectively [29].
i) OA % = (Properly classified pixels / Total number of
pixels)
ii) UA = (Properly classified pixels / Classified total pixels)
iii) PA = (Appropriately classified pixels / Reference total
pixels)
iv) Kappa coefficient (K)

K = N
∑n

i=1 m i,i −
∑n

i=1(Gi Ci)
N2 −

∑n
i=1(Gi Ci) (7)

Where: J=objective function, k = no. of clusters, n =
no. of classes, cj = centroid for the cluster j.
Where: class number is indicated by i; N is the number of
values that have been classified in contrast to truth values;
mi, i is the the amount of truth class i points that have also
been classified as class i; Ci is the total number of values
that have been predicted to belong to class i; and Gi is the
overall quantity of truth values in class i.

5. Results and discussions
The study under consideration constitutes a significant

advancement in the domain of agricultural mapping, partic-
ularly in the integration of state-of-the-art ML techniques
with the Sentinel-2 dataset. The machine learning algo-
rithms are pioneers in this study. The innovative aspect
is in the extensive study and use of these cutting-edge
techniques to effectively map many crops in sophisticated
environments. This research aims to push beyond the limits
of current knowledge by combining cutting-edge remote
sensing data with advanced ML algorithms. By doing so,
it will provide new insights and methodologies for precise
and detailed crop mapping, thereby making a significant
contribution to the field of agricultural research and spatial
analysis.

A. Training and Testing data sample
High-resolution Google Earth images and the original

Sentinel-2 data were manually inspected in the field to
provide the training data. The ROI tool in QGIS 3.10 was
used to build 100 polygons for every vegetative category
to collect training data samples. The pixel value for every
crop category is differed due to differing polygon sizes, as
shown in Table 3.

The samples were split into three groups in a stratified
random sampling technique. Classification models are cre-
ated using the training set, and classification precision is
assessed using the testing set [30]. Table 3 indicates the
number of field for every kind of crop.

The satellite’s image, which was utilized to determine
the crop class and macro class and calculate the spectral
signatures, received the created training pixels as an input.
Each ROI is identified by a class ID, and each ROI is
assigned to a land cover category using a macro class ID
[31]. Eq. 8 was used to calculate the number of samples
[32].

N =
(∑

i = 1 (Wi ∗ S i/S 0)2
)

(8)

In equation 8 ,Where, Wi = Portion of class i’s allocated
area; Si = stratum i standard deviation; So = overall
accuracy’s predicted standard deviation; c = overall number
of classes. The Table 4 shows the generated training pixels
using the Eq.8.

Table 4 shows the sum of pixels and percentage of each
class found in the classification report, divided by 100 to get
the needed portion of each class i’s allocated area denoted
by Wi. Let us assume overall accuracy’s predicted standard
deviation as S0=0.01 and calculate the stratum i standard
deviation as Si. Therefore, N = (0.2591/0.01)2=671 is the
number of samples we should distribute among classes.

Considering the complexity of interpreting more spectral
bands, a great volume of information in Sentinel-2 im-
ages presents both possibilities and operational challenges.
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Table III: Crop classes along with training and testing samples used in this experiment
Class ID Macro class name Training Data (polygon/pixels) Validation Data (Pixels) Test Data (pixels)

1 Cotton 100/1265 600 667
2 Chickpea 100/1427 586 672
3 Paddy 100/900 630 682
4 Pigeon pea 100/743 625 645
5 Orchard 100/1305 592 620

Table IV: Classification report
Class Pixel Sum Percentage% Area [metre2] Wi Si Wi*Si

1 4694009 3.969405599 469400900 0.039694056 0.5 0.019847028
2 5625042 4.75671717 562504200 0.047567172 0.4 0.019026869
3 32713231 27.66336457 3271323100 0.276633646 0.3 0.082990094
4 72251997 61.09862197 7225199700 0.61098622 0.2 0.122197244
5 2970429 2.511890689 297042900 0.025118907 0.6 0.015071344

Total 0.259132578

Subsequently, the training pixels were given to supervised
algorithms such as random forest, SAM, and MLC and
classified the images accordingly. The random forest iden-
tified the crop features based on accurate training pixels,
NIR bands, and NDVI-based [33] input values. The MLC
method predicted results based on training ROI result-
ing in optimum statistical likelihood values. The spectral
angle between two pixels and spectral signals that are
integrated over the ROIs have been used in SAM based
method for classification. Finally, the ISODATA method
combined identical clusters and partitioning clusters with
large standard deviations and the k-means clustering method
arranged features into N-clusters from a vector layer. The
classification results of random forest, SAM, MLC, k-means
clustering, and ISODATA methods are given in Figure 6.
It was observed from Figure 6 that the cotton crop was
accurately classified by random forest, SAM, k-means, and
ISODATA methods and occupied most of the region. The
chickpea crop was accurately identified by unsupervised
methods (Figure 6) with the highest accuracy. The pigeon
pea, paddy, and orchard crops were identified with MLC and
unsupervised methods (Figure 6). The random forest and
SAM method has resulted very well for cotton and pigeon
pea crops. However, there was misclassification between
pigeon pea and other classes using the supervised methods.
The random forest method classified more accurate classes
than the SAM and MLC methods (Figure 6). Alternatively,
the ISODATA method has also been performed accurately
for all classes. There were only a few pixels that were
unclassified by the MLC method. It was observed that
from Figure 5 and Table 11, the results were satisfactory.
The random forest and ISODATA methods produced the
highest results (87.71% and 85.01%), followed by MLC
(82.70%), k-means clustering (81.39%), and SAM (80.25%)
method. The reason behind low accuracy with the SAM
method is spectral similarity and the most significant used
angle. Hence, the angle of the SAM method has produced
spectral confusion between classes. However, the random

forest method has also produced confusion between water
and other classes. Besides, the spectral properties and
spatial information of crop classes were similar cause of
misclassification in some cases (Figure 6).

Figure 6. Shows (a) Pre-processed Sentinel-2 images and the
spatial distribution maps derived from (b) Random forest, (c) SAM

method, (d) MLC method, (e) k-means clustering, and (f)
ISODATA method, respectively.
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Table V: Confusion Matrix for Random Forest method results (in %)

Classification Data

G
ro

un
d

Tr
ut

h

Class Cotton Chick
pea

Pigeon
pea

Paddy Orchard Water Others Total

Cotton 320 6 7 3 8 0 20 364
Chick pea 9 330 12 6 9 0 30 396
Pigeon pea 4 9 290 8 10 0 29 350
Paddy 10 3 8 270 8 0 26 325
Orchard 8 4 3 0 190 0 22 227
Water 0 0 0 0 0 300 0 300
Others 8 4 5 9 3 0 376 405
Total 359 356 325 296 228 300 503 2367

OA=87.71%, K=0.86

Table VI: Confusion Matrix for SAM method results (in %)

Classification Data

G
ro

un
d

Tr
ut

h

Class Cotton Chick
pea

Pigeon
pea

Paddy Orchard Water Others Total

Cotton 300 8 10 6 3 0 40 367
Chick pea 20 270 11 9 3 0 50 363
Pigeon pea 10 20 260 5 3 0 30 328
Paddy 11 6 8 200 34 0 20 279
Orchard 16 5 4 0 190 0 32 247
Water 0 0 0 0 0 240 0 240
Others 30 12 5 20 7 0 320 394
Total 387 321 298 240 240 240 492 2218

OA=80.25%, K=0.76

TABLE II

Table VII: Confusion Matrix for MLC method results (in%)

Classification Data

G
ro

un
d

Tr
ut

h

Class Cotton Chick
pea

Pigeon
pea

Paddy Orchard Water Others Total

Cotton 290 7 10 3 8 0 34 352
Chick pea 10 310 15 10 3 0 30 378
Pigeon pea 14 9 280 8 10 0 43 364
Paddy 19 3 8 210 8 0 40 288
Orchard 12 8 4 0 260 0 32 316
Water 0 0 0 0 0 250 0 250
Others 19 20 5 9 7 0 350 410
Total 364 357 322 240 296 250 529 2358

OA=82.70%, K=0.81
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Table VIII: Confusion Matrix for k-means clustering method results (in %)

Classification Data

G
ro

un
d

Tr
ut

h

Class Cotton Chick
pea

Pigeon
pea

Paddy Orchard Water Others Total

Cotton 265 7 11 8 3 0 9 303
Chick pea 23 290 19 9 3 0 67 411
Pigeon pea 10 21 300 7 9 0 23 370
Paddy 9 13 8 190 34 0 20 274
Orchard 16 5 4 0 188 0 32 245
Water 0 0 0 0 0 230 0 230
Others 13 8 9 3 7 0 330 370
Total 336 344 351 217 244 230 481 2203

OA=81.39%, K=0.78

Table IX: Confusion Matrix for ISODATA method results (in %)

Classification Data

G
ro

un
d

Tr
ut

h

Class Cotton Chick
pea

Pigeon
pea

Paddy Orchard Water Others Total

Cotton 330 4 22 3 5 0 9 373
Chick pea 8 320 13 4 22 0 31 398
Pigeon pea 6 2 310 18 22 0 17 375
Paddy 3 5 1 90 0 0 34 133
Orchard 6 13 4 0 188 0 27 238
Water 0 0 0 0 0 270 0 270
Others 4 8 18 1 7 0 290 328
Total 357 352 368 116 244 270 408 2115

OA=85.01%, K=0.82

Table X. The class producer’s accuracy and specific user’s of different classification methods’ (in %)

Class Random Forest SAM Classifier MLC K-Mean ISODATA
UA
(%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Cotton 89.14 87.91 77.52 81.74 79.67 82.39 78.87 87.46 92.44 88.47
Chickpea 92.70 83.33 84.11 74.38 86.83 82.01 84.30 70.56 90.91 80.40
Paddy 89.23 82.86 87.25 79.27 86.96 76.92 85.47 81.08 84.24 82.67
Pigeon Pea 91.22 83.08 83.33 71.68 87.50 72.92 87.56 69.34 77.59 67.67
Orchard 83.33 83.70 79.17 76.92 87.84 82.28 77.05 76.73 77.05 78.99
Water 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Others 74.75 92.84 65.04 81.22 66.16 85.37 68.61 89.19 71.08 88.41
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Table XI. Overall Accuracy of Different Classification Methods and Kappa Statistics

Classification Methods Overall Accuracy Kappa Coeeficients
Random Forest 87.71 0.86

ISODATA 85.01 0.82

MLC 82.70 0.81

K-Means 81.39 0.78

SAM 80.25 0.76

Table XII: The results of the current study’s compared with standard literature

Satellite Datasets Crop pattern/target classes Classification methods Accuracy (in %) References

Sentinel-2
Multiple crops Random Forest 91.2 [2]

Sentinel-2 Forest , grassland, water
bodies, alpine area

Random Forest 75.62 [5]

Sentinel-2 Built up ,fodder, orchard,
sugarcane, wheat, forest, crops,
water

Random Forest 84.22 [7]

Multi
temporal,Gaofen
1,satellite (GF-1)

Multiple crops Random forest, K-means and
ISODATA

RF-79,K-means-74,
ISODATA-75

[28]

Sentinel-2 Multiple crops Random Forest 92 [1]
Sentinel-2 Multiple crops Random Forest 90 [11]
Sentinel-2 Multiple crops Random Forest PB-RF 86.67,

OB-RF 88.57
[12]

Sentinel-2 Bare land, forest, agriculture,
residential, water, Impervious
surface

Random Forest 94.59 [34]

Sentinel-2 Multiple crops Random Forest 93 [34]
Sentinel-2 Cropland mapping K-means clustering 81 [30]
SPOT 5 Urban, grassland, water,

vegetation, barren land
MLC and ISODATA technique MLC- 90.28,

ISODATA-80.56
[15]

Sentinel-2 Multiple crops MLC MLC-76 [26]
Sentinel-2 Multiple crops RF, SAM, MLC, K-means

clustering, and ISODATA,
Random
Forest-87.71,
SAM-80.25,
MLC-82.70,
K-means-81.39,
ISODATA-85.01

This study
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The confusion matrix was created using the classified
images, and the kappa coefficient, producers’ accuracy,
overall accuracy, and users’ accuracy were all acquired. The
confusion matrix produced by the RF, SAM, MLC, k-means
clustering, and ISODATA techniques is displayed in Tables
5, 6, 7, 8, and 9. The kappa coefficient values, producers’,
users’, and overall accuracy were calculated using the
confusion matrix. The reference values are displayed in the
confusion matrix’s columns, and the classified values are
highlighted in the rows. The correctly classified values are
present in the diagonal position of the confusion matrix
[27]. Table 5 shows that the random forest approach has
the highest overall accuracy (87.71 percent) with a kappa
value of 0.86 in terms of classification accuracy. With kappa
values of 0.76 and 0.81 for the SAM and MLC procedures,
respectively (Tables 6 and 7), the total accuracy was 80.25
and 82.70 percent. However, with 81.39 and 85.01 percent
kappa values of 0.78 and 0.82, the unsupervised approaches
have likewise yielded acceptable accuracy levels. (Tables 8
and 9).

Table 10 shows a comparative examination of all the
algorithms used for classification as well as producer and
user accuracy for each class in the analyzed region. With
over 2000 validation sample pixels, each method was run
individually. For every classification method, the accuracy
of the water class as reported by the producer and user
was 100%. Nonetheless, identifying and categorizing the
crop characteristics that were adequately identified was our
goal. The accuracy of the crop-specific user (table 10) for
the cotton crop was 89.14 percent for the random forest,
77.52 percent for the SAM, 79.67 percent for the MLC,
78.87 percent for the k-means, and 92.44 percent for the
ISODATA techniques. With results of 92.70, 89.23, 91.22,
and 83.33 percent, respectively, the random forest yielded
high user accuracy for chickpea, paddy, pigeon pea, and
orchard. The user has received accuracy ranging from 77
to 92.44% using the SAM, MLC, k-means, and ISODATA
approaches. The producer’s accuracy was found to vary
from 71.68 to 88.47% across all approaches. When applying
the random forest approach, the maximum user’s accuracy
for chickpeas was 92.44%, while the producer’s accuracy
utilizing the ISODATA method for cotton was 88.47%
(table 10). With the SAM approach, the user’s accuracy
for the following crops: cotton, chickpea, paddy, pigeon
pea, and orchard crops were 77.52, 84.11, 87.25, 83.33, and
79.17 percent. Similarly, the MLC method has also given
satisfactory user accuracy for all crops, with 87.74 percent
for orchard crops.

Although resampling techniques particularly for k-fold
cross-validation (CV) have been used extensively in ma-
chine learning algorithms like SVM and RF, there hasn’t
been much research done on how they affect accuracy
relations. Based on these resampling techniques, we recog-
nized images for fulfilling our objectives to: (i) compare the
reflectance values of the satellite’s bands; and (ii) identify
which resampling technique (CV) and classifier (RF or

SVM) get higher results in terms of accuracy metrics at
the class and overall levels. In the classification training
and testing process, the balance of the dataset was assessed
using tenfold cross-validation.

On the other hand, ISODATA has also performed well
for cotton, chickpea, and paddy crops with 92.44, 90.91,
and 84.24 percent user accuracy. The performance of the k-
means clustering method was a little bit low for the cotton
and chickpea crops in case of user’s accuracy. In addition,
the producer’s accuracy was also good for a cotton crop with
the k-means clustering method. The pigeon pea and orchard
crops producer’s accuracy was very low with the k-means
and ISODATA method as compared to other methods.

Table 11 and Figure 7 present a comparison and perfor-
mance analysis of all the classification methods utilized in
this study, along with the corresponding kappa coefficient
values and overall accuracy. It is noted that all of the
methods yield satisfactory categorization results. Random
forest and ISODATA improved the kappa statics and overall
accuracy in all approaches (Table 11 and Figure 7). The
ISODATA, MLC and RF approaches likewise yielded good
results when the kappa values were used. Nonetheless, the
outcomes obtained from the SAM and k-means clustering
techniques are likewise satisfactory.

Figure 7. Accuracy comparisons for random forest, ISODATA,
MLC, k-means clustering, and SAM methods

B. Discussions and findings
In the present study, Sentinel-2 satellite images were

collected at 10m spatial resolutions throughout the growing
season and successfully identified and classified multiple
crops. The supervised (random forest, SAM, and MLC)
[35] and unsupervised (NDVI, k-means, and ISODATA)
approaches were successfully implemented on preprocessed
data. The results were tested using a confusion matrix to
determine the methods’ performance.

Since the present study has offered essential information
on crop type identification and classification, this study’s
findings can help solve the problem of crop classifica-
tion. The study revealed that remotely sensed Sentinel-2
data are the most efficient for crop classification. It also
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revealed that the most efficient and dependable methods
for differentiating between various crop kinds in order to
achieve high precision are machine learning algorithms.
This lays the groundwork for selecting the optimal blend
of machine learning algorithms and remotely sensed data
for crop type mapping with a desirable result. Prior research
has concentrated on using Sentinel-2 photos to classify crop
types because of their significant temporal resolutions in all
seasons.

Additionally, earlier studies have shown the importance
of either supervised methods or unsupervised methods,
specifically SVM [18], ANN, k-means clustering, ISO-
DATA [34] , decision tree [14], RF [36], the fuzzy classifier
[18] for crop type classification. However, these studies do
not combine a focus on both the supervised/unsupervised
approaches. In addition, these methods have not success-
fully identified crop types in lesser areas or mixed cropping
areas. The present study focused on multiple crop type
identification, classification, and mapping in miniature and
mixed cropping areas. The obtained results were validated
with ground truth points and field visits to the studied
regions. Furthermore, we compared our results with other
standard literature (Table 12) and found the superior per-
formance of our implemented methods. The comparisons
with other studies are highlighted in Table 12 with the
importance of the present study.

The results achieved in the present study are satisfactory
with adequate accuracy for the complex region (Table
12). However, there are significant differences in accuracy
and geographical inconsistencies between the data sources
due to variances in remotely sensed images, classification
schemes, and classification algorithms, resulting in signif-
icant differences in the classification findings for multiple
crops.

6. Conclusions and FutureWork
In the current findings, the optimization parameters of

the classifiers are adjusted for desired values to gener-
ate a better accurate outcome. The bands are examined,
and feature importance for the classifiers is determined.
According to this study, the Sentinel-2 data has more
potential and generates more high accurate outcomes for
crop classification. The NIR is the most suitable band for
the random forest method according to feature computation.
The results demonstrate that the RF classifier surpasses
the other classification methods. The crop varieties and
agricultural fields identified can be used to predict yields
shortly. Predicting future outcomes is difficult, but it is
required to implement real-world applications. In future,
the present studies’ accuracy can also be enhanced with a
hybrid classification approach or deep learning-based mod-
els with hyperspectral or RADAR datasets. Furthermore,
the integration of Sentinel-2 data and hyperspectral images
can enhance accuracy by merging high spatial and spectral
characteristics for sub-pixel classification.

Authors’ contributions: Atiya Khan, Chandrashekhar H.
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