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Abstract: Blended learning, an innovative educational approach adopted by the Saudi Electronic University, combines traditional
face-to-face teaching with online methods to improve educational outcomes. However, implementing it effectively faces challenges,
especially in shifting physical classes to virtual formats for faculty and students spread across distant campuses, potentially compromising
the core principles of blended learning and reducing its effectiveness. Ideally, each student would attend one face-to-face and one virtual
session per course weekly. Yet, operational challenges emerge due to geographical disparities between faculty and student locations,
necessitating the conversion of face-to-face sessions into virtual ones. To address these challenges, this study proposes two novel
heuristic strategies for scheduling timetables in blended learning contexts. The first heuristic, called Minimum Load Accumulation
Heuristic (MLAH), aims to evenly distribute teaching loads among faculty members and time slots while maximizing the number
of groups assigned to faculty members from the same campus. The second heuristic, called Average Load Accumulation Heuristic
(ALAH), calculates the average load of all faculty members and time slots and reduces the number of iterations searching for the
minimum load, as performed by MLAH. These strategies aim to minimize the conversion of face-to-face sessions to virtual, ensure fair
distribution of teaching responsibilities, and maintain a balanced allocation of face-to-face and virtual classes throughout the academic
year. The paper demonstrates the effectiveness of these algorithms in producing high-quality solutions comparable to those generated
by CPLEX, with significantly reduced computational complexity.
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1. Introduction
University course timetabling is a complex problem that

has been the focus of research for several decades. As the
size of universities and the number of courses and students
continue to grow, the manual process of creating course
timetables becomes more difficult and time-consuming. To
address this issue, software solutions have been developed
to automate the process of creating university timetables [1],
[2]. The solutions presented are tailored for learning pro-
cesses that do not account for the geographical proximity of
faculty members to their assigned teaching campuses. The
primary contribution of this paper lies in addressing a sig-
nificant gap in the existing literature concerning timetabling
scheduling. While numerous studies have explored various
aspects of scheduling in educational settings, none have
specifically tackled the challenge of optimizing schedules
while considering the distribution of faculty members and
student groups among multiple campuses. By introducing
novel heuristics and optimization techniques tailored to this
specific scenario, my paper offers a pioneering solution
that aims to maximize the effectiveness of blended learning
programs.

Blended learning, also known as hybrid learning, is a
pedagogical approach that combines face-to-face classes
with virtual classes to provide an effective learning ex-
perience [3], [4], [5], [6]. This innovative approach has
gained popularity in recent years, with universities around
the world adopting blended learning models that utilize
technology, support self-learning, and promote collabora-
tion among learners [3], [4], [7]. By integrating both face-to-
face and virtual classes, blended learning has demonstrated
its ability to alleviate the isolation commonly encountered
by learners in distance learning settings and enhance overall
learning outcomes. [8].

The Saudi Electronic University (SEU) is one such
university that has embraced blended education and has
adopted a flexible model that incorporates both face-to-
face and e-learning activities. SEU has a geographically
dispersed campus system spread across different cities in
the Kingdom.

Balancing face-to-face and virtual classes poses a signif-
icant challenge in the implementation of blended learning
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methodologies. At Saudi Electronic University, adherence
to this approach entails each student’s attendance of one
face-to-face session and one virtual session weekly for
every enrolled course. However, logistical constraints arise
when instructors and students are geographically separated,
necessitating the conversion of face-to-face sessions into
virtual ones. This adjustment represents a deviation from
established blended learning principles, inhibiting direct
instructor-student interaction and potentially undermining
the pedagogical efficacy of the blended learning paradigm.
Converting a face-to-face class into a virtual session due to
the instructor and the student group being from different
campuses is considered a violation of blended learning
principles.

This paper proposes two new heuristics for scheduling
timetables in blended learning education, which will be
compared in terms of performance and quality with CPLEX.
The proposed solution is designed to accomplish three
key objectives: optimizing the allocation of instructors to
student groups within the same campus to mitigate the need
for converting face-to-face sessions to virtual ones; ensuring
an equitable distribution of teaching responsibilities among
faculty members; and evenly distributing the number of
classes across teaching time slots, while adhering to various
constraints. By achieving an equitable distribution of classes
across time slots, the likelihood of face-to-face sessions
being transitioned to online formats due to classroom short-
ages is also minimized.

The paper is structured as follows: Section 2 discusses
related works, while Section 3 provides the problem for-
mulation. Section 4 presents the proposed heuristics, and
Section 5 analyzes the computational results. Finally, Sec-
tion 6 concludes the paper with discussions on future work.

2. Related works
University timetabling software has undergone signifi-

cant evolution over the years by incorporating advanced op-
timization algorithms to schedule courses and exams. These
algorithms consider various constraints, such as course con-
flicts, faculty and room availability, and student preferences,
resulting in more efficient and effective scheduling solutions
[1], [2]. Scheduling problems are common in various fields
such as cloud computing [9], [10], manufacturing [11],
[12], [13], [14], [15], computer science [16], and crew
scheduling [17], [18]. The University Course Timetabling
Problem (UCTTP) is a specific scheduling problem that
involves assigning courses, faculty members, and students
to designated time slots and rooms while satisfying both
hard and soft constraints [19], [20], [21], [22].

Approaches to solve the timetabling problem fall into
three different classes introduced in the literature. The first
class is based on operational research methods, including
techniques like graph coloring theory, Integer program-
ming/Linear programming (IP/LP) method, and constraint-
based technique (CSPs) [20], [23]. The graph coloring
method represents the timetabling problem as a graph col-

oring problem. The goal is to color the graph vertices with
the least number of colors, such that no neighboring vertices
have the same color. The resulting timetable must not have
any conflicts. [24], [25] presented an approach of coloring
the edges of a two-part graph to solve the UCTTP problem,
while [26] used graph coloring to schedule classes by
assigning courses to a given number of time slots (colors).
On the other hand, [27], [28], [29] proposed a genetic
coloring approach to solve the UCTTP problem using a
combination of graph coloring and genetic algorithms.

The IP/LP method is a mathematical approach used to
solve UCTTP by allocating limited resources to maximize
interest and minimize costs. IP allows for some or all
variables to be defined as non-negative integer values. The
method is usually used distinctly, but it can also incor-
porate constructive heuristics to facilitate the analysis of
constraints. The general structure of the IP/LP method for
the UCTTP problem involves formulating different group-
ings into two classes: courses grouping and time intervals
grouping. The IP/LP method is influenced by the size of
the institute and obtaining optimal solutions can be difficult.
[30] proposed a heuristic approach to solve this problem by
separating the timetabling problem into two sub-problems:
timetabling sub-problem and grouping sub-problem. [31],
[32] presented the formulation of the UCTTP problem using
integer programming, along with a case study. [33] applied
an integer programming approach called IP-0.1 to solve the
UCTTP problem, with the main goal being to organize
courses and lecturers based on available time slots and
classrooms. [34] presented a mixed-integer programming
model for solving the university timetabling problem which
reduces the number of variables and constraints of the
mixed-integer program to manageable levels.

The CSP-based method is a computing system that
defines constraints as limitations over a space of facilities.
It aims to find a set of consistent values that satisfy the
predefined constraints by assigning values to each variable.
The problem is represented by a triple of CSP = (X, D,
C) where X is a finite set of variables, D is a finite set
of domain values, and C is a finite set of constraints that
depend on a subset of variables [20].

Several researchers have used the CSP-based method
to solve the Course Timetabling Problem. For instance,
[35] combined a genetic algorithm with constraint-based
reasoning to find a possible and near-optimum solution.
[36] presented a case study of university timetabling using
an approach based on constraint satisfaction programming.
They used ILOC software to implement the CSP approach
and allocate faculty members, students, classes, and courses
to time slots in the weekly timetabling, while satisfying the
constraints [20].

Meta heuristic methods are a set of algorithms used to
find approximate solutions to difficult optimization prob-
lems. These methods are particularly useful when traditional
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optimization techniques become impractical due to the large
number of variables or constraints in the problem [37].

My approach is different from those presented in the
literature by adding new constraints related to the nature
of the blended learning by considering the distribution
of faculty members and student groups among multiple
campuses.

The next section presents the problem formulation and
outlines the optimization approach applied.

3. Problem formulation
This paper presents a scheduling problem involving

the allocation of faculty members to groups of students
belonging to specific campuses and specific time slots.
Each course, represented by k ∈ {1, 2, . . . ,K}, comprises
Lk groups of students. The set of courses is denoted by
C = {C1,C2, . . . ,CK}, and G∥ = {Gk1,Gk2, . . . ,GkLk } is a set
consisting of Lk groups that belong to course k.

A set of M faculty members is referred to as F =
{1, 2, . . . ,M}, and the reduction in teaching load of a faculty
member m in case of administrative responsibilities or a
higher rank than other faculty members is represented as
Rm. A set of N campuses is denoted by B = {1, 2, . . . ,N}.
For faculty member m, the assignment vector to the N
campuses is denoted by Um = {um1, um2, . . . , umN}, where
umn is defined as 1 if faculty member m is assigned to
campus n, and 0 otherwise.

The assignment vector of the l-th group in course k to
the N campuses B is denoted by Vkl = {vkl1, vkl2, . . . , vklN},
where vkln is defined as 1 if group l of course k is assigned
to campus n, and 0 otherwise.

The assignment vector of course k to the M faculty
members F is denoted by Wk = {uk1, uk2, . . . , ukM}, where
wkm is defined as 1 if course k is assigned to faculty member
m, and 0 otherwise. The set of I teaching time slots is
denoted by T = {T 1,T 2, . . . ,T I}.

Table I displays the parameters and variables used in the
mathematical formulation.

The mathematical formulation presented in this paper
has been specifically selected to address the scheduling
problem of SEU. It takes into account the allocation of
faculty members to different campuses and time slots, as
well as the assignment of student groups to courses and
campuses. By formulating the problem mathematically, it
is possible to develop an optimized solution that considers
various constraints and objectives, ultimately leading to a
more efficient and effective scheduling of blended learning
courses at SEU.

The decision variable xklmi is used to represent this
problem, where the four indexes correspond to the course
k, the group l, the faculty member identifier m, and the time

slot i. xklmi is equal to 1, if the group l of the course k is
assigned to the faculty member m and to the time slot i,
and 0 otherwise.

Equation (1) defines FF(x) as the number of groups
capable of accommodating blended learning without neces-
sitating the conversion of face-to-face classes into virtual
sessions.

FF(x) =
K∑

k=1

Lk∑
l=1

M∑
m=1

N∑
n=1

I∑
i=1

xklmivklnumn (1)

The total number of groups taught by a faculty member
m is given by equation (2). It is computed by summing
over all courses, groups, and time slots for which the
faculty member m is assigned, and their respective decision
variables xklmi and vkln.

TGm(x) =
K∑

k=1

Lk∑
l=1

N∑
n=1

I∑
i=1

xklmivkln (2)

The total number of groups taught in a time slot i is
given by equation (3). It is computed by summing over all
courses, groups, and faculty members for which the time
slot i is assigned, and their respective decision variables
xklmi.

TS i(x) =
K∑

k=1

Lk∑
l=1

M∑
m=1

xklmi (3)

In this paper, two types of metrics are proposed to mea-
sure the disparity between faculty members and between
teaching time slots. The maximum metric is used to find
the faculty member or time slot with the highest workload.
Equations (4) and (5) respectively define the maximum
workload for faculty members and time slots.

DMax
Faculties(x) = max

m∈F
TGm(x), (4)

DMax
S lots(x) = max

i∈T
TS i(x), (5)

The range metric measures the distance between the
maximum and minimum workload. Equations (6) and (7)
respectively define the range for faculty members and time
slots.

DRange
Faculties(x) = max

m∈F
TGm(x) −min

m∈F
TGm(x), (6)
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Notation Description
K number of courses
k index of the course
Lk number of groups of the course k
l index of a group
C set of K courses
Ck course k
Gk set of Lk groups of the course k
M number of faculty members
m index of a faculty member
F set of M faculty members
Rm teaching load reduction of the faculty member m
N number of campuses
n index of a campus
B set of N campuses
Um assignment vector of faculty member m to the N campuses
umn boolean variable equal to 1 if the faculty member m is assigned to the campus n
Vkl assignment vector of the group l of the course k to the N campuses
vkln boolean variable equal to 1 if group l of the course k is assigned to the campus n
I number of teaching time slots
i index of a time slot
T set of I teaching time slots
Wk assignment vector of the course k to the M faculty members
wkm boolean variable equal to 1 if the course k is assigned to the faculty member m
x boolean decision vector
xklmi boolean decision variables of the optimization problem
FF(x) number of groups that can satisfy a blended learning without violation.
TGm(x) total number of groups tought by a faculty member m
MaxTGm maximum number of groups that can be tought by a faculty member m
TS i(x) total number of groups tought in a time slot i
DMax

Faculties(x) maximum distance of total number of groups tought by faculty members
DRange

Faculties(x) distance between the maximum and the minimum of total number of groups tought by faculty
members

DMax
S lots maximum distance of total number of groups tought in all time slots

DRange
S lots distance between the maximum and the minimum of total number of groups tought in all time

slots
α1 minimum load of faculty members
α2 maximum load of faculty members
β1 minimum load of teaching time slots
β2 maximum load of teaching time slots
Xkl set of faculty members belonging to the same campus as the group l of the course k
Ykl set of time slots where a faculty member from Xkl can be assigned
L f average load of all faculty members
Li average load of all time slots

TABLE I. Notations used in the mathematical model
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DRange
S lots (v) = max

i∈T
TS i(x) −min

i∈T
TS i(x). (7)

An optimization technique proposing a three-
dimensional multi-objective lexicographic order has
been introduced. The first order in the proposed technique
prioritizes the number of groups that can participate in
blended learning without converting face-to-face classes
into virtual session, followed by the second order that
ensures a balanced distribution of groups among faculty
members, and finally, the third order seeks to balance the
number of groups among teaching time slots.The input to
the proposed optimization problem is given by U, V, and
W.

The optimization problem is as follows:

min
x∈{0,1}

(−FF(x), α2 − α1, β2 − β1) (8)

Subject to:

α1 ≤ (
K∑

k=1

Lk∑
l=1

N∑
n=1

I∑
i=1

xklmivkln + Rm),m ∈ {1, ...,M}, (9)

α2 ≥ (
K∑

k=1

Lk∑
l=1

N∑
n=1

I∑
i=1

xklmivkln + Rm),m ∈ {1, ...,M}, (10)

β1 ≤

K∑
k=1

Lk∑
l=1

M∑
m=1

xklmi, i ∈ {1, ..., I}, (11)

β2 ≥

K∑
k=1

Lk∑
l=1

M∑
m=1

xklmi, i ∈ {1, ..., I}, (12)

M∑
m=1

I∑
i=1

xklmi = 1 ∀k ∈ {1, ...,K}, l ∈ {1, ..., Lk}, (13)

K∑
k=1

Lk∑
l=1

xklmi ≤ 1 ∀m ∈ {1, ...,M}, i ∈ {1, ..., I}, (14)

TGm(x) ≤ MaxTGm ∀m ∈ {1, ...,M}, (15)
xklmi ≤ wkm ∀k ∈ {1, ...,K},∀l ∈ {1, ..., Lk}, (16)
∀m ∈ {1, ...,M},∀i ∈ {1, ..., I},
xklmi ∈ {0, 1},∀k ∈ {1, ...,K},∀l ∈ {1, ..., Lk}, (17)
∀m ∈ {1, ...,M},∀i ∈ {1, ..., I},

The aim of the optimization problem at hand is to
minimize a multi-objective function using Boolean decision
variables to schedule courses for faculty members. The
objective function comprises three components: the negative
value of the function FF(x), the difference between the
minimum and maximum number of groups taught by faculty
members, and the difference between the minimum and
maximum number of groups taught in teaching time slots,
as defined in equation (8).

If the range metric is used, the problem involves certain
constraints that are defined in equations (9) to (17).
Constraints (9) and (10) set the minimum and maximum
number of groups that a faculty member can teach. Simi-
larly, constraints (11) and (12) specify the minimum and
maximum number of groups that can be taught during a
particular time slot. However, if the maximum metric is
used, the problem will not include constraints (9) and (11).
In this case, α1 and β1 will be replaced by zero in equation
(8).

Constraints in equations (13) to (17) relate to the
scheduling of courses for different faculty members. Con-
straints (13) ensure that only one faculty member can
teach a particular course group, while constraints (14)
restrict the maximum number of groups that can be assigned
to a faculty member in a particular time slot to one.
Constraints (15) limit the number of groups assigned to a
faculty member to be less than or equal to their maximum
load. Constraints (16) place a restriction on the value of
decision variable xklmi to be less than or equal to wkm,
where wkm represents a faculty member’s capability to teach
a particular course. Finally, constraints (17) outline the
range of decision variables, which can only take on Boolean
values of 0 or 1.

At SEU, students are grouped based on their level of
study and have the freedom to choose courses and groups
that align with their curriculum. Therefore, the optimization
problem proposed in this context does not take into account
any constraints related to student availability.

In the next section, the proposed heuristics will be
presented by describing their implementation process.

4. Proposed methods
A. Minimum Load Accumulation Heuristic (MLAH)

Algorithm 1: Initialization scheme
[1] K: Number of courses;
L = (Lk |k = 1..K): Vector of number of groups per
course k;

M: Number of faculty members;
N: Number of campuses;
R = (Rm|m = 1..M): Vector of load reduction for

faculty members;
Vkl = (vkln|k = 1..K, l = 1..Lk, n = 1..N): Assignment

vector of group l of course k to campus n;
Wk = (wkm|k = 1..K,m = 1..M): Assignment vector of

course k to faculty member m;
Um = (umn|m = 1..M, n = 1..N): Assignment vector of

faculty member m to campus n;
MaxTG = (TGMm|m = 1..M): Vector of maximum
load for faculty members;

xklm j = (0|k = 1..K, l = 1..Lk,m = 1..M, j = 1..J);
Apply MLAH or ALAH

Algorithm 2 is a heuristic method developed to al-
locate course groups to faculty members and time slots.
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Algorithm 2: Minimum Load Accumulation Heuristic
(MLAH)
[1] FF = 0: Number of groups without blended
learning violation;

for {k ∈ C} do
for {l ∈ Gk} do
Xkl = {m ∈ F ; n ∈ B|wkm = umn = vkln = 1};
Ykl = {i ∈ T ; m ∈ Xkl|xklmi = 0};
if (Xkl , ∅ and Ykl) , ∅ then

(m∗, i∗) = min{(m,i)∈(Xkl,Ykl)}(TGm,TS i) ;
FF = FF + 1;
xklm∗i∗ = 1;
: Select the faculty member m∗ with the

minimum load, from the same campus as
the group l of course k, at the time slot i∗
with the minimum load as well;

else
Zkl = {m ∈ F ; i ∈ T |wkm = 1};
if (Zkl , ∅) then

(m∗, i∗) = min{(m,i)∈(Zkl,Xkl)}(TGm,TS i) ;
xklm∗i∗ = 1;
: Select the faculty member m∗ with the
minimum load, from different campus
to the group l of course k, at the time
slot i∗ with the minimum load as well;

else
Display(No feasible solution);

The algorithm ensures that the teaching loads are evenly
distributed among faculty members and time slots, while
also maximizing the number of groups assigned to faculty
members from the same campus. The initialization scheme
described in 1 specifies key parameters, such as the number
of courses, groups per course, faculty members, campuses,
load reduction for faculty members, and the maximum load
for each faculty member. The initialization scheme also
sets up assignment vectors, including Vkl, which assigns a
group l of course k to campus n,Wk, which assigns course
k to faculty member m, and Um, which assigns faculty
member m to campus n. Additionally, the initialization
scheme defines a binary variable xklmi that denotes whether
a faculty member m is assigned to teach the group l of the
course k during time slot i, and a variable FF that tracks the
number of instances without blended learning violations.

In the algorithm 2, Xkl is the set of faculty members
belonging to the same campus as the group l of the course
k, and Ykl is the set of time slots where a faculty member
from Xkl can be assigned. The algorithm starts by looping
over all courses and groups. For each group, it identifies
the faculty member m∗ with the minimum load from Xkl

and the time slot i∗ with the minimum load from Ykl. If a
feasible faculty member is found, the algorithm increments
FF, sets the binary variable xklm∗i∗ to 1, and proceeds to the

next group.

If no feasible faculty member is found from the same
campus (i.e., Xkl = ∅ or Ykl = ∅), the algorithm searches
for a faculty member m∗ with the minimum load from a
different campus, again considering the minimum load time
slot i∗. If a feasible faculty member is found, the algorithm
keeps FF to the same value and sets xklm∗i∗ to 1. If no
feasible faculty member is found, the algorithm outputs ”No
feasible solution.”

The algorithm prioritizes the teaching time slot with the
minimum load to balance the load between faculty members
and between teaching time slots. By using this approach,
the algorithm aims to assign courses to faculty members
while ensuring that their loads are balanced and that blended
learning constraints are not violated.

B. Average Load Accumulation Heuristic (ALAH)
Algorithm 3 begins by initializing a counter FF to track

the number of groups without blended learning violation. It
then calculates the average load of all faculty members,
denoted as L f , and the average load of all time slots,
denoted as Li.

Next, the algorithm iterates over all courses k in set C.
For each course k, it iterates over all groups l in set Gk.

If the set Xkl of faculty members belonging to the same
campus as the group l of the course k, and the setYkl of time
slots where a faculty member from Xkl can be assigned are
not empty, then the algorithm proceeds to select a feasible
faculty member m∗ from Xkl whose teaching load is less
than L f . If no such faculty member is found, the algorithm
selects one with a teaching load greater than L f but with
the minimum total load TGm. The algorithm then selects a
time slot i∗ from Ykl with the minimum load among those
with load less than Li or the minimum total load TS i for
those with load greater than or equal to Li. Once a feasible
faculty member and time slot are identified, the algorithm
increments the FF counter and schedules group l of course
k to faculty member m∗ in time slot i∗ by setting xklm∗i∗ to
1.

If a feasible faculty member cannot be found from the
same campus (i.e., Xkl = ∅ or Ykl = ∅), the algorithm
searches for one from a different campus with a teaching
load less than L f . If no such faculty member is found, it
selects one with a teaching load greater than L f but with the
minimum total load TGm. The algorithm then selects a time
slot i∗ as before. If a feasible faculty member is found, the
algorithm sets xklm∗i∗ to 1 and keeps FF to the same value. If
no feasible faculty member is found, the algorithm outputs
”No feasible solution.”

The Average Load Accumulation Heuristic (ALAH) pre-
sented in 3 differs from the Minimum Load Accumulation
Heuristic (MLAH) by reducing the number of iterations that
search for the minimum load and replacing it with a simple
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Algorithm 3: Average Load Accumulation Heuristic
(ALAH)
[1] FF = 0: Number of groups without blended
learning violation;

L f = K
∑Lk

k 1
M : Average load of all faculty members ;

Li = K
∑Lk

k 1
I : Average load of all time slots ;

for {k ∈ C} do
for {l ∈ Gk} do
Xkl = {m ∈ F ; n ∈ B|wkm = umn = vkln = 1};
Ykl = {i ∈ T ; m ∈ Xkl|xklmi = 0};
if (Xkl , ∅ and Ykl , ∅) then

Select {m ∈ Xkl} ;
if (m < L f ) then

m∗ = m ;
else

m∗ = min{m∈Xkl}TGm ;

Select {i ∈ Ykl|xklm∗i = 0} ;
if (i < Li) then

i∗ = i ;
else

i∗ = min{i∈Ykl}TS i ;
FF = FF + 1;
xklm∗i∗ = 1;
: Select the Faculty member m∗ < L f or
≥ L f with minimum load, from a same
campus to group l of course k, during
time slot i∗ < Li or ≥ Li with minimum
load as well;

else
Zkl = {m ∈ F ; i ∈ T |wkm = 1};
if (Zkl , ∅) then

Select {m ∈ Xkl};
if m < L f then

m∗ = m ;
else

m∗ = min{m∈Xkl}TGm ;

Select {i ∈ Ykl|xklm∗i = 0} ;
if (i < Li) then

i∗ = i ;
else

i∗ = min{i∈Ykl}TS i ;
xklm∗i∗ = 1;
: Select the Faculty member m∗ < L f

or ≥ L f with minimum load, from a
different campus to group l of course
k, during time slot i∗ < Li or ≥ Li with
minimum load as well;

else
Display(No feasible solution);

comparison with L f for faculty load or Li for time slot load.

The next section presents the computational results for
the proposed heuristics and discusses their effectiveness
across various problem sizes.

5. Computational results and discussion
In this section, the computational results and discus-

sion of the proposed heuristics for scheduling timetables
in blended learning education are presented. Significant
benefits can be provided to Saudi Electronic University,
which has a geographically dispersed campus system and
requires efficient scheduling to conduct face-to-face classes
with minimum building space. To evaluate the effectiveness
of the heuristics, their performance is compared with the
widely used CPLEX solver on instances of different sizes -
small, medium, large and extra-large. The results obtained
by each method are analyzed and their strengths and weak-
nesses are discussed.

It should be noted that the experiments have been
performed on a personal computer with a 12th Gen Intel(R)
Core(TM) i7-1265U processor, 1.80 GHz clock-pulse, and
16GBytes RAM. The optimization problem is written us-
ing the Optimization Programming Language (OPL) under
CPLEX Optimization Studio. Additionally, the heuristics
have been compiled with Microsoft Visual Studio Commu-
nity 2022 under Windows 11 Pro.

The efficiency of the proposed heuristics is demonstrated
in order to showcase how scheduling challenges faced by
Saudi Electronic University, especially in blended learning,
can be effectively addressed. The potential benefits of these
heuristics make them a valuable tool for delivering high-
quality education to students at Saudi Electronic University.
The heuristics are capable of minimizing violations of
blended learning principles, balancing teaching loads, and
evenly distributing face-to-face classes across teaching time
slots, which leads to a more effective and engaging learning
experience for students.

A. Case study with small size dimension
In this section, a case study is presented that examines

the scheduling of five courses within a department, with
each course consisting of multiple groups distributed across
three different campuses. Six faculty members are employed
by the department and are distributed across these three
campuses. The details of each course, its respective groups,
and the corresponding campus assignment are listed in
Table II. Information on the faculty member assigned to
each course and their respective campus is provided in Table
III and Table IV.

Table V and Table VI present a detailed numerical anal-
ysis of the distribution of faculty members to courses/groups
and time slots for a specific case involving five courses, six
faculty members, six time slots, and three campuses. Table
V highlights instances of blended learning violations, which
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TABLE II. Courses/Groups/campuses assignment - Case study with small size dimension

Courses C1 C2 C3 C4 C5
Groups G1 G1 G2 G1 G2 G3 G1 G2 G3 G4 G1

campuses B1 B2 B2 B3 B1 B3 B1 B3 B3 B1 B2

TABLE III. Courses/Faculties teaching capabilities - Case study with small size dimension

Courses C1 C2 C3 C4 C5
Faculties F2 F4 F2 F3 F5 F4 F1 F2 F3 F5 F6 F2 F4 F5 F6

TABLE IV. Faculties/campuses assignment - Case study with small
size dimension

Faculties F1 F2 F3 F4 F5 F6
campuses B1 B2 B2 B3 B1 B3

occur when the course/group and the assigned faculty mem-
ber are from different campuses. The notation CkGlFmBn
represents the assignment of group l from course k in
campus n to faculty member m. If CkGlFmBn is highlighted,
it indicates that the assigned faculty member m is not from
the same campus n, and all lectures are conducted virtually.
Additionally, Table VI presents information on faculty load
standard deviation (FSD), minimum faculty load (MinFL),
maximum faculty load (MaxFL), time slot load standard
deviation (TSD), CPU time in milliseconds (CPU), number
of instances without blended learning violation (FF), and
the violation rate (VR).

After analyzing the applied methods for the given case,
it was observed that all methods resulted in the same value
of FF = 9. This implies that 82% of the 11 groups were
successfully assigned to faculty members from the same
campus without any violation. However, for the remaining 2
groups, the Violation Rate (VR) was calculated to be 0.18,
as they were assigned to faculty members from different
campuses.

In terms of balancing the teaching load among faculty
members (FSD), the CPLEX with DMax method has the
highest standard deviation of faculty loads, which is 1.17.
Conversely, CPLEX with DRange, MLAH, and ALAH have
the same standard deviation for faculty loads, which is
0.98. Therefore, MLAH, ALAH, and CPLEX with DRange
provide a better balance of teaching load among faculty
members for this specific case.

Examining the standard deviation of teaching load
among time slots (TSD), it is observed that all methods
have the same standard deviation of 0.41.

The value of MinFL, which represents the minimum
load of faculty members, is zero when using CPLEX with
DMax and one when using the other methods. This means
that in the case of CPLEX with DMax, there is at least one
faculty member who does not have any assigned workload,
while CPLEX with DRange, MLAH, and ALAH ensure

that each faculty member is assigned at least one group.

The value of MaxFL, which represents the maximum
load of faculty members, is the same for all methods.

After analyzing the CPU time, MLAH and ALAH were
found to have significantly faster processing times than
CPLEX with DMax and CPLEX with DRange. CPLEX
with DMax was seven times faster than CPLEX with
DRange, while MLAH and ALAH had CPU times less than
1 millisecond, which cannot be accurately presented due to
the small size of the case study.

This analysis was conducted on a specific case study.
Therefore, a range of randomly generated instances will
be evaluated in the next subsection to further validate the
efficiency and effectiveness of the implemented heuristics.

B. Randomly generated small problems
This subsection presents a comparison of CPLEX with

DMax, CPLEX with DRange MLAH, and ALAH, in a
small institution setting, equivalent to a level of study. The
case study involves five courses with a random number of
groups ranging from 1 to 4 groups, six faculty members,
and three campuses. The assignment vectors, namely Vkl,
Wk, and Um, are generated randomly using a rectangular
distribution with a constant probability. The results of this
study are discussed in the subsequent paragraphs.

The results presented in Table VII illustrates that
CPLEX with DMax, CPLEX with DRange, MLAH, and
ALAH all achieve the same violation rate for every instance,
indicating that the proposed heuristics are effective in mini-
mizing the violation rate, similar to CPLEX. However, it
is worth noting that the violation rate for instance 4 is
relatively high at 62%. Upon analyzing the distribution
of faculty members and student groups across campuses,
it was discovered that there is a campus that has three
groups assigned to it, yet no faculty member assigned to
teach those groups. As a result, all face-to-face lectures for
these three groups will be converted to fully virtual classes.
Additionally, there is a course consisting of three groups
that are assigned to the same campus, but only one faculty
member is available to teach them, and that faculty member
belongs to a different campus. Therefore, the remaining
two groups will also be converted to fully online lectures.
These two groups belong to two different courses that can
be taught by faculty members from different campuses.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


Int. J. Com. Dig. Sys. 14, No.1, 1761-1774 (Jun-24) 1769

TABLE V. Results of Computational Analysis for Course/Group/Faculty/campus Assignments to Teaching Time Slots using CPLEX with DMax,
CPLEX with DRange, MLAH, and ALAH: A Case Study with Five Courses, Six Faculty Members, Six Time Slots, and Three campuses.

Methods
Time slots T1 T2 T3 T4 T5 T6

CPLEX with DMax C2G2F3B2 C4G4F1B1 C4G2F6B3 C4G1F1B1 C5G1F2B2 C3G2F4B1
C2G1F2B2 C4G3F6B3 C3G3F4B3 C3G1F4B3 C1G1F2B1

CPLEX with DRange C2G2F3B2 C4G2F6B3 C4G3F6B3 C4G4F5B1 C5G1F2B2 C3G2F4B3
C2G1F2B2 C3G1F4B3 C4G1F1B1 C3G3F4B3 C1G1F2B2

MLAH C1G1F2B1 C2G1F3B2 C2G2F2B2 C3G1F4B3 C3G2F4B3 C3G3F4B3
C4G1F1B1 C4G2F6B3 C4G3F6B3 C4G4F5B1 C5G1F2B2

ALAH C1G1F2B1 C2G1F3B2 C2G2F2B2 C3G1F4B3 C3G2F4B3 C3G3F4B3
C4G1F1B1 C4G2F6B3 C4G3F6B3 C4G4F5B1 C5G1F2B2

TABLE VI. Comparison of CPLEX with DMax, CPLEX with DRange, MLAH, and ALAH - Case Study with Five Courses, Six Faculty Members,
Six Time Slots, and Three campuses - FSD, MinFL, MaxFL, TSD, CPU Time, FF, and VR

Methods
Results FSD MinFL MaxFL TSD CPU FF VR

CPLEX with DMax 1.17 0 3 0.41 60 9 0.18
CPLEX with DRange 0.98 1 3 0.41 440 9 0.18

MLAH 0.98 1 3 0.41 ≤ 1 9 0.18
ALAH 0.98 1 3 0.41 ≤ 1 9 0.18

Table VII provides information on the comparison of
FSDs for different methods based on faculty load. The
analysis indicates that CPLEX with DRange generally has
fewer FSDs than CPLEX with DMax, MLAH, and ALAH,
except for instances 4 and 7 where the range between
MaxFL and MinFL is the same for both CPLEX with
DMax and CPLEX with DRange. Specifically, in instance
4, CPLEX with DRange has fewer FSDs than MLAH and
ALAH as the range between MaxFL and MinFL is smaller.
However, in instance 7 where the range between MaxFL and
MinFL is the same for all methods, CPLEX with DRange
has a higher FSD than CPLEX with DMax, MLAH, and
ALAH. Notably, instance 8 exhibits perfect load balancing
in terms of faculty and time slots load, where all faculty
members have a teaching load of two groups, and all time
slots have a teaching load of two groups. In this case, the
values of MinFL and MaxFL are the same.

In terms of MinFL, it was found that CPLEX with
DRange yields a higher value than the other methods for
most random instances. CPLEX with DMax and ALAH
provide the lower value of MinFL, while MLAH gives the
same value as CPLEX with DRange in some cases. It is
essential to consider this parameter in the study because
load balancing should not only ensure that all faculty
members have a fair teaching load but also that each faculty
member has a teaching load whenever possible.

As for time slot load balancing, Table VII indicates that
CPLEX with DMax, CPLEX with DRange, MLAH, and
ALAH achieve the same TSD. This result confirms that the
proposed heuristics guarantee good load balancing among
time slots.

Regarding CPU time, Table VII shows that MLAH
and ALAH take less than one millisecond for all random
instances. Furthermore, as demonstrated in the previous
subsection, CPLEX with Dmax is faster than CPLEX with
DRange.

Figure 1 presents the faculty and time slot load distribu-
tion for MLAH and ALAH in the case of instance 1. MLAH
selects the faculty member or time slot with the minimum
load, implementing load balancing gradually. In contrast,
ALAH compares faculty load or time slot load with a
pre-calculated average load, implementing load balancing
globally. When the average load is exceeded, ALAH uses
the same approach as MLAH. For small-sized problems,
MLAH produces better results than ALAH in terms of
standard deviation and minimum faculty load. However,
their impact on CPU time cannot be determined due to the
small dimension size.

C. Randomly generated medium problems
In this subsection, a comparison is made between

CPLEX with DMax, CPLEX with DRange, MLAH, and
ALAH for a medium-sized problem consisting of 30
courses, each of which is assigned a random number of
groups between 1 and 12. There are 40 faculty members
who are randomly assigned to 3 campuses and 24 time slots.
Similar to the previous subsection, the assignment vectors,
denoted asVkl,Wk, andUm, are generated randomly using
a rectangular distribution with a constant probability.

Table VIII shows that the proposed heuristics are highly
effective in reducing the blended learning violation rate, as
evidenced by the fact that as the problem size increases, all
methods reach a violation rate of zero for all instances.
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TABLE VII. Computational results - Comparison of CPLEX with DMax, CPLEX with Drange, MLAH and ALAH for FSD, TSD, MinFL, MaxFL,
CPU time (ms), FF, VR - Random instances with small size dimension

Methods
instance number 1 2 3 4 5 6 7 8 9 10

CPLEX with DMax

FSD 1.16 0.75 0.84 1.72 0.52 1.1 1.17 0 1.72 1.21
TSD 0.41 0.41 0.55 0.98 0.52 0 0.41 0 0.41 0.52

MinFL 0 1 0 0 1 1 0 2 0 0
MaxFL 3 3 2 4 2 3 3 2 4 3

CPU 70 70 90 90 80 90 90 70 90 60
FF 10 9 7 5 8 11 8 10 11 7
VR 0.23 0.31 0.22 0.62 0.20 0.08 0.38 0.17 0.15 0.30

CPLEX with DRange

FSD 0.41 0.41 0.55 1.83 0.52 0.89 1.33 0 1.47 0.82
TSD 0.41 0.41 0.55 0.41 0.52 0 0.41 0 0.41 0.52

MinFL 2 2 1 0 1 1 0 2 0 1
MaxFL 3 3 2 4 2 3 3 2 4 3

CPU 330 320 230 250 330 110 1910 70 270 230
FF 10 9 7 5 8 11 8 10 11 7
VR 0.23 0.31 0.22 0.62 0.20 0.08 0.38 0.17 0.15 0.30

MLAH

FSD 0.98 0.75 0.84 1.94 1.03 0.89 1.17 0 1.33 0.82
TSD 0.41 0.41 0.55 0.75 0.52 0.63 0.41 0 0.41 0.52

MinFL 1 1 0 0 0 1 0 2 0 1
MaxFL 4 3 2 5 3 3 3 2 4 3

CPU ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1
FF 8 9 7 5 8 11 8 10 11 7
VR 0.23 0.31 0.22 0.62 0.20 0.08 0.38 0.17 0.15 0.30

ALAH

FSD 0.41 1.17 0.84 1.94 1.03 0.89 1.17 0 1.33 0.82
TSD 0.41 0.41 0.55 0.41 0.52 0 0.41 0 0.41 0.52

MinFL 2 0 0 0 0 1 0 2 0 1
MaxFL 3 3 2 5 3 3 3 2 4 3

CPU ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1
FF 10 9 7 5 8 11 8 10 11 7
VR 0.23 0.31 0.22 0.62 0.20 0.08 0.38 0.17 0.15 0.30

MLAH outperforms CPLEX with DMax, CPLEX with
DRange, and ALAH in reducing FSD in most random
instances, except for instance 5 where CPLEX with DRange
has a lower value. For instances 6 and 10, CPLEX with
DRange and MLAH have the same FSD value. In terms of
FSD, ALAH only outperforms MLAH in instance 1. In all
random instances, MLAH outperforms CPLEX with DMax
in reducing FSD.

By examining the range between MaxFL and MinFL,
CPLEX with DRange has a lower range than CPLEX with
DMax, MLAH, and ALAH. MLAH has a lower range than
CPLEX with DMax and ALAH. Regarding the minimum
load of faculty members, CPLEX with DRange and MLAH
ensure that no faculty members are without any teaching
load, while in many instances, CPLEX with Dmax and
ALAH have at least one faculty member without any
teaching load.

The proposed heuristics are always highly efficient com-
pared to CPLEX methods in terms of CPU time. However,
for these size instances, ALAH is two to four times faster
than MLAH due to its lower complexity when the faculty

member’s load and time slot’s load are smaller than the
average load of all faculty members and time slots.

TSD remains the same for all random instances and all
proposed methods.

D. Randomly generated large problems
In this subsection, the number of courses has been

increased to 60, each of which is randomly assigned a
number of groups between 1 and 12. The number of faculty
members has also been increased to 70, while the number
of time slots remains 24 and the number of campuses is
three. The studied size problem is equivalent to the size of
a college. the Input vectors such as Vkl, Wk, and Um are
generated randomly, similar to the medium and small size
problems.

Table IX demonstrates that the proposed heuristics min-
imize blended learning violations very effectively, as the
VR is consistently zero for all random instances. Moreover,
as the problem size increases, the likelihood of converting
blended learning into full online learning decreases.
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TABLE VIII. Computational results - Comparison of CPLEX with DMax, CPLEX with Drange, MLAH and ALAH for FSD, TSD, MinFL, MaxFL,
CPU time (ms), FF, VR - Random instances with medium size dimension

Methods
instance number 1 2 3 4 5 6 7 8 9 10

CPLEX with DMax

FSD 1.62 1.59 1.5 2.52 1.48 1.7 2.23 2.1 2.36 2.2
TSD 0.2 0.99 0.34 0.44 0.82 0.41 0.34 0.41 0.88 0.48

MinFL 1 1 1 1 0 0 2 0 0 0
MaxFL 6 6 6 9 6 7 8 7 8 8

CPU 28360 7430 39420 16470 18080 38720 31570 33670 40440 36400
FF 191 174 189 222 200 235 213 187 207 196
VR 0 0 0 0 0 0 0 0 0 0

CPLEX with DRange

FSD 1.25 1.41 1.38 2.04 0.93 0.94 1.76 1.53 1.57 1.41
TSD 0.2 0.44 0.34 0.44 0.48 0.41 0.34 0.41 0.49 0.38

MinFL 3 3 3 4 4 5 4 3 4 4
MaxFL 6 6 6 9 6 7 8 7 8 8

CPU 88030 77350 79960 173840 91610 81100 157750 90130 51250 60080
FF 191 174 189 222 200 235 213 187 207 196
VR 0 0 0 0 0 0 0 0 0 0

MLAH

FSD 1 1.23 1.06 1.71 0.96 0.94 1.67 1.14 1.39 1.41
TSD 0.2 0.44 0.34 0.44 0.48 0.41 0.34 0.41 0.49 0.38

MinFL 3 2 2 3 3 5 3 3 4 3
MaxFL 8 7 7 10 7 8 11 8 9 8

CPU 8 28 26 28 25 36 31 23 64 23
FF 191 174 189 222 200 235 213 187 207 196
VR 0 0 0 0 0 0 0 0 0 0

ALAH

FSD 0.95 1.82 1.11 1.87 1.84 0.97 1.97 1.33 1.66 1.45
TSD 0.2 0.44 0.34 0.44 0.48 0.41 0.34 0.41 0.49 0.38

MinFL 3 0 1 1 0 3 1 1 1 2
MaxFL 8 7 7 10 7 8 11 8 9 8

CPU 4 10 7 8 9 15 19 9 12 7
FF 191 174 189 222 200 235 213 187 207 196
VR 0 0 0 0 0 0 0 0 0 0

In terms of faculty member load balancing, MLAH
outperforms CPLEX with DRange, CPLEX with DMax,
and ALAH in reducing FSD. MLAH provides the same
range between MaxFL and MinFL as CPLEX with DRange
for all instances, except for instance 10 where CPLEX with
DRange is slightly better. On the other hand, ALAH and
CPLEX with DMax cannot guarantee a teaching load for
some faculty members because MinFL is zero for some
random instances.

Regarding TSD, all proposed methods provide the same
value for all instances, similar to the results obtained for
other problem sizes.

When analyzing CPU time, ALAH is consistently two
to three times faster than MLAH. CPLEX with DMax is
also faster than CPLEX with DRange, by a factor of two
to eighteen.
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Figure 1. Faculty and Time slots load distributions for MLAH and ALAH - small size dimension

TABLE IX. Computational results - Comparison of CPLEX with DMax, CPLEX with Drange, MLAH and ALAH for FSD, TSD, MinFL, MaxFL,
CPU time (ms), FF, VR - Random instances with large size dimension

Methods
instance number 1 2 3 4 5 6 7 8 9 10

CPLEX with DMax

FSD 1.49 2.14 2.16 2.01 1.81 0.84 1.53 2.22 1.53 1.54
TSD 0.46 0.44 0.34 0.77 1.14 0.97 0.2 0.48 0.2 0.88

MinFL 1 1 0 1 1 2 1 1 2 1
MaxFL 6 8 8 8 8 6 7 8 7 7

CPU 36820 74760 78580 42930 79160 74290 50390 70160 69890 43730
FF 319 402 381 399 443 394 407 404 383 396
VR 0 0 0 0 0 0 0 0 0 0 height

CPLEX with DRange

FSD 1.11 1.77 1.55 1.6 1.02 0.49 1.33 1.79 1.15 0.8
TSD 0.46 0.44 0.34 0.49 0.51 0.5 0.2 0.38 0.2 0.51

MinFL 3 4 4 4 5 5 4 4 4 5
MaxFL 6 8 8 8 8 6 7 8 7 7

CPU 672070 118590 158790 445160 332720 218350 156240 286510 504640 335810
FF 319 402 381 399 443 394 407 404 383 396
VR 0 0 0 0 0 0 0 0 0 0

MLAH

FSD 0.67 1.44 1.28 1.28 0.79 0.49 1.01 1.47 0.79 0.66
TSD 0.46 0.44 0.34 0.49 0.51 0.5 0.2 0.38 0.2 0.51

MinFL 3 4 4 4 5 5 4 4 4 4
MaxFL 6 8 8 8 8 6 7 8 7 7

CPU 28 112 82 113 138 96 58 124 109 54
FF 319 402 381 399 443 394 407 404 383 396
VR 0 0 0 0 0 0 0 0 0 0

ALAH

FSD 0.63 1.69 1.65 1.48 0.85 0.49 1.08 1.69 0.9 0.78
TSD 0.46 0.44 0.34 0.49 0.51 0.5 0.2 0.38 0.2 0.51

MinFL 3 0 0 0 4 5 2 0 2 2
MaxFL 6 8 8 8 8 6 7 8 7 7

CPU 9 37 40 50 43 33 19 34 33 18
FF 319 402 381 399 443 394 407 404 383 396
VR 0 0 0 0 0 0 0 0 0 0
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6. Conclusion and future work
In conclusion, this paper introduces two innovative

heuristics designed to schedule timetables effectively in
blended learning education. The objectives are to reduce
violations of blended learning principles, ensure equitable
teaching loads, and evenly distribute face-to-face classes
throughout teaching time slots. While the study is driven
by the specific challenges encountered at Saudi Electronic
University, its findings are applicable to institutions with ge-
ographically dispersed campuses adopting blended learning
methodologies. The optimization problem proposed here
addresses offline timetabling scheduling at SEU, where
student groups, faculty members, and time slots are as-
signed before the semester begins and student registration
commences.

The heuristics presented in this paper provide effective
solutions for minimizing blended learning violations, com-
parable to those achieved by CPLEX but with significantly
reduced computational time. Computational analyses show
that MLAH outperforms ALAH and CPLEX methods in
balancing faculty member loads, especially when dealing
with larger problem sizes approaching university dimen-
sions.

Future research can explore several directions. Firstly,
the representation of faculty member expertise could be
refined by utilizing a scale of preferences ranging from
low to high, rather than a binary can-teach or cannot-teach
approach. Secondly, a software solution can be developed
using web and mobile frameworks, granting students and
faculty members convenient access to their schedules and
timely notifications. Lastly, comprehensive reporting and
analytic capabilities can be incorporated to generate in-
sights on course scheduling trends, resource utilization, and
student/faculty distribution, thereby facilitating informed
decision-making and efficient resource allocation.
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