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Abstract:
This research introduces innovative features tailored to capture distinctive characteristics of ransomware activity within the cryptocurrency
ecosystem. The study employs a multifaceted analysis to delve into ransomware-related data encompassing transaction metadata, ransom
analysis, behavioral patterns, and financial aspects. A feature selection algorithm is explored to discern ransomware transactions in
Bitcoin (BTC) and the United States Dollar (USD) using the UGRansome dataset. This comprehensive dataset of ransomware-related
transactions facilitates the proposal of novel features designed to capture the unique traits of ransomware activity. The correlation matrix
and temporal analysis of these features contribute to a nuanced understanding of the dynamic nature of ransomware threats. The research
presents the Ransomware Feature Selection Algorithm (RFSA) based on Gini Impurity and Mutual Information (MI) to effectively
select crucial ransomware features. Evaluation metrics such as precision, recall, accuracy, and F1 score highlight the effectiveness of
the RFSA. The analysis reveals that approximately 68% of ransomware incidents involve BTC transactions ranging from 1.46 to 2.56,
with an average of 2.01 BTC transactions per attack. Moreover, ransomware causes financial damages ranging from 4.38 to 172.36
USD, with an average damage of 88.37 USD. The RFSA identifies 17 ransomware types and their associated malware to shed light
on their characteristics. The study investigates the pricing of ransomware and reveals that TowerWeb is associated with the highest fee,
amounting to 135.26 BTC, while CryptoLocker has the lowest fee, recorded at 10.51 BTC. Additionally, the impact of ransomware
duration on financial gains and network flow is investigated, disclosing a correlation between extended duration and higher financial
gains. The research achieves outstanding performance metrics, including an MI score of 95%, accuracy of 93%, recall of 92%, and
precision of 89%. These results showcase the superiority of the proposed approach over existing studies, emphasizing the dynamic and
adaptable nature of ransomware demands. The findings suggest that there is no fixed amount for specific cyberattacks. This underscores
the importance of adapting to the evolving landscape of ransomware threats.
Keywords: Ransomware, cryptocurrency, feature selection, UGRansome dataset, cybersecurity threats, machine learning

1. INTRODUCTION
Cryptocurrency is a type of digital currency that uses

cryptographic methods for secure transactions. This tech-
nology has experienced an exponential surge in popularity
and widespread adoption in recent years [1]. Prominent
among cryptocurrencies is Bitcoin (BTC) [2], which op-
erates on a decentralized ledger called the blockchain.
While cryptocurrencies offer numerous advantages, includ-
ing transparency and decentralization [3], they have also
become a focal point for criminal activities, particularly
in the context of ransomware. Ransomware attacks have
emerged as a formidable threat to critical infrastructure and
organizations worldwide [4]. These malicious attacks in-
volve encrypting a victim’s data or locking them out of their
systems, with cybercriminals demanding a ransom, typically
in cryptocurrency, for the decryption key or system access.
BTC has often been the preferred currency for ransom
payments [5] due to its relative anonymity and ease of use in
conducting financial transactions across borders. Classifying

BTC transactions as ransomware-related or benign holds
paramount importance in the realm of critical infrastructure
and cybersecurity [6]. Critical infrastructure encompasses
the essential systems and assets, such as energy, transporta-
tion, and healthcare, that are vital for the functioning of
a society and its economy. Ransomware attacks targeting
critical infrastructure can lead to catastrophic consequences,
including disruptions to public services, economic losses,
and even threats to national security [2], [3], [6]. Therefore,
the ability to swiftly identify and mitigate ransomware-
related BTC transactions is critical for safeguarding critical
infrastructure. In response to this imperative, this paper
introduces novel features specifically tailored to capture
the distinctive characteristics of ransomware activity within
the cryptocurrency ecosystem. Our research aims to pro-
vide a comprehensive analysis of ransomware-related data
which encompasses transaction metadata, ransom analysis,
behavioral patterns, and financial aspects. The primary
objectives of this study include the investigation of a feature
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selection algorithm to discern ransomware transactions in
BTC contexts. Our research contribution can be summarized
as follows:

Novel Feature Set Development
We propose a set of innovative features meticulously

designed to capture the unique attributes of ransomware
activity within the cryptocurrency ecosystem. These fea-
tures form the basis for our multifaceted analysis. Our
research contributes by utilizing the UGRansome dataset [7]
to derive insights into the dynamic nature of ransomware
threats.

Feature Selection Algorithm
We introduce a Ransomware Feature Selection Algo-

rithm (RFSA) based on Gini Impurity and Mutual Infor-
mation (MI) to select crucial ransomware features from the
UGRansome dataset. This algorithm contributes to the field
by providing an effective method for selecting features that
are instrumental in ransomware detection systems. Through
rigorous experimentation and evaluation, we demonstrate
the effectiveness of our feature set in accurately extracting
BTC and USD (United States Dollar) transactions. The
performance metrics, including precision, recall, accuracy,
and F1 score, showcase the superiority of our approach over
existing studies. The research achieves outstanding perfor-
mance metrics, including an MI score of 95%, accuracy of
93%, recall of 92%, and precision of 89%. These results
underscore the superiority of our approach in comparison
to existing studies.

Insights into Ransomware Incidents
Our analysis reveals key insights into ransomware inci-

dents, including transaction characteristics, financial dam-
ages, ransomware types, associated malware, and pricing
dynamics. These findings contribute to a deeper understand-
ing of the landscape and potential impact of ransomware
threats. The findings emphasize the dynamic and adaptable
nature of ransomware demands. This highlights the evolving
landscape of ransomware threats. Insights into ransomware
pricing, duration impact on financial gains, and network
flow shed light on the nuanced nature of these cyber threats.
The present manuscript is structured in the following man-
ner: Section 2 provides a comprehensive overview of the
existing literature relevant to this research. It discusses
the strengths and weaknesses of prior works, enabling the
reader to discern the advantages of the proposed RFSA
and its performance enhancements compared to other tech-
niques. Section 3 introduces the research methodology, data
processing workflow, and the UGRansome dataset. This
section also delves into the strengths and limitations of the
UGRansome dataset. Section 4 outlines the steps involved
in designing the proposed RFSA and describes the eval-
uation metrics employed. Section 5 presents the obtained
results. Section 6 provides a comprehensive discussion of
the results to offer deeper insights into the implications and
significance of the findings. Lastly, Section 7 concludes
the study by highlighting its limitations and suggesting
directions for future research.

2. RelatedWork
This section will address the current research landscape

about ransomware detection [1], [4], [5]. It delves into the
discussion of machine learning (ML) techniques that have
exhibited promise across diverse cybersecurity applications
[6]. Nevertheless, a dedicated approach tailored specifically
to the distinctive attributes of transactions associated with
ransomware is lacking. Poudyal et al. [8] developed novel
methods and tools to address this limitation by enhancing
the early detection and prevention of ransomware attacks
on critical infrastructure. Their study presents a reverse
engineering framework that integrates feature generation
engines and ML to effectively identify ransomware. Operat-
ing through multi-level analysis, their framework scrutinizes
raw binaries, assembly codes, libraries, and function calls
to provide a comprehensive view of malware behavior [8].
By leveraging tools like the object-code dump (Linux) and
portable executable (PE) parser, the framework decodes
binaries into assembly-level instructions and enhances code
interpretation. This approach involves preprocessing sam-
ples to extract features, followed by employing various
supervised ML techniques for classification [8]. The re-
ported experimental results showcased detection accuracy
ranging from 76% to 97%, with seven out of eight ML
classifiers achieving at least a 90% detection rate. Despite
these strengths, potential limitations include challenges in
generalizability across diverse ransomware types, reliance
on quality training data, computational resource intensive-
ness, susceptibility to sophisticated evasion techniques, and
practical implementation hurdles in real-time systems [9].
Addressing these weaknesses will be critical for enhancing
the framework’s resilience against evolving ransomware
threats and enabling its practical deployment in cyberse-
curity ecosystems. In contrast, we introduce the RFSA,
which excels in accurately identifying ransomware-related
financial transactions with a 95% accuracy rate. This algo-
rithm is based on Gini Impurity and MI to offer superior
specificity in characterizing ransomware activities within
cryptocurrency transactions compared to the ML techniques
proposed by Poudyal et al. [8]. Moreover, it provides de-
tailed insights into ransomware types, associated malware,
pricing variations, and attack methodologies to enrich the
understanding of evolving ransomware demands in financial
networks. While Poudyal et al. [8] focuses on code-level
analysis, the proposed RFSA stands out for its specialized
feature selection approach which showcases superior perfor-
mance and comprehensive insights into ransomware dynam-
ics within cryptocurrency ecosystems. Zahoora et al. [10]
present a Cost-Sensitive Pareto Ensemble strategy (CSPE-
R) to address the critical challenge posed by zero-day ran-
somware attacks [11]. They emphasized the transformation
of feature spaces using an unsupervised deep Contractive
Auto Encoder (CAE) model. Their framework attempts to
enhance its capability to detect novel ransomware variants
that lack prior data [12]. CSPE-R seeks to comprehend the
relevance between different families of ransomware attacks
by leveraging heterogeneous base estimators trained over
diverse semantic sub-spaces.
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This approach offers a comprehensive perspective on
ransomware behavior. CSPE-R is designed to address zero-
day attacks, whereas the proposed RFSA focuses on the
detection and characterization of financial transactions as-
sociated with ransomware within cryptocurrency networks.
The RFSA’s emphasis lies in precisely identifying such
transactions to achieve a remarkable accuracy rate of 95%
and provide comprehensive insights into ransomware dy-
namics within financial ecosystems. Unlike CSPE-R, which
focuses on transforming feature spaces for adaptability
against unknown ransomware, the proposed RFSA delves
into the intricate details of financial flows associated with
ransomware activities. Both frameworks exhibit unique
strengths: CSPE-R excels in adapting to zero-day ran-
somware threats through feature space transformation [10],
while the RFSA demonstrates precision in characterizing
financial transactions related to ransomware. CSPE-R is
specifically tailored to address the adaptability required for
unforeseen ransomware variants [10], [13], whereas the
RFSA offers detailed insights into the financial aspects
and transactional behaviors associated with ransomware
within cryptocurrency networks. These approaches com-
plement each other, as the adaptability of CSPE-R can
provide an additional layer of defense against emerging
and unknown ransomware threats, while the RFSA en-
hances the understanding and detection of ransomware-
related financial activities. Implementing both frameworks
in tandem can contribute to a more comprehensive and
effective cybersecurity strategy. On the contrary, Gera Tanya
et al. [14] focused on countering Android ransomware
through the introduction of a novel dominant feature se-
lection algorithm. This algorithm ensures the precise iden-
tification and mitigation of ransomware within smartphone
environments. Demonstrating an impressive accuracy rate
of 99.85% and zero false positives, the approach excels in
distinguishing between clean and ransomware-infected data.
The methodology leverages a curated set of 60 prominent
features to achieve these robust results. While the hybrid
approach proposed by [14] targets Android ransomware
specifically and achieves exceptional accuracy in classifi-
cation within smartphone ecosystems, the proposed RFSA
provides a comprehensive understanding of financial as-
pects linked to ransomware. Both strategies demonstrate
distinct strengths, emphasizing precision in differentiating
ransomware-infected data and providing comprehensive in-
sights into ransomware activities. Ashraf et al. [15] concen-
trated on the intricate task of ransomware detection through
feature engineering. Their study identified key attributes and
behaviors specific to ransomware. The research undertakes a
comprehensive analysis using conventional ML techniques
by leveraging two distinct datasets comprising thousands
of samples of ransomware and benign files. From extensive
experimentation, the study identifies registry changes, and
API calls as pivotal features for ransomware detection [15].
This approach primarily focused on file-based analysis and
attributed importance to specific features and sequences
while the proposed RFSA provides insights into financial
dynamics associated with ransomware activities.

Ashraf et al. [15] approach delves into the granular
attributes and behaviors of ransomware within file-based en-
vironments. By scrutinizing attributes like registry changes,
and API calls, this approach brings attention to intricate
patterns and sequences crucial for distinguishing between
malicious and benign files [15]. The method emphasizes the
importance of file-level analysis and provides valuable in-
sights into the operational behaviors of ransomware. On the
other hand, the proposed RFSA takes a unique approach that
specifically focuses on ransomware-related financial trans-
actions occurring within cryptocurrency networks. Rather
than focusing on file attributes [15], the proposed RFSA
concentrates on the nuanced financial dynamics and transac-
tional behaviors associated with ransomware activities in the
digital financial realm. This specialized approach enriches
our understanding of ransomware by uncovering insights
into transaction patterns, associated malware, financial dam-
ages, pricing variations, and attack methodologies within
the cryptocurrency ecosystem. Thus, while Ashraf et al. [15]
approach intricately dissects file attributes and behaviors
for ransomware identification, our approach specializes in
unraveling the complex financial transactions and behaviors
associated with ransomware. In the work presented by Lee
et al. [16], a proactive counter-strategy against ransomware
is detailed. The emphasis is particularly on the analysis
of threats such as LockBit to provide valuable insights
into protective measures from an attacker’s perspective.
The approach outlined by Lee et al. [16] involves im-
plementing a hiding strategy that safeguards critical files
against ransomware attacks. Lee et al. [16] concentrate on
protective strategies against ransomware by hiding criti-
cal files. The RFSA complements protective measures by
offering a detailed understanding of the financial aspects
and transactional behaviors related to ransomware within
cryptocurrency networks. Focusing on protective measures
presents valuable tactics for file protection against ran-
somware [16], but the RFSA’s specialization in financial
analysis offers a unique and complementary dimension for
understanding ransomware ecosystems and their monetary
impacts. A Deep Squeezed-Boosted and Ensemble Learning
(DSBEL) framework that focuses on Internet of Things
(IoT) security for early detection of sophisticated malware
attacks is presented in [17]. While the DSBEL framework
concentrates on detecting and preventing diverse malware
threats in IoT environments, the proposed RFSA delves
into the financial dynamics of ransomware attacks within
blockchain-based currency systems. Unlike the DSBEL,
which emphasizes on the identification and mitigation of
varied malware, the RFSA’s strength lies in its specialized
analysis of ransomware-related financial transactions and its
distinct characteristics within the cryptocurrency landscape.
The RFSA provides a multifaceted view of ransomware-
related financial transactions, examining metadata, ransom
analysis, behavioral patterns, and financial aspects. Addi-
tionally, the RFSA introduces a novel feature selection
approach based on Gini Impurity and MI. This algorithm
contributes to the identification of crucial features related
to ransomware activities.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


904 Mike Nkongolo: A Ransomware Feature Selection Algorithm for Multivariate Analysis of Malware

While both approaches exhibit exceptional accuracy
within their respective domains, the DSBEL achieves re-
markable results in IoT malware detection [17]. It demon-
strates a 98.50% accuracy, 97.12% F1 score, 91.91%
Matthews Correlation Coefficient (MCC), 95.97% recall,
and 98.42% precision. In contrast, the RFSA excels with
an outstanding accuracy of 95% in extracting ransomware-
related financial transactions. The DSBEL excels in its
robustness for diverse malware detection, as demonstrated
in [17]. On the other hand, the RFSA specializes in the
financial analysis of ransomware to provide insights into the
evolving nature of ransomware threats and their financial
implications. The RFSA’s specific focus on ransomware’s
financial impact complements the broader malware detec-
tion approach of the DSBEL. Schoenbachler et al. [18]
discussed the identification of ransomware, malware, and
benign software through ML techniques. They relied on
feature groups such as network activity, registry, processes,
events, and file interactions to differentiate ransomware
from malware and benign software. The study employs
various ML models, including Random Forest, Support
Vector Machines (SVM), Gradient Boosting, and Decision
Trees. In differentiating ransomware from benign software,
Random Forest and SVM attain F1 scores of 86% and
82%. The overall accuracy for Random Forest is 85%
[18]. For distinguishing ransomware from malware, Gra-
dient Boosting classifiers and Decision Trees achieve 100%
accuracy, albeit partly due to imbalanced malware in the
ransomware dataset [18]. In contrast, while Schoenbachler
et al. [18] focuses on distinguishing ransomware from
malware and benign software using ML techniques, the
RFSA provides unique insights into the financial dynamics
of ransomware attacks within cryptocurrency networks.
The RFSA introduces innovative features encompassing
transaction metadata, ransom analysis, behavioral patterns,
and financial aspects. The distinctive strengths of the RFSA
lie in its specialized analysis of the financial impacts
associated with ransomware to offer unique insights crucial
for understanding the monetary dimensions of ransomware
attacks. This focus on financial aspects sets it apart from
the emphasis on distinguishing malware types as explored
in Schoenbachler et al.’s work [18]. Consequently, while
both studies excel in their respective domains, the RFSA
adds value by examining the financial facets of ransomware
attacks, complementing Schoenbachler et al. [18] focus on
distinguishing benign software using ML techniques. Mowri
et al. [19] emphasize the importance of Recursive Feature
Elimination with Cross-Validation (RFECV) in the context
of ransomware detection [9]. Explainable Artificial Intelli-
gence (XAI) was used with Shapley Additive Explanations
(SHAP) to (i) provide insights into crucial features and
(ii) assist in the interpretability of the obtained results [9],
[19]. The limitations of RFECV revealed challenges in
accurately selecting impactful features while exhibiting a
higher rate of false alarms [9]. The research emphasizes the
need for explainability techniques [19], [9]. Our proposed
RFSA surpasses RFECV in various aspects. It introduces
novel features and conducts a comprehensive analysis of

ransomware-related data to offer a multifaceted view and
understanding of ransomware threats within cryptocurrency
systems. Unlike the limitations outlined by Mowri et al.
[19], the RFSA effectively selects crucial features, achieves
notable performance metrics, provides rich insights through
visualization, and showcases its superiority in identifying
the financial impacts of ransomware. Moreover, the RFSA’s
utilization of Gini Impurity and MI for feature selection can
potentially enhance ransomware recognition frameworks to
discriminate between malware classes. One limitation might
be its specific focus on the cryptocurrency ecosystem which
limits its generalizability beyond this specialized domain
compared to methodologies discussed by Mowri et al. [19].

Comparative Analysis of Existing Studies
Within this section, we undertake a comparative analysis

aimed at delineating the strengths and weaknesses inher-
ent in the various methodologies previously discussed in
Section 2. We also provide the most recent and compre-
hensive overview of the existing literature relevant to our
research. Dib, Z et al. [20] focuses on the BTC dataset
and proposes a hybrid supervised and semi-supervised
multistage ML framework that employs ensemble learning
for ransomware classification. However, their study lacks
explicit benchmarking against existing methods. The study
could also benefit from exploring real-time analysis and
ethical implications [20]. In turn, in our research, we
employed the UGRansome dataset which includes ran-
somware transactions, and conducted a multivariate analysis
of malware behavior. Furthermore, we introduce a novel
RFSA to perform an in-depth financial analysis of ran-
somware attacks. Despite outstanding performance metrics,
the proposed RFSA assumes feature relevance. The paper
by [20] shares strengths with our RFSA in leveraging
comprehensive datasets, employing advanced ML models,
and visualizing data relationships [20]. Addressing limi-
tations related to benchmarking, generalizability, real-time
analysis, interpretability, and ethical considerations would
further enhance contributions to the cybersecurity field [20].
Damien Warren and Nikos Komninos [21] introduce Fe-
SAD, a framework that aims to enhance the ML classifier’s
ability to detect evolutionary ransomware. The FeSAD
model comprises three layers: a feature selection layer, a
drift calibration layer, and a drift decision layer. The layers
enabled ML classifiers to detect and classify drift samples.
The evaluation of FeSAD in various concept drift scenarios
demonstrates its effectiveness in detecting drifting samples
and extending the lifespan of a classifier. The research
emphasizes the successful and reliable classification of ran-
somware and benign samples under concept drift conditions
and showcases FeSAD’s potential to mitigate the impact of
evolving ransomware. In contrast, the proposed RFSA ap-
proach builds upon [21] work by providing a novel method
for feature selection in the context of ransomware-related
financial analysis. Yamany et al. [22] introduce a com-
prehensive approach to ransomware classification by using
static and dynamic analysis with visualization techniques.
Their proposed method involves extracting features from
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ransomware samples, generating similarity matrices, and
utilizing various comparison algorithms to classify samples
based on families, variants, and versions. This approach
was praised for its accuracy and visualization. In addition,
the approach provides an intuitive means of classifying and
clustering large datasets [22]. The speed and accuracy of
static analysis, coupled with the ability of dynamic analysis
to handle packed ransomware samples, contribute to the
effectiveness of their proposed framework [22]. The study
demonstrates superior classification accuracy compared to
the single analysis technique. Nevertheless, the proposed
RFSA builds upon [22] work by specifically addressing
the financial aspects of ransomware attacks within cryp-
tocurrency transactions. The RFSA introduces a novel fea-
ture selection algorithm based on Gini Impurity and MI
to offer insights into ransomware-related financial flows.
While the work conducted by Yamany et al. [22] excels
in the classification and clustering of ransomware samples,
the proposed RFSA expands the analysis to specifically
focus on financial implications. Sibel Gulmez et al. [23]
address the increasing threat of ransomware attacks by
proposing XRan. XRan is an XAI model implemented
for ransomware detection. It utilizes dynamic analysis to
represent different views of the executable and to enrich
the feature space for improved detection. A Convolutional
Neural Network (CNN) architecture was employed for
ransomware detection, and two XAI models, LIME and
SHAP, offer interpretable explanations for the detection
process. The study highlights XRan’s effectiveness with
true positives of up to 99.4%. These results outperformed
existing state-of-the-art methods. While XRan excels in
explainability and detection accuracy, the RFSA approach
takes a different angle by specifically focusing on the
financial aspects of attacks. XRan provides comprehensive
explanations for the detection scheme, the proposed RFSA
extends this analysis to include a financial perspective. A
capsule network named FACILE was designed by [24] to
address challenges in malware classification. This model
specifically focused on the efficiency and performance of
capsule networks. FACILE achieves this by utilizing fewer
capsules and introducing balance coefficients during routing
to enhance representational power and stabilize the train-
ing process. The study conducted experiments on various
datasets, demonstrating that FACILE requires significantly
fewer capsules and parameters compared to the original
CapsNet [24]. While FACILE excels in addressing chal-
lenges in capsule networks for malware classification, the
RFSA enhances the study by broadening the analysis to en-
compass a financial perspective. This provides a more holis-
tic insight into the behavior of ransomware. The importance
of utilizing AI methods, particularly ML and deep learning,
for detecting and preventing the spread of malware threats
was emphasized by [25]. While this approach acknowledges
the significance of analysis processes in identifying malware
patterns, the RFSA contributes by integrating financial
aspects into the evaluation of ransomware. The primary
focus of [25] is on the broader context of malware types,
binary executables, analysis methods, and AI applications.

The RFSA, with its specific emphasis on the financial
dimension in the context of ransomware within the cryp-
tocurrency ecosystem, complements the broader malware
detection discussion by providing targeted insights into the
financial implications of ransomware attacks. A privacy-
focused approach within the BTC ecosystem is critically
examined in [26]. The study highlights the significance of
preserving user anonymity [27]. The strengths of this study
lie in its proposal of an improved variant of the multiple-
input clustering approach which incorporated advanced pri-
vacy techniques to address shortcomings in default semi-
anonymous practices [27]. The quantitative network anal-
ysis adjusted various user graphs and provided valuable
insights into the effectiveness of the proposed clustering
method compared to naive multiple-input clustering. In con-
trast, the RFSA approach differentiates itself by centering
on ransomware behavior within the cryptocurrency ecosys-
tem and introducing a financial dimension to the analysis.
While both studies contribute to a more comprehensive un-
derstanding of cryptocurrency-related activities, [26] work
focuses on privacy preservation mechanisms, whereas the
RFSA extends the analysis to ransomware activities by
integrating financial aspects for a holistic evaluation. The
strengths of the privacy-focused study discussed by [26]
lie in its contribution to enhanced measures against money
laundering and terrorism financing within the BTC network.
Drawing inspiration from genome sequence alignment, [28]
proposed MAlign. This framework presents a static malware
classification approach. The strengths of MAlign include
its ability to not only classify malware families but also
provide explanations for its decisions. MAlign achieves
superior performance compared to other state-of-the-art ML
classifiers, particularly excelling on small datasets. The
comparative review of related works regarding ransomware
detection and analysis has highlighted several crucial limita-
tions prevalent across various methodologies. A significant
challenge exists in the realm of explainability techniques
[29], where many approaches struggle to transparently
articulate the rationale behind their decisions. Additionally,
methodologies often encounter difficulties in ensuring their
generalizability across diverse ransomware types [30] and
many studies do not disclose the specific feature selection
techniques used. This creates a challenge in evaluating
the significance and relevance of the classification process.
Furthermore, the struggle to adapt effectively against un-
known ransomware variants poses a critical challenge and
impacts the overall efficacy of these detection systems.
Another area of concern emerging in the current literature
is the differentiation or classification accuracy between
ransomware and other malware types [29], [30], which can
affect the reliability and precision of the detection process.
Moreover, many methodologies rely heavily on the quality
and comprehensiveness of their training data [31], [32]. This
leads to potential biases or inadequacies in their predictive
capabilities. These limitations collectively underscore the
need for more robust and adaptable approaches to address
the evolving landscape of ransomware threats and ensure
transparency, accuracy, and flexibility in their detection
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mechanisms [33]. In the comparative analysis table (Table
I), our research, which is listed under this work, achieved
an accuracy of 95% using the proposed RFSA. This out-
standing accuracy is notably higher than most of the other
studies in the table, even though several of them achieved
high accuracy rates ranging from 87% to 99% [8], [14],
[17], [18]. What sets our work apart is the use of MI as the
feature selection method [34], which is a novel and powerful
approach for feature extraction. MI is a statistical measure
that quantifies the dependency between two random vari-
ables, in our case, features and ransomware classification
labels [34]. Achieving an MI score of 95% (Table IV)
indicates that the selected features have a strong relationship
with the ransomware classification, suggesting that they are
highly informative and crucial for accurate classification.
Furthermore, our work stands out because it focuses on
ransomware extraction using the UGRansome dataset [7].
This dataset was specifically designed for ransomware
analysis and contains unique characteristics and patterns
associated with ransomware attacks. [31]. By also achieving
a 93% accuracy score in feature selection (Table IV), our
research demonstrates its ability to effectively capture and
leverage these unique characteristics. This outperforms ex-
isting works in terms of both precision and recall with 85%
and 92% respectively (Table IV). In summary, our research
stands out in ransomware stratification and showcases a
notable accuracy of 93%, recall of 92%, and precision of
89% (Table IV). By employing MI for feature selection
our work demonstrates superior performance compared to
existing studies [34]. This result highlights the novelty of
our approach in accurately identifying ransomware attacks
using the UGRansome dataset.

3. Methodology
This section elucidates the research methodology and

introduces the UGRansome dataset [7]. It covers the design
of the RFSA, the calculation of relevance scores, and the
chosen evaluation metrics. The inclusion of these elements
is essential for providing a comprehensive understanding
of how the research was conducted and how the pro-
posed algorithm was developed and assessed. The research
methodology is illustrated in Figure 1.

• Data Collection: In the first step, we collect data re-
lated to BTC and USD transactions, particularly those
associated with ransomware attacks. The UGRan-
some dataset serves as our primary data source [7].
This dataset provides a comprehensive repository of
ransomware-related transactions.

• Data Processing: Once we have the raw data, we
perform data preprocessing to clean and prepare
UGRansome for analysis. Data processing involved
removing duplicates, and formatting the data for
further analysis [35]. In the context of ransomware,
this step ensures that the dataset is in a usable state
for transaction selection.

• Data Encoding: Data encoding involves converting

categorical data into a numerical format that the
feature extraction algorithm can understand. This step
included techniques like scaler for categorical vari-
ables such as ransomware family names and network
protocol types [36]. Numerical encoding ensures that
the data is ready for feature extraction and model
training.

• Feature Extraction: Feature extraction is a critical
step in building a classification model for ransomware
transactions. In this phase, we identify and extract
relevant features from the data that capture the dis-
tinctive characteristics of ransomware activity within
the cryptocurrency ecosystem [37]. After feature ex-
traction, one can employ ML techniques to classify
transactions.

• Evaluation and Validation: To assess the model’s
effectiveness, we evaluate its performance using var-
ious evaluation metrics. Metrics like accuracy, preci-
sion, recall, and F1 score help us understand how
well the model is in selecting ransomware-related
transactions [7]. We have used techniques like cross-
validation to ensure the model’s generalizability. The
ultimate goal of this process is to aid in the early
detection and prevention of ransomware-related finan-
cial flows. A well-trained model can automatically
identify potentially malicious transactions and allow
for timely intervention and security measures [38].
This contributes to enhancing cybersecurity measures
in the realm of cryptocurrency transactions, which is
vital for critical infrastructure protection. In summary,
the flow of Figure 1 involves collecting, processing,
encoding, and extracting features from ransomware-
related transaction data. ML techniques can then be
applied to classify these transactions, with a focus on
early detection and prevention of ransomware threats,
thereby enhancing critical infrastructure security.

A. The Experimental Dataset
In 2021, Nkongolo et al. [7] introduced the UGRan-

some dataset (Figure 3). UGRansome has demonstrated its
inestimable value in identifying and combating ransomware
threats, even those deemed zero-day vulnerabilities [32],
[51]. What differentiates UGRansome from other datasets
in the domain of Intrusion Detection Systems (IDS) is
its all-encompassing coverage of previously unexplored
ransomware attack types [52]. Within its corpus, it encom-
passes a range of malware classifications. This includes
Signature (S), Anomaly (A), and Synthetic Signature (SS)
(Figure 3), with carefully annotated occurrences of well-
known ransomware variations like Locky, CryptoLocker,
JigSaw, EDA2, TowerWeb, Flyper, Razy, and WannaCry, as
well as Advanced Persistent Threats (APT) [13]. To explore
further the characteristics of this dataset, we shift our focus
to Table II and Figure 3 which provide a succinct summary
of its principal attributes. The ZIP file of the dataset was ob-
tained via download from Kaggle: https://www.kaggle.com/
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Figure 1. Research methodology

TABLE I. A Comparative Analysis Table

Year Reference Feature Selection Classifier Accuracy Limitation
2016 [39] Encoder Deep Learning (DL) 96% Shallow learning architectures may

not fully satisfy malware detection
needs.

2018 [40] Encoder Ensemble 99% Scalability.
2018 [41] Vectorization Neural nets (NN) 98% Designed for identifying malicious

JavaScript in web pages.
2018 [42] Autoencoder NN 87% Requires labeled data for training.
2019 [43] - NN 90% Focuses on performance without

considering NN’s overall impact.
2019 [44] Encoder Wavelet 96% Performance may vary in different

settings.
2019 [8] Feature generation engines & ML Supervised ML 76%-96% Challenges in generalizability

across diverse ransomware types.
2020 [45] Encoder L21-norm 92% Limited to load curves.
2020 [46] Encoder DL 92% Tested on specific benchmarks, not

ransomware.
2020 [47] Encoder NN 97% Limited data sources.
2021 [14] Dominant feature selection algorithm - 99.85% Restricted to Android ransomware.
2022 [48] Heuristics DL 97% False positives.
2022 [10] CAE CSPE-R - Limited to zero-day ransomware

without financial insights within
cryptocurrency networks.

2023 [49] Gabor filters DL 87% Vulnerability in classifiers.
2023 [6] Fuzzy logic XGBoost 95% Robustness and suitability need

further evaluation.
2023 [17] - DSBEL - Limited to varied malware threats

without focusing on the financial
dynamics of ransomware attacks.

2023 [19] RFECV ML 94% Explainability techniques.
2023 [50] - Bi-GAN & TLDQN 91% The specific feature selection tech-

nique utilized is not disclosed.
2024 [20] - Hybrid semi-supervised ML 90% Lack of explicit benchmarking

against existing methods. The
study could also benefit from
exploring real-time analysis

2024 [21] Drift sample ML 87% False negative.
2024 [22] Ransomware selection Clustering 92% Single classification.
2024 [23] - CNN 91% XAI limited to the XRan model.
2024 [24] - ML 86% Restricted to capsule networks for

malware classification.
2024 [25] - DL 95% Limited to malware classification

without cryptocurrency analysis.
2024 This work RFSA - 95% The RFSA’s specific focus on the

cryptocurrency ecosystem limits its
generalizability.

datasets/nkongolo/ugransome-dataset. The sample contains
a compilation comprising 207,533 rows, stored in Comma

Separated Values (CSV) format, albeit lacking initial col-
umn headers. To facilitate subsequent analysis, the dataset’s
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headers were subsequently renamed according to the spec-
ified features outlined in Table II. This encompasses des-
ignations such as time, protocol, flag, family, clusters, and
more [53]. To pre-process the raw data for analysis, we
applied a statistical method to tackle issues such as data
untidiness and repetitive entries. We used the Python Data
prep package and its comprehensive reporting function to
obtain an extensive review of the entire dataset and its
attributes. As illustrated in Figure 2 (left side), no vacant
cells were identified, but a duplication rate of 28.2% was
noticed. Consequently, we proceeded to eliminate the dupli-
cated entries, amounting to a total of 58,491 rows [53]. Sub-
sequent reassessment of the duplication rate, as portrayed in
Figure 2 (right side), disclosed that the refined compilation
displayed a 0.0% duplication rate. This outcome signaled
the dataset’s readiness for meticulous analysis. The refined,
properly labeled dataset was then exported. It comprised
149,043 rows [53].

TABLE II. Attributes of the Experimental Dataset

Column Explanation Data Example
Timestamp Timing of network

assaults
Numerical 50s

Protocol Network protocol Categorical TCP
Flag Connection state Categorical ACK

Family Ransomware type Categorical WannaCry
Cluster Malware groups Numerical 1-12

Expanded Address Ransomware link Categorical 18y345
Seed Address Ransomware link Categorical y7635d

BTC Bitcoin
transactions

Numerical 90.0

USD USD transactions Numerical 32,465
Network Flow Bytes exchanged in

the network
Numerical 45,389

IP IP address Categorical Class A
Malware Malicious software Categorical Blacklist

Port Network port num-
ber

Numerical 5062

Prediction Target variable Categorical Anomaly
(A)

B. The Dataset’s Strengths and Limitations
Despite its significance, the UGRansome dataset arrives

with certain inherent limitations. The initial dataset, stored
in CSV format, lacks column headers, necessitating manual
restructuring for ease of analysis [53]. Additionally, the
dataset initially contained 207,533 rows, devoid of missing
cells but exhibiting a substantial redundancy rate of 28.2%.
This redundancy prompted the elimination of duplicate
entries, resulting in the removal of 58,491 rows, ultimately
producing a clean dataset of 149,043 rows. A notable
strength of the UGRansome dataset lies in its attributes,
each offering distinct insights into ransomware attacks.
Attributes like timestamp of network attacks, network pro-

tocol, connection status, and ransomware family provide
crucial contextual information for understanding attack pat-
terns. Moreover, the dataset contains numeric attributes
such as ransomware BTC transactions, ransomware USD
transactions, and bytes transferred in network flow. This of-
fers quantitative insights into financial aspects and network
behavior associated with ransomware attacks. Nevertheless,
the dataset’s categorical attributes, including SeedAddress,
ExpAddress, IP Address, and threats, pose challenges in
standardization and interpretation due to their varied and di-
verse nature. In conclusion, the UGRansome dataset proves
to be a valuable asset in the cybersecurity realm, partic-
ularly in comprehensively understanding and countering
ransomware attacks [7]. Its richness in diverse ransomware
types and detailed attributes facilitates nuanced analyses,
despite initial data restructuring challenges and the presence
of redundancy, which, once rectified, render it suitable for
rigorous examination and modeling [53]. We present the
experimental approach in Figure 4. The UGRansome dataset
underwent diverse mathematical transformations (Figure
4). Duplicate entries were removed, and anomalies were
detected (Figure 4). Python, with the assistance of the
Scikit-learn library and StandardScaler was utilized for data
encoding (Figure 4). The RFSA, based on MI and Gini
Impurity were employed for extracting relevant features
(Figure 4). Visualization was facilitated through various
plots and charts to aid in the identification of the most
significant features (Figure 4). Furthermore, a correlation
matrix was employed to gain deeper insights into variations
in ransomware transactions. The performance of the RFSA
is assessed using multiple metrics, including accuracy, pre-
cision, recall, F1 score, MI, and Gini Impurity (Figure 4).
This comprehensive framework provides a robust under-
standing of the effectiveness of the proposed feature selec-
tion algorithm in detecting and characterizing ransomware-
related financial transactions. Table III describes the tools
and techniques used in the study. The subsequent sections
will elaborate on the key components depicted in Figure 4.

4. Designing the RFSA
Designing a novel feature selection algorithm for clas-

sifying ransomware transactions requires careful consider-
ation of various factors and approaches [54], [26]. This
section introduces the design of the proposed RFSA illus-
trated in Figure 4. The algorithm aims to identify a subset
of pertinent features from a pool of candidate attributes to
classify ransomware transactions within the UGRansome
dataset (Figure 4). The input for the RFSA includes:

• X: The feature matrix, where each row represents
a transaction, and each column represents a ran-
somware feature.

• y: The target labels, indicate whether each transac-
tion is related to Anomaly (A), Signature (S), and
Synthetic Signature (SS) (Table II).

• k: The desired number of selected features.
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Figure 2. The experimental UGRansome dataset

Figure 3. The experimental UGRansome model

The RFSA will subsequently produce a subset contain-
ing the most relevant k features. This is achieved through a
feature ranking process that calculates a ranking score for
each feature, assessing its relevance to the extraction task
[54]. For each feature i, the RFSA operates in the following

manner:

Score(i) = Gini Impurity(X[:, i], y) (1)
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TABLE III. Tools and Techniques Used in the Study

Tools and Techniques Description
Log Transformation Transformation of data using logarithmic functions
Square Root Transformation Application of square root transformation to the data
Yeo-Johnson Transformation Utilization of Yeo-Johnson transformation for data nor-

malization
Data Prep Data preparation techniques for cleaning and preprocess-

ing
Sklearn Python library for ML and data preprocessing
StandardScaler Standardization of data using the StandardScaler from

Sklearn
MinMaxScaler Min-Max scaling of data using MinMaxScaler from

Sklearn
Python, Jupyter Notebook Programming language and interactive notebook for data

analysis
MI Utilization of MI for feature selection
Gini Impurity Calculation of Gini Impurity for decision tree-based

feature selection
RFSA Proprietary feature selection algorithm developed for the

study
Correlation Metrics Analysis of correlation between variables in the dataset
Evaluation Metric Metrics used to assess the performance of the model
Cross Validation Technique for validating the model’s performance on

different subsets of data
Operating System Windows 10

Figure 4. The experimental approach

The algorithm sorts the features based on their ranking
scores in descending order and selects the top k features
[54]. Let S be the set of selected features by the RFSA, and
S ∗ be the optimal set of features that maximizes extraction
performance. The RFSA calculates the relevance score for
each feature based on a suitable relevance measure [55]. By
design, the higher the score, the more relevant the feature
is to the extraction task [54]. To prove the algorithm’s
optimality, we need to show that S is as close as possible
to S ∗. The RFSA has been presented in Algorithm 1.

The algorithm’s optimality is based on its design, which
prioritizes the selection of highly relevant features. The
selected features S are chosen to maximize the relevance
score (Equation 2).

Score(i) ≥ Score( j), ∀i ∈ S , j < S (2)
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Algorithm 1 RFSA

Require: Feature matrix X, target labels y, desired number
of selected features k

Ensure: Subset of top k relevant features
1: for each feature i in X do
2: Calculate Score(i) using MI & GI
3: end for
4: Sort features in descending order based on Score(i)
5: Select the top k features as fk
6: return fk

A. Relevance Measure and Score Calculation
In Step 2 of Algorithm 1, we calculate the relevance

score (Score(i)) for each feature i using a suitable relevance
measure [54], [55]. A common relevance measure is the MI
[55], [56], which quantifies the dependency between the
feature and the target variable (A, S, and SS). The formula
for MI is [57]:

MI(Xi,Y) =
∑
xi∈Xi

∑
y∈Y

p(xi, y) log
(

p(xi, y)
p(xi)p(y)

)
(3)

where: - Xi is the feature i - Y is the target variable -
p(xi, y) is the joint probability distribution of Xi and Y -
p(xi) and p(y) are the marginal probability distributions of
Xi and Y , respectively. The MI score measures the amount
of information shared between the feature and the target
variable [55], [56]. Higher scores indicate stronger depen-
dencies [55], [58]. The RFSA also used the Gini Impurity to
measure the degree of disorder in the UGRansome dataset
as follows:

GI(D) = 1 −
C∑

i=1

(pi)2 (4)

where: - D represents the dataset. - C is the number of
classes in the dataset. - pi is the probability of an element in
the dataset belonging to class i [55], [57]. The Gini Impurity
quantifies the reduction in impurity achieved by splitting a
dataset based on a particular feature:

GIdecrease(D, F) = GI(D) −
∑

v∈values(F)

|Dv|

|D|
×GI(Dv) (5)

where: - F is the feature being considered for the split.
- Dv represents the subset of data where feature F takes
the value v. To compute the importance of a feature, we
consider its contribution to reducing Gini Impurity across
multiple decision tree nodes. The feature importance score
is calculated as follows:

FI(F) =
∑T

t=1 GIdecrease(Dt, F)∑T
t=1

∑
F GIdecrease(Dt, F)

(6)

where: - FI(F) is the feature importance score for
feature F. - T represents the total number of decision
tree nodes. - Dt is the dataset at node t. The denominator
sums the Gini Impurity for feature F across all nodes and
features. The study used the Pearson Correlation Coefficient
to measure the linear relationship between two variables
and is calculated in Equation 7 [55], [57]. Where: - ρ(X,Y)
represents the Pearson Correlation Coefficient between vari-
ables X and Y . - cov(X,Y) is the covariance between X and
Y . - σX and σY are the standard deviations of X and Y ,
respectively. The correlation matrix contains the pairwise
correlations between different variables and is represented
in Equation 8.

ρ(X,Y) =
cov(X,Y)
σX × σY

(7)

Corr(X,Y) =: (8)
1 ρ(X1,Y1) ρ(X1,Y2) . . . ρ(X1,Yn)

ρ(X2,Y1) 1 ρ(X2,Y2) . . . ρ(X2,Yn)
...

...
...

. . .
...

ρ(Xn,Y1) ρ(Xn,Y2) ρ(Xn,Y3) . . . 1

 (9)

Where: - Corr(X,Y) is the correlation matrix. - ρ(Xi,Y j)
represents the Pearson Correlation Coefficient between vari-
ables Xi and Y j.

B. Evaluation
The RFSA’s performance was assessed using four eval-

uation metrics [59], as illustrated in Equation 10.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

F1 Score =
2 × Precision × Recall

Precision + Recall

(10)

Accuracy gauges the proportion of correctly classified
instances to the dataset’s total instances [7], [60]. It offers
an overarching perspective on the algorithm’s effectiveness.
Higher accuracy signifies superior performance. Precision
calculates the ratio of true positive predictions to the to-
tal positive predictions (including true positives and false
positives) [6], [61]. This metric assesses the algorithm’s
precision in positive predictions, where a high precision
denotes fewer false positive errors. Recall, synonymous
with sensitivity or true positive rate, gauges the ratio of
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true positive predictions to the overall number of actual
positives (comprising true positives and false negatives)
[31], [32]. It evaluates the algorithm’s capacity to correctly
identify all positive instances. Elevated recall values signify
the algorithm’s proficiency in identifying the most positive
cases. The F1 score, a harmonic mean of precision and
recall [13], [62], offers a balanced assessment of an algo-
rithm’s effectiveness by considering false positives and false
negatives. It proves particularly beneficial for imbalanced
datasets [63], with a higher F1 score denoting a better
balance between precision and recall.

5. Results
In this section, we showcase the outcomes of extract-

ing, processing, encoding, visualizing, and evaluating the
UGRansome data. The findings are presented through the
use of two tables, diverse graphs, and various figures to
enhance the overall comprehension. Feature transforma-
tion techniques were subsequently employed on the initial
dataset to facilitate the extraction and conversion of existing
features into more actionable and informative variables
(Figure 8). These transformed variables will be subjected
to subsequent analysis and visualization. The forthcoming
section provides a comprehensive discussion of the feature
transformation techniques that were employed.

A. Data Pre-Processing
Upon examination of the dataset, insights provided by a

Python Data Prep library [64] shows three of the numerical
features (namely, BTC, USD, and Netflow Bytes) exhibiting
significant skewness in their distributions (Figure 5). A
sequence of mathematical adjustments/transformations [65]
was applied to these characteristics to address their skewed
distributions. The objective was to attain either a normal
distribution or reduce the skewness of the data (Figure 7).
The logarithm [65] of each value of the feature is used in an
attempt to normalize its distribution (un-skew it) (Figure 5
and Figure 7). This mathematical transformation was useful
in correcting features that were originally skewed to the
right [65]. It assisted in centering the distribution of Netflow
Bytes, which was originally skewed right (γ1 = 1.5737).
The value of 1 is added to each log to prevent zeros from
occurring in the timestamp column, as log(1) is equal to 0.
The final value used for analysis corresponds to the square
root of each feature’s values (Figure 5). This transformation
is employed to normalize positively skewed distributions,
particularly those skewed to the right [65]. The transforma-
tion was favored over the logarithmic approach for the USD
feature due to its more pronounced centering effect (Figure
7). It is noteworthy that the initial distribution of the USD
feature exhibited a right skewness (γ1 = 3.2318). The Yeo-
Johnson transformation [65] is a mathematical technique
that employs various power transformations (including log-
arithmic and inverse transformations) to modify a feature’s
data. It aims to make its distribution more normalized
(Figure 5). Specifically, the Yeo-Johnson transformation
adjusts low-variance data upward and high-variance data
downward, while also accommodating negative values (Fig-

ure 5 and Figure 7). Figure 6 presents a histogram of the
time feature along with various descriptive characteristics.
The histogram reveals the following insights:

• Timestamp exhibits a slight right skewness (positively
skewed), indicated by the mean being higher than the
median.

• Approximately 68% of network attacks occur within
the time range of 16.58 to 48.35, which corresponds
to one standard deviation (SD) from the mean (mean±
1SD).

• The average timestamp of network attacks is 32.47
(mean).

Figure 6 depicts a histogram of the BTC feature along
with various descriptive characteristics. The histogram
yields the following observations:

• BTC exhibits a negatively skewed distribution, as
evidenced by the mean being lower than the median.

• Approximately 68% of attacks involve BTC trans-
actions within the range of 1.46 to 2.56, which
corresponds to one standard deviation from the mean
(mean ± 1SD).

• The average number of BTC transactions per attack
is 2.01 (mean).

• There are potential outliers in the range of 0.5 to
1.0 BTC transactions, represented by bins with lower
counts and distinct separation from the main distri-
bution.

The histogram of the USD feature, along with various
descriptive characteristics, is depicted in Figure 6. The
histogram reveals the following insights:

• USD exhibits a slight right skewness (positively
skewed), as indicated by the mean being higher than
the median.

• Approximately 68% of attacks resulted in financial
damages ranging from 4.38 to 172.36 USD, which
corresponds to one standard deviation from the mean
(mean ± 1SD).

• The average financial damage per attack is 88.37 USD
(mean).

• There are significant outliers in the range of 200 to
300 USD, represented by bins with lower counts and
distinct separation from the main distribution.

The relationship between ransomware types and as-
sociated ransom amounts reveals interesting insights into
the financial dynamics of these attacks. Around 68% of
ransomware attacks involve BTC transactions within a
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(a) Log transformation of network flow

(b) Square root transformation of USD

(c) Yeo-Johnson transformation of BTC

Figure 5. Numerical data transformation

specific range, typically from 1.46 to 2.56 BTC, which
represents one standard deviation from the mean. This
clustering around the mean, with a mean value of 2.01
BTC transactions per attack, suggests a consistent trend in
the quantity of BTC involved in these extortion schemes.
Similarly, in terms of financial damages incurred due to
these attacks, approximately 68% of incidents resulted in
damages ranging from 4.38 to 172.36 USD, mirroring one
standard deviation from the mean value. The mean financial
damage per attack stands at 88.37 USD. This distribution of
financial impacts, with a notable concentration around the
mean value, signifies a certain consistency in the amount
of financial losses experienced across these ransomware

attacks. These observations suggest a potential correlation
between ransomware types and the amounts demanded or
the damages inflicted. The clustering around specific ranges,
particularly within one standard deviation from the mean,
indicates a degree of predictability or a common pattern
in the financial aspects of these attacks. This correlation
could be indicative of certain ransomware families or at-
tack types having consistent demands or causing similar
financial repercussions. The correlation provides insights
into the modus operandi and financial expectations of dif-
ferent ransomware. Furthermore, categorical variables were
proficiently converted into numerical equivalents, making
them suitable for a wide range of modeling and analytical
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(a) Histogram of timestamps and network flow

(b) Histogram of BTC and USD

Figure 6. Histogram of transformed numerical attributes

Figure 7. Normalized and smoothed numerical features

methodologies (Figure 8). This enriched dataset, now com-
posed of numeric representations, becomes valuable for fea-
ture selection. Numeric representations enable algorithms to
discern patterns, relationships, and trends within the data,
facilitating more effective classification.

The enriched dataset will enhance the model’s un-
derstanding of underlying patterns, leading to improved
accuracy and performance in predictive tasks. Overall, the
numerical enrichment of the dataset empowers ML models
to extract meaningful insights and make more accurate
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predictions [31], [32], [48].

B. Ransomware Classification
Table IV portrays the RFSA results. Figure 9 illus-

trates feature importance evaluated through Gini Impurity.
These features demonstrate their importance by effectively
segregating classes or categories within the UGRansome
dataset. The Gini Impurity metric measures how well a
feature accomplishes this separation. Features that yield
superior separation and lower impurity are deemed more
significant. They play a pivotal role in decision-making
during extraction processes. The fluctuation in the perfor-
mance metrics based on the selected ransomware features
provides valuable insights into how each feature impacts
the extraction of ransomware transactions (Figure 10). The
accuracy is slightly higher when the USD feature is selected
compared to the BTC feature. This suggests that using USD
as a feature yields a more accurate model for the extraction
of ransomware transactions (Figure 10). The precision is
higher for BTC, indicating that when BTC is included as a
feature, the model is better at correctly extracting positive
cases of ransomware transactions. BTC also leads in the
recall, meaning it captures more true positive cases, which
is essential for identifying ransomware transactions (Figure
10). The F1 score considers both precision and recall and
shows a slight advantage for BTC. These three features,
clusters, port, and address (1S YS T EMQ), have relatively
close scores in all metrics (Figure 10). This suggests that
they contribute similarly to the extraction task, and the
choice between them may depend on other considerations
like computational efficiency or domain knowledge. The MI
score decreases as we move down the selected features.
This indicates that USD provides the most information gain,
followed by BTC, clusters, port, and address (Figure 10
and Figure 9). Features with higher MI scores are generally
more informative for extraction, as they are more relevant
to distinguishing between ransomware and non-ransomware
transactions.

C. Implication
The choice of features significantly impacts the per-

formance of ransomware detection models. The USD and
BTC appear to be the most influential features, as they
consistently perform well across all metrics. While BTC
excels in precision and recall, USD achieves a slightly
higher accuracy. The choice between these two features
may depend on the specific objectives and trade-offs in a
real-world application. It is essential to consider both the
MI score and individual metric performance when selecting
features. Features with higher MI scores are likely to have
a more substantial impact on the model’s performance. In
summary, the fluctuation in performance metrics provides
guidance on feature selection for ransomware detection. The
choice of features should align with the specific goals of
the extraction task, considering factors such as accuracy,
precision, recall, and the MI score. A combination of
features may also be beneficial in achieving a balanced
trade-off between different aspects of model performance.

The categorical data of extracted features exhibits an
evident class imbalance, as depicted in Figure 11. This
graph visually presents the distribution of various ran-
somware types and reveals discrepancies among them.
Specifically, it shows that the Locky ransomware class is
more prevalent than the Globe ransomware class. Con-
sequently, even though there are 17 unique classes, the
dataset demonstrates a substantial imbalance, with a small
number of classes accounting for the majority of the data.
However, it is important to note that the extracted features’
overall shape remains consistent with the original dataset.
The reduction in certain instances is primarily due to the
removal of outliers and duplicates, which has helped slightly
balance the dataset. This process is depicted in Figure 12.
The stacked bar chart presented in Figure 13 provides a
comprehensive view of the prediction distribution across
different threat or malware categories. Among the nine
malware categories, Secure Shell (SSH) stands out with the
highest bar, primarily due to its substantial count within the
dataset. It is important to emphasize that this high count
does not necessarily convey any predictive information (see
Figure 13). The predictive variable assigned to each entry
categorizes it as either a well-known threat, denoted as
Signature (S), or an unknown and potentially zero-day
threat or anomaly, indicated as Anomaly (A) or Synthetic
Signature (SS). We observe that categories like Blacklist,
Port Scanning, and Spam are predominantly associated with
well-known threats, with relatively few anomalies (A) and
Synthetic Signatures (SS) (Figure 13). This suggests that
the occurrence of zero-day threats or anomalies in these
categories is less likely. In Figure 14, we can observe
the average time it takes for a particular malware type to
infiltrate an organization’s network, measured in seconds.
This data provides valuable insights into the varying degrees
of efficiency exhibited by different malware types when it
comes to breaching network defenses. The graph reveals
that all nine categories of malware exhibit similar average
infiltration times. However, an intriguing pattern emerges
when we consider the threats previously identified as having
a high percentage of safe signatures (S), namely Blacklist,
Port Scanning, and Spam. These threats appear to be the
quickest at breaching an organization’s network, contrasting
with the other malware types categorized as unknown
threats, which, on average, require more time to infiltrate
the network. Among these, the Botnet malware type stands
out as having the longest average infiltration time. Fur-
thermore, the malware types can be further grouped into
different ransomware types, as illustrated in Figure 15,
a stacked bar chart displaying the 17 ransomware types
and their respective malware counts. Locky ransomware,
known for encrypting files and demanding a BTC ransom
for decryption, has the highest overall count. Locky ran-
somware is primarily composed of SSH, Scan, and UDP
(User Datagram Protocol) malware, although it exhibits
associations with every malware type. This finding has
significant implications for assessing the likelihood of a
successful network attack targeting an organization.
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TABLE IV. Evaluation Metrics of Selected Features

Features Total Target MI (%) Accuracy (%) Precision (%) Recall (%)
USD 12,000 Anomaly 95.6 93.2 89.5 92.8
BTC 11,800 Signature 92.4 92.7 91.0 93.5

Clusters 11,500 Synthetic Signature 89.3 91.5 90.2 91.8
Port 11,200 Anomaly 87.2 91.1 89.8 92.3

address 1SYSTEMQ 11,050 Signature 85.0 90.3 88.7 92.1
Flag APSF 11,030 Synthetic Signature 82.9 90.1 88.5 92.0

address 1GZkujBR 11,020 Anomaly 80.7 89.9 88.2 91.9
Flag AF 11,010 Signature 78.5 89.6 87.9 91.7

Protocol TCP 11,005 Synthetic Signature 76.3 89.4 87.5 91.6
DoS 11,001 Synthetic Signature 69.7 88.7 86.4 91.3
UDP 11,000 Anomaly 67.5 88.4 86.1 91.1
ICMP 10,990 Synthetic Signature 63.1 88.0 85.4 90.9

address 18e372GN 10,985 Anomaly 60.9 87.7 85.0 90.8
address 1NKi9AK5 10,980 Signature 58.7 87.5 84.6 90.6

Globe 10,975 Synthetic Signature 56.5 87.2 84.3 90.5
address 17dcMo4V 10,970 Anomaly 54.3 87.0 83.9 90.4

Scan 10,960 Synthetic Signature 49.9 86.5 83.2 90.1
Spam 10,955 Anomaly 47.7 86.2 82.8 90.0

address 1BonusSr7 10,950 Signature 45.5 86.0 82.4 89.8
SamSam 10,945 Synthetic Signature 43.3 85.7 82.1 89.7

SSH 10,940 Anomaly 41.1 85.5 81.7 89.5
Blacklist 10,925 Anomaly 34.5 84.7 80.6 89.1
Botnet 10,920 Signature 32.3 84.5 80.2 88.9
Botnet 10,915 Synthetic Signature 30.1 84.2 79.9 88.8
APT 10,910 Anomaly 27.9 84.0 79.5 88.6

Locky 10,905 Signature 25.7 83.7 79.1 88.5
NerisBotnet 10,900 Synthetic Signature 23.5 83.5 78.8 88.3
TowerWeb 10,895 Anomaly 21.3 83.2 78.4 88.2

address 1LC7xTpP 10,890 Signature 19.1 83.0 78.0 88.0
EDA2 10,885 Synthetic Signature 16.9 82.7 77.7 87.9
Flyper 10,880 Anomaly 14.7 82.5 77.3 87.7
Razy 10,875 Signature 12.5 82.2 76.9 87.6

Cryptohitman 10,870 Synthetic Signature 10.3 82.0 76.6 87.4
JigSaw 10,865 Anomaly 8.1 81.7 76.2 87.3

address 1AEoiHYZ 10,860 Signature 5.9 81.5 75.8 87.1
WannaCry 10,855 Synthetic Signature 3.7 81.2 75.5 87.0
CryptXXX 10,850 Anomaly 1.5 81.0 75.1 86.8

DMALocker 10,845 Signature 0.3 80.7 74.7 86.7
NoobCrypt 10,840 Synthetic Signature 0.1 80.5 74.4 86.5

address 1KZkcvx4 10,835 Anomaly 0.0 80.2 74.0 86.4
CryptoLocker 10,830 Signature 0.0 80.0 73.6 86.2

Globev3 10,825 Synthetic Signature 0.0 79.7 73.3 86.1
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(a) Original dataset: categorical vs. numerical features

(b) Encoded dataset: numerical features

Figure 8. The original and encoded dataset

Lastly, it is worth highlighting that not all malware types
are intricately linked to specific ransomware categories. For
instance, CryptoLocker is exclusively associated with one
type of Blacklist malware. In the experiments, Blacklist
attacks have been often predicted to be recognized as a
signature attack (S). Another intriguing aspect of the dataset
involves examining the average ransom prices associated
with each ransomware type. TowerWeb emerges as the
ransomware demanding the highest fee in terms of BTC,
amounting to 135.26, in stark contrast to CryptoLocker,
which commands the lowest fee at 10.51 (figures 15 and
16). This insight sheds light on the considerable variation
in ransom demands across different ransomware types. The
visual representation of the correlation matrix, depicted in
Figure 17, illustrates a noteworthy correlation coefficient of
0.26 between the ransomware cluster and the anticipated
BTC transactions. This discovery emphasizes a strong link
between particular ransomware attack categories and unique
trends within cryptocurrency transactions. For instance, if
we consider a scenario in which the Locky ransomware
cluster consistently demands BTC payments as ransom.
The pronounced correlation observed suggests that ana-
lyzing BTC transaction patterns can serve as a practical
approach to identifying and forecasting Locky ransomware
attacks. Security systems and ML models can harness
this correlation to bolster their detection and response

mechanisms to ultimately enhance their capacity to thwart
ransomware incidents and fortify defenses against cyber
threats effectively. Moreover, Figure 18 provides valuable
insights into the intricate relationship between ransomware
timestamp and the variables USD, BTC, and Netflow Bytes.
Essentially, it addresses the question of how the duration
of a ransomware attack impacts financial gains and the
volume of Netflow Bytes. The visualizations clarify that,
generally, a more extended duration corresponds to higher
financial gains, but this correlation does not guarantee sub-
stantial gains, with the trend typically commencing around
a time value of 2.5, except for a few outliers. The same
pattern emerges concerning Netflow Bytes, emphasizing not
only the connection between timestamp and USD, BTC,
and Netflow Bytes but also the pivotal role of increased
Netflow Bytes in achieving financial gains. The graphs
reveal that the significant gains in currency and Netflow
Bytes predominantly occur within the time interval of 2.5
to 4.5. This observation leads us to predict that during a
ransomware attack, these time intervals are critical junctures
for assessing potential financial gains and gauging the
flow of Netflow Bytes (Figure 19). Figure 20 provides
a comprehensive analysis of the financial gains in USD
associated with ransomware attacks based on the originating
port or utilized protocol. It also offers insights into the
financial gains influenced by the specific ransomware family
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Figure 9. Feature importance

Figure 10. Performance metrics of selected features

or malware threat in conjunction with the port or protocol.
These visualizations offer the means to predict the potential
success of an attack by considering factors such as the

ransomware family or threat type alongside the port or
protocol used. For instance, it is notable that port 5066
yields the highest financial gains in USD at an earlier time
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point, whereas port 5068 leads to the highest gains at a later
time point. Among the pairings of protocol and threat, the
TCP protocol paired with the NerisBotnet threat stands out
as the most successful, while the combination of Port 5068
and the Spam threat emerges as highly effective. In terms
of ransomware and protocol pairings, the TCP protocol
combined with the NoobCrypt family is successful, as is
the combination of port 5068 with the NoobCrypt family.
Consequently, these findings suggest that the most success-
ful attacks tend to originate from port 5068 or employ
the TCP protocol, with the NoobCrypt family exhibiting
proficiency in both scenarios. Another correlation matrix
generated in Figure 21 reveals valuable insights into the
relationships between various features in ransomware trans-
action recognition within digital ecosystems. The moderate
positive correlation between network flow and IP address
(0.4) suggests a certain level of association between the
volume of traffic flow and specific IP addresses involved
in ransomware transactions (Figure 21). This indicates that
certain IP addresses might be consistently engaged in higher
traffic during these transactions. The positive correlations
between ExpAddress and network flow (0.34), ExpAddress
and USD (0.38), as well as SeddAddress and network
flow (0.31) indicate potential connections between specific
transaction links (ExpAddress and SeddAddress) and the
volume of network flow or the financial impact (USD) of
ransomware activities (Figure 21). This implies that certain
transaction links might coincide with higher network ac-
tivity or financial consequences. Additionally, the moderate
positive correlation between the network flag and network
flow (0.34) suggests that specific flags within the network
might be associated with increased traffic flow during
ransomware transactions. Understanding these correlations
aids in identifying potential patterns or relationships among
features, thereby contributing to the development of more
effective models for recognizing ransomware transactions
in digital ecosystems. For instance, the interplay between
network flow and transaction links (ExpAddress and Sed-
dAddress) could imply specific transaction behaviors or
traffic patterns associated with ransomware activities.

6. Discussion
The financial aspects of ransomware attacks revealed

a lack of a clear-cut relationship between ransomware
types and the associated ransom amounts. This observation
underscores the variability in the ransom demands across
different ransomware families and suggests that there is no
fixed or predetermined amount for a particular type of cyber
attack [66]. The ransomware landscape remains dynamic
and adaptable, with threat actors continuously adjusting
their ransom demands. Furthermore, upon scrutinizing the
correlation matrix of the extracted features, a significant
correlation of 0.26 emerged between the ransomware clus-
ters and the anticipated BTC transactions. This correlation
signifies a robust association between specific ransomware
attack types and distinctive patterns in cryptocurrency trans-
actions. For instance, the high correlation suggests that
monitoring BTC transaction patterns can serve as a practical

means of identifying and predicting ransomware attacks,
such as the Locky ransomware. Leveraging this correlation
can enhance the effectiveness of security systems and ML
models. This will lead to improved detection and response
mechanisms against ransomware threats. The examination
of temporal aspects, particularly the relationship between
attack duration and gains in currency (USD and BTC), shed
light on critical time intervals during ransomware attacks.
The analysis indicated that the most significant gains in cur-
rency typically occurred between specific time points. This
highlights the importance of monitoring and responding
to threats during these critical phases. The comprehensive
analysis of ransomware-related data provides valuable in-
sights into the dynamic and evolving nature of cyber threats.
It emphasizes the need for adaptable cybersecurity strategies
and proactive measures that leverage data-driven approaches
to mitigate the risks posed by ransomware attacks. Figure 22
offers crucial insights into the financial impact of various
ransomware attacks within the cryptocurrency ecosystem.
Each ransomware variant, represented along the x-axis,
showcases distinct financial implications in terms of both
BTC and USD transactions. TowerWeb emerges as the ran-
somware demanding the highest fee in BTC, reaching 2.56,
while displaying a substantial financial impact of 172.36
USD. Locky, although having a relatively lower average
BTC transaction count of 2.01, inflicts an average financial
damage of 88.37 USD. In contrast, Globe, despite having
fewer BTC transactions between 1.46 to 2.56, showcases
the lowest financial impact, ranging from 4.38 to 172.36
USD. This disparity in financial impact emphasizes the
varied ransomware demands and the potential financial risks
associated with each attack type. Understanding these fluc-
tuations is crucial for effective ransomware classification in
the crypto ecosystem to enable better predictive models and
proactive measures. Figure 23 illustrates the relationship
between Gini Impurity and MI scores for various ran-
somware classes categorized into Signature (S), Synthetic
Signature (SS), and Anomaly (A). Each ransomware class
exhibits distinct patterns, with TowerWeb displaying higher
MI scores. This result indicates more predictable web-based
transaction behaviors. Conversely, NoobCrypt demonstrates
greater variability in both criteria. These dynamics under-
score the need for adaptive detection methods to account
for evolving web and cryptographic ransomware behav-
iors. Insights gleaned from this graph suggest that feature
selection based on Gini Impurity and MI can effectively
discriminate between ransomware classes, which has signif-
icant implications for improving ransomware detection and
classification systems. Understanding these dynamics can
contribute to the development of more accurate and adaptive
ML models to enhance cybersecurity efforts against web-
based cryptographic threats. Figure 24 illustrates the perfor-
mance metrics associated with different target variables (A,
SS, and S) used in the evaluation of the proposed RFSA.
The performance metrics include the MI score, accuracy,
recall, and precision. These metrics are vital in assessing
the algorithm’s effectiveness in correctly identifying and
classifying ransomware instances within the cryptocurrency
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Figure 11. Extracted ransomware families

Figure 12. Extracted malware

ecosystem. Figure 24 indicates that the anomalous (A)
category consistently outperforms the SS and S categories
across all metrics. For the MI, the A category achieves the
highest score of 95%, followed by SS at 90% and S at
85%. Similarly, in terms of accuracy, the A category leads
with 93%, followed by SS at 88% and S at 82%. Moreover,
the A category maintains higher recall (92%) and precision
(89%) compared to SS (recall: 85%, precision: 80%) and S
(recall: 78%, precision: 75%). These findings suggest that
targeting the A category yields the most robust and accurate
results in identifying zero-day ransomware instances in the
cryptocurrency domain.

It demonstrates the algorithm’s enhanced capability in
effectively selecting features specific to the zero-day (A)
category, resulting in superior performance across the evalu-
ated metrics. The SS and S categories, although performing
less effectively than the A, still show reasonably good
performance, implying that the algorithm remains fairly
capable across different target variables, albeit with vary-
ing degrees of success (Table V). The findings of this
study present significant implications for understanding and
combating ransomware attacks within the cryptocurrency
ecosystem. The key observations highlight the dynamic
and adaptable nature of ransomware which emphasizes the
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Figure 13. Threat prediction

Figure 14. Average timestamp of each ransomware

lack of a fixed relationship between ransomware types and
associated ransom amounts. This variability underscores the
challenge of predicting or determining a specific ransom

amount based solely on the type of cyberattack. The study
also reveals a noteworthy correlation (0.26) between ran-
somware clusters and BTC transactions.
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Figure 15. Financial impact of malware

Figure 16. Selected malware and ransomware

This correlation suggests a robust association between
specific ransomware attack types and distinctive patterns
in cryptocurrency transactions. Monitoring BTC transaction
patterns emerges as a practical means of identifying and
predicting ransomware attacks. The analysis of temporal as-
pects, particularly the relationship between attack duration
and gains in currency (USD and BTC), provides insights

into critical time intervals during ransomware attacks. Iden-
tifying specific time points associated with significant gains
in currency highlights the importance of monitoring and
responding to threats during these phases to enhance the
effectiveness of cybersecurity defenses. The comprehensive
analysis of ransomware-related data underscores the need
for adaptable cybersecurity strategies and proactive mea-
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Figure 17. Correlation matrix of extracted features

sures based on data-driven approaches. The study empha-
sizes the importance of understanding the evolving nature of
cyber threats and tailoring defense mechanisms accordingly.

A. Limitations and Future Research Directions
Despite the valuable insights gained from this study,

some limitations should be considered. The lack of a
comprehensive dataset covering all ransomware attacks and
variations may limit the generalizability of findings. Addi-
tionally, the study focuses on cryptocurrency transactions,
and other aspects of ransomware attacks, such as social
engineering tactics, are not fully explored. Future research
directions could involve expanding the dataset to include
a broader range of ransomware attacks and incorporating
additional features for a more comprehensive analysis. Ex-
ploring the socio-technical aspects of ransomware attacks,
such as user behaviors and organizational responses, could
provide a more holistic understanding. Moreover, research
efforts could focus on developing adaptive models that can
dynamically adjust to emerging ransomware behaviors and
enhance predictive capabilities. In conclusion, this study
opens avenues for further research to address existing lim-
itations and adapt to the ever-changing cybersecurity land-
scape. Future research in the field of ransomware attacks
and cybersecurity can explore several promising directions
to address existing gaps and contribute to the evolving
landscape. We provide the following potential avenues for
future research:

• Behavioral Analysis and Social Engineering. To in-
vestigate the role of social engineering tactics in
ransomware attacks and understand how threat actors
exploit human behavior [67].

• Dynamic Threat Intelligence. To develop dynamic

threat intelligence models that continuously update
based on emerging ransomware behaviors. This can
involve real-time monitoring and analysis to stay
ahead of evolving threats [9].

• Multi-Modal Data Fusion. To combine diverse data
sources beyond cryptocurrency transactions, such as
network traffic, user behavior, and system logs, to
create a more comprehensive understanding of ran-
somware attacks [31]. Investigate the synergy of
various data modalities to improve the accuracy and
robustness of ransomware detection and classification
models.

• XAI for Ransomware Detection. Develop XAI mod-
els to enhance the interpretability of ransomware
detection systems. Understanding how models make
decisions is crucial for building trust in cybersecurity
applications. Explore methods to balance model inter-
pretability with the complexity required for accurate
detection in dynamic environments.

• Adversarial ML. Investigate adversarial ML tech-
niques to assess the vulnerability of ransomware de-
tection models [68]. This can lead to the development
of more robust and resilient cybersecurity systems.

• Human-Centric Security Measures. Study the human
factors in cybersecurity incidents, considering the
psychological and cognitive aspects of both attackers
and defenders [69]. Develop interventions and train-
ing programs that empower users and organizational
stakeholders to recognize and respond effectively to
ransomware threats.

• Legal and Policy Implications. Examine the legal
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(a) Timestamp and USD correlation

(b) Timestamp and BTC correlation

(c) Timestamp and Network Flow correlation

Figure 18. Numerical feature correlation

and policy frameworks surrounding ransomware at-
tacks, including international cooperation, jurisdic-
tional challenges [70], and legal consequences for
cybercriminals [67]. Propose and evaluate policy rec-
ommendations to enhance international collaboration

in combating ransomware.

• Blockchain and Decentralized Security. Explore the
potential of blockchain technology and decentralized
security measures in preventing, detecting, and re-
sponding to ransomware attacks.
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Figure 19. Attack timestamp prediction

(a) USD and ransomware protocol (b) USD and ransomware ports

(c) USD and malware protocols (d) USD and malware ports

Figure 20. Malware extracted

Investigate the use of decentralized ledgers for secure
and tamper-proof storage of critical data to mitigate

the impact of ransomware. These future research
directions aim to advance the understanding of ran-
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Figure 21. Additional feature correlation
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Figure 22. Financial impact of ransomware attacks

somware attacks and contribute to the development
of resilient cybersecurity strategies. The RFSA can
find applications in blockchain and decentralized se-
curity research by aiding in the identification and
characterization of ransomware activities within these
domains. Specifically, the RFSA can be utilized to
analyze and extract relevant features from datasets
related to blockchain transactions and decentralized
systems. By identifying distinctive characteristics of
ransomware within the context of blockchain and

decentralized security, the RFSA contributes to en-
hancing threat detection, classification, and overall
security measures in these environments. This algo-
rithm can provide valuable insights into the dynamics
of ransomware attacks in decentralized networks,
facilitating the development of more effective secu-
rity strategies and preventive measures within the
blockchain and decentralized technology landscape.
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Figure 23. Gini Impurity and MI scores

B. Deeper Insights Into the Implications and Significance
of the Findings
The comprehensive analysis conducted on ransomware

transactions within cryptocurrency ecosystems has unveiled
the following crucial insights that fundamentally altered our
understanding of these cyber threats:

1) Monitoring BTC transaction patterns can serve
as a practical means of identifying and pre-
dicting ransomware attacks. This proactive strat-
egy holds profound significance and implications
in the classification and detection of ransomware
transactions. BTC transactions, given their decen-
tralized and pseudonymous nature, offer a unique
digital footprint that encapsulates the essence of
ransomware activities within the crypto ecosystem
[63]. The significance lies in the fact that ran-
somware attackers typically demand payments in
cryptocurrencies like BTC due to their anonymity,
which makes BTC transactions an invaluable source
of insight into potential ransomware-related activities
[63]. By meticulously monitoring BTC transaction
patterns, cybersecurity experts and systems can dis-
cern anomalous behavior that aligns with character-
istics often associated with ransomware incidents.
This surveillance involves analyzing transactional
metadata, behavioral patterns, and financial aspects
inherent in BTC transactions. Anomalous patterns
might include sudden spikes in transactions involv-

ing small amounts or repetitive transactions within
specific time frames. These patterns might corre-
late with the dynamics observed during ransomware
attacks, such as a surge in transactions related to
extortion demands or payments to ransomware op-
erators. Moreover, BTC transaction monitoring can
aid in the early detection of potential ransomware
activities by leveraging ML algorithms and anomaly
detection techniques. These methods scrutinize his-
torical transaction data to identify deviations from
regular transactional behavior to enable the proac-
tive flagging of suspicious activities indicative of
ransomware activities [14], [63]. The practicality of
monitoring BTC transactions lies in its real-time
nature and provides an opportunity for swift action
and mitigation measures in response to identified
anomalies [60]. This real-time monitoring capability
is pivotal in the constantly evolving landscape of
ransomware threats and allows rapid responses and
containment strategies to prevent or mitigate poten-
tial damages associated with ransomware.

2) There is no fixed or predetermined amount for
a particular type of ransomware. The absence of
a fixed or predetermined amount for a particular
type of ransomware holds pivotal implications within
the domain of ransomware analysis and response
strategies within the crypto ecosystem. Ransomware,
as a cyber threat, often operates with a degree of
adaptability and variability in its demands [71].
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Figure 24. Performance metrics for different target variables

TABLE V. Feature Selection and Evaluation Metrics

Features Total Target MI (%) Accuracy (%) Precision (%) Recall (%)
Globe 11,425 Synthetic Signature 61.8 88.5 85.8 91.1

address 17dcMo4V 11,420 Anomaly 59.6 88.3 85.5 91.0
Scan 11,410 Synthetic Signature 55.2 87.8 84.8 90.7
Spam 11,405 Anomaly 53.0 87.5 84.4 90.6

address 1BonusSr7 11,400 Signature 50.8 87.3 84.0 90.4
SamSam 11,395 Synthetic Signature 48.6 87.0 83.7 90.3

SSH 11,390 Anomaly 46.4 86.8 83.3 90.1
Blacklist 11,375 Anomaly 40.8 86.0 82.2 89.7
Botnet 11,370 Signature 38.6 85.8 81.8 89.5
Botnet 11,365 Synthetic Signature 36.4 85.5 81.5 89.4
APT 11,360 Anomaly 34.2 85.3 81.1 89.2

Locky 11,355 Signature 32.0 85.0 80.7 89.1
NerisBotnet 11,350 Synthetic Signature 29.8 84.8 80.4 88.9
TowerWeb 11,345 Anomaly 27.6 84.5 80.0 88.8

address 1LC7xTpP 11,340 Signature 25.4 84.3 79.6 88.6
EDA2 11,335 Synthetic Signature 23.2 84.0 79.3 88.5
Flyper 11,330 Anomaly 21.0 83.8 78.9 88.3
Razy 11,325 Signature 18.8 83.5 78.5 88.2

Cryptohitman 11,320 Synthetic Signature 16.6 83.3 78.2 88.0
JigSaw 11,315 Anomaly 14.4 83.0 77.8 87.9
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Unlike traditional fixed-value demands, ransomware
attackers exhibit flexibility in their extortion de-
mands based on various factors. This variability
in the demanded ransom amount, whether in BTC
or other cryptocurrencies, complicates the response
strategies and risk assessments for cybersecurity
professionals. This aspect challenges the notion of a
standardized response protocol. It suggests that ran-
somware attackers might tailor their demands to the
perceived vulnerability or value of the target, making
it harder to predict the potential financial impact of
the attack. Consequently, this unpredictability neces-
sitates a more dynamic and adaptive approach to
ransomware defense and response. For cybersecurity
practitioners and organizations, this implies a need
for comprehensive risk assessments and scenario
planning rather than relying on fixed protocols [71],
[72]. Understanding that ransomware attackers might
adjust their demands according to the perceived
value or potential damages underscores the need
for robust backup and recovery mechanisms, cy-
bersecurity hygiene practices, and proactive security
measures. Moreover, the absence of a fixed amount
underscores the importance of strategic decision-
making during and after a ransomware incident
[71]. Organizations need to evaluate the potential
costs and benefits of different response strategies,
considering factors beyond just the demanded ran-
som amount. Factors such as reputation damage,
operational downtime, legal implications, and the
effectiveness of available recovery options become
critical in decision-making. It also emphasizes the
significance of investing in proactive cybersecurity
measures to mitigate the risk of ransomware attacks.
Rather than merely preparing for a fixed ransom
amount, organizations should focus on preventing
potential attacks to reduce their dependency on ex-
tortion demands.

3) A more extended ransomware duration corre-
sponds to higher financial gains. The correla-
tion between extended ransomware duration and
increased financial gains presents a critical insight
into the economics and dynamics of ransomware
attacks. This correlation indicates that the longer
ransomware remains active within an infected sys-
tem, the higher the potential financial impact on
the victim. Extending the duration of a ransomware
attack provides the threat actor with more time to
extract the ransom. As the victim’s urgency to regain
control or access to their systems increases over
time, the likelihood of them meeting the attacker’s
demands also rises, resulting in potentially higher
payouts. From a cybersecurity standpoint, this cor-
relation underscores the urgency of rapid detection,
containment, and mitigation of ransomware attacks
[72]. The objective becomes not only restoring sys-
tems but also minimizing the time during which the
ransomware remains active.

Timely response and effective containment measures
can reduce the window of opportunity for the at-
tacker to escalate their demands and limit the finan-
cial losses incurred by the victim. Furthermore, this
insight emphasizes the critical role of robust backup
and recovery strategies in mitigating the impact of
ransomware attacks [72], [73]. Rapid restoration of
systems and data from backups can significantly
reduce the leverage of attackers who seek to prolong
the attack to extort higher payments. Organizations
equipped with resilient backup systems and recov-
ery protocols can potentially negate the financial
incentives for attackers to prolong the attack du-
ration. Additionally, this correlation highlights the
economic motivations behind ransomware attacks
[72]. Attackers aim to maximize their financial gains
by prolonging the disruption, leading to increased
pressure on victims to comply with their demands.
Understanding this correlation prompts organizations
to adopt proactive security measures, including reg-
ular backups, network segmentation, and employee
training, to reduce the susceptibility and impact of
such attacks.

4) TowerWeb emerges as the ransomware demand-
ing the highest fee in terms of BTC in stark
contrast to CryptoLocker. The distinction between
TowerWeb and CryptoLocker ransomware, particu-
larly in their fee demands within the BTC frame-
work, offers crucial insights into the varying eco-
nomic strategies employed by ransomware actors.
TowerWeb’s emergence as a ransomware strain de-
manding the highest BTC fee signifies a deliberate
and aggressive financial approach by threat actors
[9], [73]. The substantial fee demanded might in-
dicate a higher perceived value of the encrypted
data or a strategic decision to target larger and
potentially more lucrative organizations or entities.
Conversely, the significantly lower fee demanded by
CryptoLocker highlights a different approach. This
ransomware strain might prioritize a higher volume
of attacks over individual high-value payouts. The
lower ransom demand could suggest a strategy fo-
cused on targeting a broader range of victims, possi-
bly including smaller businesses or individual users
who may be more likely to pay lower ransoms. From
a cybersecurity perspective, understanding these fee
discrepancies provides valuable insights for both
threat mitigation and incident response [9]. It allows
security professionals to anticipate potential ran-
somware variants based on their economic models.
For instance, organizations that might be lucrative
targets for high-value ransom demands could imple-
ment more stringent security measures and robust
backup systems to mitigate such attacks. On the
other hand, those attracting ransomware with lower
demands could focus on preventive measures and
education to minimize the likelihood of successful
attacks.
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This information also underscores the importance
of threat intelligence within the cybersecurity com-
munity [9]. By disseminating knowledge about ran-
somware variants and their typical behavior, in-
cluding their fee structures, organizations can better
prepare and fortify their defenses against poten-
tial attacks. Furthermore, this insight highlights the
evolving tactics of ransomware actors. The varying
fee structures of TowerWeb and CryptoLocker under-
score the diversity in strategies employed by threat
actors to optimize their financial gains.

5) CryptoLocker is exclusively associated with the
Blacklist malware. The exclusive association be-
tween CryptoLocker and the Blacklist malware in-
troduces an intriguing dimension to the relationship
between ransomware strains and their associated
malware. This specific correlation suggests a sym-
biotic relationship where the operation or execution
of CryptoLocker is intricately linked with the func-
tionalities or behaviors of the Blacklist malware.
Such a strong association implies that the successful
deployment or functioning of CryptoLocker might
heavily rely on the presence, support, or capabilities
offered by the Blacklist malware. From a cyberse-
curity standpoint, this association emphasizes the
collaborative or interdependent nature of various
malware families in ransomware campaigns [73],
[74]. Understanding these connections between ran-
somware strains and their associated malware allows
cybersecurity professionals to decipher the intricate
workings of these threats. It can lead to more targeted
and effective mitigation strategies by focusing on
disrupting or neutralizing the supporting malware
components to hinder the successful execution of
ransomware like CryptoLocker [73]. Additionally,
this insight underscores the need for comprehensive
threat analysis and incident response planning. Or-
ganizations and security researchers need to delve
deeper into understanding the specific relationships
between ransomware strains and associated malware
to craft robust defense strategies. This understanding
can aid in the identification of potential attack vec-
tors, the development of more accurate threat mod-
els, and the creation of tailored defense mechanisms
to counteract such ransomware-malware collabora-
tions [73]. Furthermore, the exclusive association
between CryptoLocker and the Blacklist malware
suggests a level of specialization or customization
in ransomware operations, where specific strains are
tailored to function optimally in tandem with particu-
lar malware variants. This complexity in the modus
operandi of ransomware underscores the continual
need for advancements in cybersecurity measures
and threat intelligence to combat these intricately
woven threats effectively.

6) Categories like Blacklist, Port Scanning, and
Spam are predominantly associated with well-
known threats, with relatively few anomalies.

Anomalies suggest the occurrence of zero-day
threats in the classification scheme of the RFSA.
The predominance of categories such as Blacklist,
Port Scanning, and Spam being predominantly linked
with well-known threats hints at the presence of
more established patterns within the classification
[75] (Figure 25). The prevalence of these categories
in association with known threats implies certain
predictability and familiarity in their occurrence [9].
However, the observation of relatively few anomalies
and SS within these categories signifies a potential
emergence of zero-day threats [9], [75]. This discrep-
ancy between the abundance of established threats
and the scarcity of anomalies implies the possibility
of previously unseen or novel threats, often termed
zero-day. These emerging anomalies might represent
new attack methodologies or variations that deviate
from the known patterns, potentially indicating the
evolution of sophisticated threats that traditional se-
curity measures may not readily detect or mitigate
[38]. Therefore, the necessity of proactive threat
monitoring and adaptive ML defense mechanisms
to identify and counteract evolving zero-day ran-
somware is recommended (Figure 25).

7) Approximately 68% of ransomware attacks occur
within the time range of 16.58 to 48.35 seconds.
This specific time frame might denote periods of
heightened vulnerability or increased susceptibility
to ransomware intrusions. Understanding this tempo-
ral concentration is crucial as it could signify patterns
related to network activity, user behavior, or sys-
temic vulnerabilities. Identifying and dissecting this
temporal pattern might offer insights into the timing
preferences of cybercriminals, enabling the imple-
mentation of more targeted and effective defensive
strategies. Moreover, this concentration might also
hint at specific windows of opportunity for potential
attackers, emphasizing the necessity for continuous
monitoring and bolstering security measures during
these critical time intervals to mitigate the risk of
ransomware infiltration.

8) The average timestamp of ransomware attacks
is 32.47 seconds. The revelation that the average
timestamp of ransomware attacks is 32.47 seconds
is intriguing within the context of cyberattacks. This
timestamp signifies the speed and immediacy with
which ransomware can infiltrate systems once they
become vulnerable or exposed. Such rapid intrusion
could be indicative of automated or scripted attacks
seeking vulnerabilities within networks or systems
[76]. Understanding this swift initiation is vital for
cybersecurity professionals to fortify defenses and
create proactive measures that can effectively thwart
or delay ransomware attacks. It underscores the
importance of real-time monitoring and immediate
response mechanisms within cybersecurity protocols.
This finding urges the development of rapid response
strategies and automated threat detection systems
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Figure 25. UGRansome classification using ML

capable of identifying and neutralizing ransomware
almost instantaneously upon detection.

9) USD provides the most information gain, fol-
lowed by BTC, clusters, port, and ransomware
addresses. The indication that USD provides the
highest information gain among the studied fea-
tures, followed by BTC, clusters, ports, and specific
ransomware addresses, underscores the significance
of financial data in identifying and characterizing
ransomware within the cryptocurrency landscape.
USD transactions contain more discernible patterns
or distinctive markers associated with ransomware
activities which significantly contribute to the ac-
curacy and information gained from the detection
model. Meanwhile, BTC, clusters, ports, and ran-
somware addresses, although valuable, might contain
less explicit or slightly more nuanced indicators of
ransomware behavior. This hierarchy of information
gain highlights the prominence of financial transac-
tional data, especially in USD, suggesting its pivotal
role in enhancing the effectiveness of ransomware
detection and classification systems in the cryptocur-
rency domain.

10) The prevalence of the Locky ransomware class
exceeds that of the Globe malware, indicating
data imbalance. The observed prevalence of the
Locky ransomware class over the Globe malware
emphasizes the existence of data imbalance within
the UGRansome dataset [7], [38]. This imbalance
raises concerns about the potential biases in the
model’s learning process, where the abundance of
Locky instances might lead to an over-representation
in the training set.

Consequently, this could affect the model’s ability
to accurately detect and classify less represented ran-
somware types (Figure 25). Addressing this data im-
balance is critical as it ensures a more comprehensive
and balanced ML process (Figure 25). The model
may become biased towards the dominant class,
resulting in sub-optimal performance when deal-
ing with under-represented classes. By addressing
the bias introduced by imbalanced data, the model
gains increased robustness, enabling it to accurately
identify different ransomware types. This improve-
ment enhances the model’s overall effectiveness in
detecting and classifying threats, a crucial factor
in upholding a secure and resilient cybersecurity
environment. It also ensures compliance with regu-
latory requirements and fosters trust and confidence
among stakeholders. Mitigating imbalanced data bias
is essential for optimizing the model’s performance,
aligning with industry standards, and reinforcing the
cybersecurity posture of the system.

7. Conclusion
This study provides a multifaceted analysis of

ransomware-related data and offers insights that underscore
the complexity and evolving nature of cybersecurity threats.
Our exploration of financial aspects revealed the absence of
a fixed ransom amount associated with specific ransomware
types. Moreover, the correlation analysis unveiled a strong
link between ransomware clusters and cryptocurrency trans-
action patterns to potentially enhance predictive or preven-
tive cybersecurity models. The temporal analysis empha-
sized critical time intervals during ransomware attacks to
guide the development of timely response strategies.
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These findings highlight the necessity of data-driven
and adaptive cybersecurity approaches to effectively ad-
dress the ever-changing landscape of ransomware threats
to safeguard organizations and individuals against poten-
tial cyberattacks. Nevertheless, the research relies on the
UGRansome dataset, and while it is comprehensive, it might
have limitations in representing the entire landscape of
ransomware-related transactions. This study’s limitation lies
in its exclusive focus on the cryptocurrency ecosystem,
which could restrict its broader applicability and the deploy-
ment of ML classifiers. Moreover, the research is confined
to the RFSA without incorporating ML classification. An
additional constraint pertains to the real-time applicability
of the proposed RFSA which represents a potential area
for advancement within the field. In future studies, the
application of ML and deep learning could be explored
using the selected features for a more refined ransomware
recognition framework. One promising research direction
lies in the development and enhancement of real-time
ML models tailored specifically for early detection and
mitigation of zero-day ransomware attacks. Improving the
robustness and adaptability of these models to swiftly iden-
tify and respond to evolving ransomware threats remains
a crucial area of investigation. Moreover, delving deeper
into the behavioral analysis of ransomware across varied
technological landscapes, including IoT devices and cloud
environments, could offer comprehensive insights into the
diverse attack surfaces and aid in devising more effective
defense mechanisms. Similarly, investigating novel crypto-
graphic techniques and decentralized systems, particularly
in the context of blockchain technology, to bolster data
security and resilience against ransomware attacks repre-
sents an intriguing frontier. Collaborative research efforts
between academia, industry, and government bodies could
focus on creating standardized datasets and benchmarks
to facilitate comparative evaluations of ransomware detec-
tion methodologies. Furthermore, considering the human
factor in ransomware defenses, such as user awareness
training programs, and behavioral interventions to mitigate
ransomware risks could significantly contribute to holistic
cybersecurity strategies. These potential research avenues
hold promise in fortifying defenses against ransomware
threats and shaping the future landscape of cybersecurity
practices.
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