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Abstract: Traditional metrics may not adequately assess performance in certain situations, whereas the Area Under Curve (AUC)
offers a comprehensive perspective by considering both sensitivity and specificity. This method enhances interpretability, addresses
limitations, and promotes the development of robust clustering algorithms. In unsupervised learning, utilizing AUC is a significant
method for improving the precision and accuracy of machine learning models. Our work is inspired by several recent related
works that implement approaches to manage the challenges of developing new metrics that can effectively assess and evaluate the
performance of clustering algorithms. The research question relies on the concept of using an optimal metric for model evaluation
of classification and clustering. Therefore, the paper investigates the use of the classification metric AUC for clustering validation
purposes. The methodology we adopt is a hybrid clustering model because such a technique offers a robust model by combining
the strengths of each model. The linkage approach directly impacts the clustering results, so we give significant attention to
this feature in our implementation. Among the various linkage methods, we utilized single and average linkages. The Manhattan
and Euclidean metrics are the distance measures used in this work. Thus, our contribution is to explore the benefit of using
linkages and distance measurement in clustering with the help of the AUC metric. In addition, the entire proposed work and the
contributions of this paper are evaluated and applied to the NSL-KDD dataset. Based on the proposed approach of using AUC with
clustering, the Detection Rate (DR), False Alarm Rate (FAR), and other criteria are chosen to examine the model’s results and capabilities.
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1. INTRODUCTION

In the evaluation of clustering techniques, the roles of
linkages and distance measurements are critically connected
and share the same purpose, serving as the backbone for
accurate data clustering. Based on the fact that distance
measurements, such as Euclidean, Manhattan, and Cosine
similarity, determine the similarity between items in a
dataset [1], the choice of the distance measurement method
directly affects the clustering outcome by influencing how
the similarity between items is quantified. In hierarchical
clustering, linkage methods include single, complete, and
average methods; this process is further refined by determin-
ing how distances between clusters are estimated, affecting
the ultimate results and accuracy of the clusters. The choice
of distance metric affects clustering algorithms’ precision,
efficiency, and accuracy. The distance measurements have
various performances by considering the data’s specifica-
tions in their nature. Consequently, we are taking into
account the clustering parameters that interchange with dis-
tance measurements. In this work, we consider the different
distance measures and area under the curve (AUC) metrics

on various clustering techniques to assess their performance
on both artificial and real-life datasets. We show that the
choice of a distance measure should be based on the dataset
and clustering technique. Using AUC in clustering by recent
works [2], [3], such as the area under the curve for clus-
tering (AUCC) and the area under precision-recall curve,
have been proposed as suitable clustering validation indexes
(CVIs), contributing to developing a complete metric for
supervised and unsupervised learning. This comprehensive
approach is valuable for evaluating clustering algorithms as
it is applied through the use of AUC classification metrics.
In addition, leveraging both distance and linkage techniques
alongside AUC is essential for enhancing the clustering
performance and reliability. In addition, it underscores the
complicated balance and importance of these elements in
the clustering validation process. Specificity and sensitivity,
which are provided by AUC, guarantee the potential of
supplying comprehensive testing and evaluation for model
performance. The proposed technique offers a complete
solution for some limitations and shortcomings of the tra-
ditional metrics. Both Manhattan and Euclidean with single
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and average linkages have influenced this work to apply
similarity and dissimilarity processes in more complicated
datasets. The challenge in this study is that the clustering
algorithms’ nature is looking for data grouping based on
shared features, whereas classification follows pre-classified
datasets. Thus, the use of metrics interchangeable between
them is the motivation of this paper. Common methods like
k-means and hierarchical clustering, each being beneficial
for specific purposes, have been the focus of much research
[4]. This study innovates by merging these algorithms into
a hybrid hierarchical clustering method, aimed at enhancing
efficiency and accuracy, especially in anomaly detection
scenarios [5]. Hybrid clustering models, known for their
adaptability and robust handling of noise and outliers,
offer an advanced approach to data analysis [6]. Yet, their
complexity and the risk of overfitting necessitate thorough
validation and understanding of dataset characteristics. Our
research is particularly inspired by recent advancements
in evaluating clustering outcomes. A novel approach, the
AUCC, extends the AUC metric from supervised to unsu-
pervised learning, providing a valuable measure for cluster-
ing performance [7]. With the help of AUC visualization
capability, we can easily split the clustered groups and
draw a receiver operating characteristic (ROC) curve for
graphical distinction. At the same time, the interpretation
of AUC values describes the model performance. In Figure
1-a, the process of merging clustering and classification
metrics techniques is illustrated showing the conceptual idea
of the proposed work. On the other side, Figure 1-b depicts
the hybrid model of the k-means and agglomerative models
and workflow of the data process. The implementation
of the proposed work depends on the NSL-KDD dataset,
which is an updated version of the KDD Cup 1999 dataset.
The implementation of the chosen dataset is for intrusion
detection as a best practice for clustering [8]. Comprising
42 features across various attack categories, this dataset
provides a comprehensive platform for our study. Despite its
advantages over its predecessor, the NSL-KDD dataset does
present certain limitations, such as outdated information and
incomplete attack type coverage [9][10]. Recognizing the
inadequacy of traditional classification evaluation metrics
like confusion matrices and log loss in clustering contexts,
our study focuses on alternative evaluation methods [11].
Clustering algorithms, being unsupervised learning models,
necessitate metrics that assess inherent patterns and similar-
ities without a predefined target variable. We explore both
internal metrics, such as Within Sum of Squares (WSS) and
Silhouette Score, and external metrics, like the Adjusted
Rand Index (ARI), to evaluate our hybrid clustering model
[12]. Thus, this paper contributes to the field by developing
and evaluating an anomaly prevention system using hybrid
clustering methods on the NSL-KDD dataset. The efficiency
and effectiveness of our model are assessed using AUC
alongside other relevant metrics. The following section
delves into related work, providing a thorough analysis
of the current research landscape. Eventually, our paper
focuses on three main research question and/or research

gaps

- What are the metrics used in clustering and classification?
- limitations of multi-class and imbalanced datasets?

- AUC efficiency in classification and clustering?

The upcoming sections are as follows: The Literature
Review comprehensively integrates and critically evaluates
existing research related to the study’s objectives, iden-
tifying gaps and the state of the art in the field. We
aim to broaden the scholarly conversation, demonstrating
how it addresses previously unexplored questions or builds
upon existing knowledge. Next is the Methodology section,
in which we clarify the adopted approach, including the
dataset and algorithms used. This is followed by the Results
and Discussion sections, where we showcase the proposed
model’s performance and discuss it in view of related work.
Finally, we provide a proper conclusion and future work
enhancement recommendations to overcome any limitations
and challenges.

2. LITERATURE REVIEW

Data clustering has attracted the attention of numerous
researchers. Several studies have been discussed by vari-
ous authors in the literature [13]. The reviewed literature,
published within the last eight years, appears in the most
qualified journals. Our review process focuses on various
aspects related to our main topic. Firstly, we investigate
the use and fine-tuning of classification and clustering
metrics for optimal performance evaluation. Secondly, we
explore how AUC can be utilized for clustering validation,
specifically. Thirdly, identify the challenge of using datasets
that are primarily used for clustering purposes and applying
them for AUC. Fourthly, we consider all the parameters
and metrics that are involved in clustering validation and
performance evaluation, such as linkages and distance mea-
surements. Fifth, we also review research on hybrid models
used in intrusion and anomaly detection. Thus, these criteria
are the main subjects that are related to our proposed topic
by which we try to find research gaps and motivation works.
The review process we follow aims to identify a few key
findings in each paper, such as the data used, models,
metrics, results, challenges, resource requirements, time
complexity, limitations, and future directions. Therefore, in
this section, we analyze literature that focuses on the use
of metrics in classification and clustering models.

The authors [14] utilize the Follower-Leading Clustering
Algorithm (FLCA) for bibliometric analysis. FLCA is capa-
ble of clustering large datasets of bibliographic information
to discern patterns and trends, which is crucial in fields
such as medicine for synthesizing research findings. Work
by [15] proposes a taxonomy for non-binary evaluation
metrics, specifically focusing on anomaly scores. This
taxonomy may provide insights into the differences and
applications of these metrics in various scenarios. Also a
review [16], focusing on hierarchical agglomerative clus-
tering, k-means clustering, and mixture models, addresses
crucial topics for cluster analysis practitioners. It likely
delves into the statistical foundations, challenges, and recent
developments in these clustering methods. [17] introduces
the partitioning Davies-Bouldin index, a novel method for
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evaluating clustering. It discusses the approach, its advan-
tages, and potential applications across various clustering
scenarios. A comprehensive overview by [18] of online
clustering algorithms covers their evaluation methods and
metrics. It also explores the applications of these algorithms
and presents a benchmarking study, providing insights into
their practical effectiveness and areas of application. [19]
introduced a novel k-means algorithm optimized for climate
data mining, accompanied by a new framework for eval-
vating clustering uncertainty. It highlights the algorithm’s
effectiveness in processing structured data and discusses
its potential as a new standard in k-means clustering. [20]
proposed a study to develop an overlapping community
discovery approach based on the concept of local opti-
mal expansion cohesion. In the experiments, the proposed
algorithm produced significantly better results than the
other algorithms, and the community structure following
the division was much more acceptable. Also, [21] based on
agglomerative algorithm researchers developed to identify
potential sectors owned by a region by combining hybrid
algorithm clustering and Location Quotient. As a result of
this study, 279 PDRB/GDRP sectors were classified into
two main groups: potential sectors of a region with 125
sectors, and the remaining 154 sectors were included in
the lower sector for non-potential regions. Authors at [22]
performed a comparison of OPTICS, DBSCAN, and the
objective clustering technology, which is also presented in
their paper. Based on the results of the simulation, the
proposed technique appears highly effective.

Density-based algorithms were found to be more effective
than agglomerative hierarchical algorithms in simulations
[23]. By HCPE, agglomerative hierarchical clustering based
on performance evaluation, the authors presented a method
for reducing the number of models for high-order dy-
namical systems. In the study [24], researchers employed
Support Vector Machines (SVM) to identify outliers in the
KDD dataset. Utilizing the same dataset, authors in [25]
developed IDS models using deep learning-based artifi-
cial neural networks, surpassing state-of-the-art detection
accuracy and false alarm rate methods. Studies [26] and
[27] proposed anomaly detection using decision trees and
random forests (RF), demonstrating the effectiveness of a
decision tree classifier for reliable intrusion detection on
two datasets. Consequently, the True Positive Rate (TPR),
False Positive Rate (FPR), and Detection Rate (DR) saw
significant improvements using this method (FAR). The
authors of [28] successfully identified four attacks in the
KDD dataset with minimal false positives and negatives
using a four-layered classification approach. Furthermore,
they introduced a technique to simplify the method by
reducing the number of features in the original dataset,
potentially improving accuracy while decreasing complex-
ity. However, they could have addressed any labeling errors
that may have led to inaccurately categorized attacks. We
employed various supervised, unsupervised, and outlier
learning methods on the KDD dataset to address mis-
classified data, but our overall accuracy was lower than
that in [29]. Classification and anomaly clustering methods

based on machine learning approaches are widely applied
to the KDD dataset, comprising four attacks with distinct
traffic patterns. In [30], attack-type categorization using the
KDD dataset was achieved with a low misclassification rate.
Nonetheless, these models require adaptation for contempo-
rary multi-cloud environments where threats are continually
evolving and interrelated. Moreover, concerns have been
raised about the KDDcup99 dataset’s ability to accurately
represent everyday network activity [31]. The KDDCUP
99 IDS dataset was used for data mining with support
vector machines (SVM) to perform neural network-based
categorization. In a 10-fold cross-validation experiment, the
accuracy reached 90% for the training set but only 80% for
the test set. Various clustering and classifier methods, in-
cluding unsupervised cluster analysis approaches, have been
described in intrusion detection system literature. However,
the inaccurate clustering of specific datasets has hindered
the effectiveness of attack detection systems. The paper
[32] presents a new binary classification method that uses
fewer attributes and emphasize the importance of evaluation
metrics like MCC, ROC-AUC, and AUC-PR in assessing
algorithm performance, especially with unbalanced data. It
reveals that MCC outperforms both ROC-AUC and AUC-
PR in imbalanced datasets and identifies random forest
and gradient boosting as the top algorithms for bankruptcy
prediction. However, the methodology only evaluates six
machine learning models and three metrics, which may limit
its generalizability and overlook other relevant metrics. In
addition, it is specifically tailored for bankruptcy prediction,
which may restrict its use in other areas, and doesn’t
account for the impact of varying hyper parameters or
feature engineering on algorithm performance. The refer-
ence [33] used three datasets; 64 datasets from the Tabula
Muris Compendium, 80 datasets from Julia Handl, and 2D
synthetic data generated specifically for this study. This
study introduces a novel validation metric of clustering.
It combines three new indices AUIPRC, AUPRC, and
SAUPRC beside other metrics such as; VRC, UCC, PBM,
C/Sqrt(k), SWC, Dunn, DB, and C Index. Various clustering
validation metrics were used in this study, including Pre-
cision, Recall curves, AUCC, Silhouette Width Criterion,
Davies-Bouldin, C Index, Dunn, PBM, Calinski-Harabasz,
Point Biserial, and Ratkowsky Lance. The main contribution
of this study is the propos of new clustering metrics that
deliver better results. The weakness of this work is that
it does not explicitly showing the potential drawbacks and
constraints of the new proposed metrics.

The paper [34] primarily focuses on evaluating risk pre-
diction using AUC. The results promised and showing en-
hanced prediction accuracy for hierarchical data. They used
linear mixed models to assess the prediction outcomes. The
main contribution of this work is addressing the statistical
challenge of estimating the AUC variance in the presence
of hierarchical data dependency. However, a limitation of
such work is that there is a challenge of longitudinal data
structures in case of complex correlation. That because
methodology’s applicability in certain data scenarios which
is affects model non-convergence. The authors [35] used
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the Wisconsin Public Schools dataset. This dataset was best
practice for social prediction challenges. The findings tell
that it is crucial working towards resolving systemic in-
equities in order to improve learning outcomes. It is evident
that addressing broader structural issues and inequalities
will not lead for long-term success, as solely targeting
individual students is insufficient. The AUC is the only
sole metrics was used for real time evaluation. The DEWS
tool has high rate of false positives for Latino and Black
students, which can lead to stigmatization and ineffective
interventions. This shows the need of developing more
equitable and accurate tools that can effectively support
struggling students, without presence biases.

To address these issues, we propose a solution to enhance
the accuracy of the Intrusion Detection System (IDS) by
developing hybrid models. These models blend conven-
tional detection techniques with machine learning. We focus
on creating a hybrid clustering model that seeks the best
mix of algorithms and evaluation criteria. Additionally, we
examine the effects of the hybrid approach on various
parameters. Our paper introduces a comprehensive model
to address a gap in existing literature. This model contrasts
traditional hierarchical clustering with our novel hybrid
approach. We utilize two distance measurements and assess
them internally and externally using Area Under the Curve
(AUC) metrics.

3. METHDOLOGY

The proposed methodology of this research work adopts
the concept of applying the AUC metric for clustering
evaluation purposes, involving several steps, each of which
contributes to the effective evaluation of clustering models.
While AUC is typically used for classification tasks, its
application in clustering requires adapting the metric to
assess the quality of the clusters effectively. The outline of
this process is depicted in 1-a, and 1-b. Our methodology is
the implementation of the suggested solution in this work.
Therefore, in this section, we will explore the dataset used,
the model used, how the metrics are applied, and what the
other traditional clustering metrics are.

A. Dataset

The NSL-KDD dataset, an enhanced version of the
KDD Cup 1999 dataset, is crucial for anomaly detection,
particularly in clustering applications. It consists of 42
features per network connection, categorized into basic,
content, and traffic features, which assist in the classification
of connections into four attack types: DoS, U2R, R2L,
Probing, and normal connections. The dataset is efficiently
partitioned into a training set of approximately 125,000
examples and a testing set of nearly 22,500, providing a
well-balanced mix of attack types. This feature makes it an
ideal choice for the development and evaluation of anomaly
detection models.

B. Clustering and AUC

There are a few steps to implement this core mission of
the work. First, we applied data preparation techniques such

as scaling, feature extraction, dimensionality reduction, and
partitioning. Next, we applied the proposed hybrid model, as
illustrated in Figure 1-a. Second, in label assignment during
clustering, it is essential to note that data points do not
come with labels. However, labels are necessary for AUC
calculation [36]. Two approaches can be taken to assign
labels: one is to use external labels, if available, to validate
the clusters; the other approach is to assign labels based on
the clustering result, treating each cluster as a separate class
[30]. There are a few steps to implement this core mission
of the work. First, we applied data preparation techniques
such as scaling, feature extraction, dimensionality reduction,
and partitioning. Next, we applied the proposed hybrid
model, as illustrated in Figure 1-a. Second, it is essential
to note that data points do not come with labels during
label assignment during clustering. However, labels are
necessary for AUC calculation [37]. Two approaches can
be taken to assign labels: one is to use external labels,
if available, to validate the clusters; the other approach
is to assign labels based on the clustering result, treating
each cluster as a separate class [38]. Then, measuring the
similarity and dissimilarity is essential. Appropriate metrics
should be chosen based on the data type and domain to
measure these aspects. Pairwise measurements can be made
to calculate the similarity/dissimilarity for each pair of
data points. Factors like the threshold’s value determination
method and similarity measures would have an obvious
effect on the results of AUC and ROC. Thus, clustering
performance will consequently be affected due to these
criteria of classification outcome [39]. The fifth step is
quite important. In this step, we convert the clustering
problem into a binary classification series. Then, we can
use similarity/dissimilarity based on the chosen threshold
value [40]. The most applicable step in our approach is to
merge the classification by clustering data model. Therefore,
clustering the data into their groups has been classified by
the threshold’s value. The next step is to construct the ROC
curve after plotting the labeled data points [41]. Eventually,
the AUC is computed after finding the FPR (false positive
rate) and TPR (true positive rate). A higher AUC indicates a
better distinction between similar and dissimilar data points
[42]. Evaluating and adjusting the clustering algorithm,
parameters, or data preprocessing steps based on the AUC
score facilitates iterative model improvement. The paper’s
methodology focuses on three aspects, depicted by figure
1-b: first, the significant role of linkages in clustering.
Linkage in clustering involves evaluating the similarities or
differences between data points to form clusters. The main
linkage types are single, complete, average, and centroid,
each using distinct algorithms and distance measures like
Euclidean or Manhattan. The choice of the linkage method
is crucial as it shapes cluster structure and affects their size,
distribution, and overall quality, impacting the accuracy
and interpretability of clustering results. Secondly, as the
paper focuses on developing an Intrusion Detection System
using clustering and classification techniques, it examines
two threshold levels on the NSL-KDD dataset for anomaly
detection. The objective is to categorize intrusions in NSL-
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Figure 1. a- binary classification and clustering, b- hybrid model: k-means and agglomerative algorithms

KDD, split into training and testing sets for analysis. An
innovative detection method combining these models is
introduced and assessed with two thresholds. Evaluation
metrics include detection rates, false alarm ratios, accuracy,
F1 Score, and AUC. Thirdly, our methodology combines
clustering (an unsupervised method grouping data by sim-
ilarity) with classification (assigning predefined labels to
new instances) to improve anomaly detection systems. This
blend allows for detecting subtle anomalies and proactive
system monitoring, leveraging both unsupervised and super-
vised learning strengths. We test this hybrid model using k-
means and agglomerative algorithms on the D31 dataset,
which comprises synthetic, multivariate data with 3100
samples across 31 categories, commonly used in clustering
research [38]. The hybrid model is tested by k-means and
agglomerative algorithms on the D31 dataset with 3100
synthetic samples over 31 categories.

C. Hybrid Model

Figure 1-b depicts a hybrid clustering model that com-
bines k-means and agglomerative algorithms. The proposed
hybrid model is illustrated by Figure 1-b which com-
bines k-means and agglomerative algorithms. This process
implemented by seven steps; initialize k and centroids,
assign objects to clusters, update centroids (for each cluster,

calculating new centroid as the mean of all objects in the
cluster), create distance matrix for agglomerative clustering,
merge clusters, update distance matrix, then last step is
final agglomeration into a single cluster (if needed). It
computes a distance matrix to determine cluster similarity
and iteratively merges the closest clusters. This continues
until a single cluster forms or the desired structure is
reached, effectively leveraging both algorithms for improved
clustering results. In the following section, we delve into
the practical aspects of using AUC metrics to evaluate our
hybrid clustering model. We’ll examine the effectiveness of
AUC in measuring performance, especially in identifying
different cluster patterns. The methods for calculating AUC
and its role in assessing clustering sensitivity and specificity
will be highlighted. Furthermore, we’ll discuss interpreting
AUC values within the hybrid clustering model framework,
which merges various clustering techniques.

4. RESULTS

In our study, the results aligned with the methodology
section and demonstrated the validity of our experiments.
The use of the D31 Dataset proved to be the best choice for
developing a hybrid clustering technique. Figure 2 compares
the accuracy of standard hierarchical and hybrid hierarchical
methods in terms of the Rand index (an external criterion).
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We observed that the hybrid average method outperformed
the standard method with both Euclidean and Manhattan
distances. Furthermore, the hybrid single linkage displayed
superior accuracy compared to the standard single hierar-
chical method when using Manhattan distance but fell short
when using Euclidean distance. Figure 3 illustrates these
comparisons on the D31 dataset by showing average and
single linkages with Euclidean and Manhattan distances in
terms of silhouette accuracy. Lastly, Figure 4 reveals that the
standard single hierarchical outperforms hybrid hierarchical
when cluster number ratios are above 0.4, except for when
the number of clusters is equal to a ratio of 0.1. In this case,
standard average hierarchical is superior to hybrid average
hierarchical. As seen in this figure, the accuracy of hybrid
average hierarchical is better than the accuracy of hybrid
single hierarchical with two distances.

Figure 3 illustrates a comparison between the standard

hierarchical method and the hybrid hierarchical method in
terms of time. Our findings indicate that, in the hybrid
hierarchical method (KH), as the number of ratios increases,
so does the required computation time. However, the tradi-
tional hierarchical method remains unaffected by the ratios,
maintaining a constant computation time since it utilizes
the same 3100 data points and 35 clusters in each step. We
also discovered that hybrid linkage with Euclidean distance
takes less time than standard linkage with the same distance
when the number of clusters is equal to ratios below 0.4.
Conversely, with Manhattan distance, the standard method
outperforms the hybrid method in terms of time efficiency
for all cluster quantities. Data with lower ratios exhibit
reduced computational costs. For D31 data, experiments
reveal superior Rand index accuracy for the hybrid average
method using Euclidean distance compared to the standard
average method. In contrast, minimum values are found
in average standard methods using Manhattan and single
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Figure 4. Hybrid and standard hierarchical comparison with time Index: Euclidean on the left and Manhattan on the right

TABLE I. Summary of the comparison results

Metric Euclidean (0.0 — 0.45) Manhattan (0.0 — 1.8) Criteria
0.05 — 0.05 0.0 0.1 - 0.1 0.0 Average standard
Time index 0.05 7 0.39 0.1 0.25 7 1.62 1.37 Hybrid average
0.15 — 0.15 0.0 0.18 — 0.18 0.0 Single standard
0.045 | 0.42 0.375 0.25 7 1.63 1.11 Hybrid single
Euclidean (-0.4 — 0.1) Manhattan (-0.4 — 1.0) Criteria
0.48 7 0.98 0.5 0.45 — 0.98 0.53  Average standard
Silhouette 0.77 | 0.46 0.31 0.79 — 043 0.36 Hybrid average
-0.34 7 0.98 0.64 -0.27 7 0.98 1.25 Single standard
0.45 | -0.22 0.23 0.5 ] -0.26 0.24 Hybrid single
Euclidean (0.96 — 0.995) Manbhattan (0.965 - 1.0) Criteria
0.973 | 0.968 0.05 09739 | 09677 0.006 Average standard
Rand index 0.9948 | 0.974 0.02  0.9952 | 09745  0.02 Hybrid average
0.9772 | 0.968  0.009 0.9765 | 0.9677 0.008 Single standard
0.9808 | 0.9625 0.018 0.9823 | 0.9767 0.005 Hybrid single

standard methods employing Euclidean distances within
Rand indices. Surprisingly, identical values appear across
both average and single standard methods regarding time
indices. In summary, our comparison highlights four crite-
ria—time, silhouette, and Rand indices—and assesses them
based on Euclidean and Manhattan distances. Overall, Hy-
brid Average methods using Euclidean distance outperform
standard average methods in terms of Rand index accuracy.
Furthermore, Hybrid Average hierarchical methods excel
over their Hybrid Single hierarchical counterparts across
both distances when considering silhouette accuracy.

However, it’s worth noting that KH is more efficient than
average standard linkage when working with smaller cluster
numbers or ratios. Table 1 summarizes such results. In
both Hybrid Standard and Single Standard approaches, we
can observe numerous small clusters and outliers. Larger

clusters represent typical flow based on specific thresholds,
while smaller ones may indicate potential anomalies. We
generated ROC curves for both techniques using various
threshold values. By arranging D samples in order with
our Average Standard algorithm, we determined anoma-
lous samples when dissimilarity values exceeded detection
thresholds. We then established the ROC curve for the
Average Standard algorithm.

A. AUC and clustering

Figures 5-9 display the ROC curves for Hybrid Standard,
Single Standard, Hybrid Average, and Average Standard
when applied to Test Probe, DoS, R2L, U2R, and mixed
subsets. The Average Standard method yields the largest
area under the curve for specific attack and mixed subset
scenarios. It can identify numerous attacks while maintain-
ing low false alarm rates (FARs). Average Standard outper-
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TABLE II. DR and FAR of NSL-KDD data subsets

Data Subsets

Average Standard Hybrid Average

Single Standard Hybrid Standard

Probe Train (0.95, 0.0680) (0.95, 0.0635) (0.99, 0.0810 ) (0.97, 0.0910)

Test (0.99, 0.0660) (0.93, 0.0795) (0.85, 0.0285 ) (1.00, 0.1095)

DoS Train (0.93, 0.0690) (0.90, 0.0810) (0.98, 0.0790) (0.97, 0.0470)

Test (0.85, 0.0780) (0.90, 0.0600) (0.87, 0.0950) (0.93, 0.2130)

R2L Train (0.68, 0.0960) (0.18, 0.0980 ) (0.38, 0.0760) (0.38, 0.0725)

Test (0.52, 0.0895) (0.30, 0.0950) (0.40, 0.0335) (0.42, 0.0635)

U2R Train (0.84, 0.0925) (0.70, 0.0955) (0.84, 0.0690) (0.82, 0.0415)

Test (0.90, 0.0905) (0.84, 0.0920) (0.52, 0.0355) (0.52, 0.0145)

Mix Train (0.91, 0.0900) (0.87, 0.0950) (1.00, 0.0900) (0.93, 0.0800)

Test (0.89, 0.0800) (0.84, 0.0980) (0.80, 0.0840) (0.77, 0.0500)
forms the other three methods in detecting low frequency 10
attack types like U2R and R2L that resemble regular traffic ool
patterns. Table 2 presents DR and FAR value pairs for all 0sk

subsets. Generally, increasing DR leads to a higher FAR or )

0.7

vice versa. Table 2 represents four different models (Av-
erage Standard, Hybrid Average, Single Standard, Hybrid 0.6F

Standard) against five different subsets of data (Probe, DoS, %05

R2L, U2R, Mix). The values represent model performance, 0al ;
presumably in terms of DR and (FAR). A brief interpreta- ’ Foo
tion of the provided data could be as follows: Probe subset: 037
The Hybrid Standard model performed the best on the test 02!
set with DR 1.00 and FAR 0.1095. The Single Standard o1l b

model had the highest DR on the training set, 0.99. DoS
subset: The Hybrid Standard model had the highest DR on . —
the test set, 0.93, while the Single Standard model had the ) ’ ' " FAR
highest DR on the training set, 0.98. R2L subset: Here,
all models performed relatively poorly, especially on the
training set. The best performance on the test set came
from the Hybrid Standard model, with an DR of 0.42.
U2R subset: The Average Standard model performed best
on the test set, with an DR of 0.90. The Single Standard
and Average Standard models performed equally well on
the training set, with DR 0.84. Mix subset: The Average
Standard model performed the best on the training set,
1.00. For the test set, the Average Standard model again
performed the best, with an DR of 0.89. Overall, the Hybrid
Standard model performed the best on the majority of the
test sets, but not the training sets, suggesting it might have
a good generalization capability.

The maximum value is (1.00, 0.1095) for the Single Stan-
dard in Test DoS. Hybrid Average tends to have higher ac-
curacy in training but not always in testing. Single Standard L Hybrid sn
often shows high test accuracy, indicating good generaliza- 0 01 02 03 02 05 06 07 08 09 1o
tion but with varying levels of consistency. Hybrid Standard FAR

seems to offer a balance between accuracy and consistency,
especially in test scenarios. Also, examining the potential of
overfitting in models with high training accuracy but lower
test accuracy. Considering the balance between accuracy
and consistency when choosing a model for a particular
application.

Figure 6. mixed subset
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5. DISCUSSION

After implementing the methodology and getting results,
in this section we analyze and interpret the results with
discussion in regards into other related work. The figures
1 to 6 are evaluations of clustering algorithms, comparing
"average Standard,” “hybrid average,’” ’single Standard,” and
“hybrid single’ over various metrics. The first two graphs
show the Rand index values, which validate the similarity
of different clusters. Because the variable on the x-axis in-
creases, the Rand index generally decreases for the *average
Standard’ and ’hybrid average,” indicating less similarity
between clusters. The ’single Standard” and "hybrid single’
lines show more fluctuation. The next figures 3 and 4
illustrate silhouette values, a measure of how well each
object lies within its cluster; higher values suggest better fit.
Here, ’single Standard’ performs poorly at low values of the
variable but improves significantly as the variable increases,
while ’average Standard’ remains relatively stable. Last,
the time index by figures 5 and 6 illustrate computational
efficiency, with ’single Standard’ showing low and stable
times, suggesting faster performance, while "hybrid single’
times increase significantly with the variable, indicating
slower performance. This could suggest that while ’single
Standard’” may be faster, it is less stable in terms of
clustering quality, whereas ’hybrid’ methods may offer
a balance between clustering quality and computational
efficiency. The results of figures 5 to 9 was applied on the
NSL-KDD dataset. The average standard curve consistently
performs well across all figures, maintaining a high DR
at low levels of FAR. That means, the average standard
method has a good balance of sensitivity and specificity. The
hybrid average and hybrid standard curves show varying
performance but generally follow the average standard curve
closely, indicating that these hybrid methods are compet-
itive. The single standard curve tends to lag behind the
others, especially at lower FAR values. This might indicate
that the single standard method has lower sensitivity or
a higher rate of false negatives at certain thresholds. We
interpret the results is that the average standard method
offers the best performance in terms of both sensitivity
and specificity, whereas the single standard method require
adjustment or inherently be less capable in this context.
The hybrid methods appear to be a compromise between
the two, possibly combining elements of both to create
a more balanced classifier. These interpretations would be
more accurate with specific context on the data and the
classification task these curves represent. Research work
by [43] used the Benchmark, the Purely Spatial” dataset.
he proposed metrics were tested in base of traditional scan
statistics with spatial restrictions. he proposed metrics were
tested in base of traditional scan statistics with spatial
restrictions. This New evaluation metrics for spatial dis-
eases clustering detection with highlighting the limitation
of the traditional metrics such as precision and recall.
The Main contribution is to introduce new metrics in the
field. However, the limitation is that the benchmark dataset
only has circle cluster shapes. Also, the need to present
irregular shapes. The authors argue that there is a need
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to consider the hyper parameters with the new metrics as
they would significantly affect the results. We found there
is no mention about computational resources, robustness
and generalizability, and model complexity. [44] used three
datasets: Yeast, Chronic disease, and Emotions. The MAPE
and RMSE are the evaluation metrics used for clustering
validation. K-fold cross-validation is the key of work used
to assess the clustering algorithm. The clustering validation
index is calculated by the clustering stability and the results
outputs. This task is measured by comparing the probability
of the training and test dataset of the same clustering by
k-fold and RMSE. The proposed new method uses multi-
label datasets. So, each data point in the clusters would
have multiple labels at the same time. However, such a
limitation is that there is no mention of outliers’ impact
on the clustering performance. Also, like others’ work, no
computational resources have been taken into account. The
most important of this work is using the PCA, principle
component analysis, and normalization techniques for di-
mensional reduction for best clustering performance quality.
Also, this paper has not considered model complexity,
robustness, or generalizability. By reference [45] utilized
a real dataset called Yeast6. The contribution focuses on
various distance measurements like Manhattan, Euclidean,
CAN, COR, CHE, and BRY. The CWE-ENS supervised
learning method was applied with clustering feature space.
There is no novelty in such work. However, the authors try
to show how the CWE-ENS can affect the clustering feature
space. The limitation found is that each dataset needs partic-
ular analysis and custom parameters, so the results vary and
depend on the dataset itself. The authors suggest Manhattan
as a standard measurement. With an imbalanced dataset, the
model accuracy was the best with Euclidean. Meanwhile,
Manhattan has close but less results than Euclidean. In brief,
the paper aims to test how supervised learning uses the
predictive performance CWE-ENS method with clustering
feature space. This work did not consider model complexity,
robustness, or generalizability. The IBM Watson dataset as a
real data from various telecom companies used by [46]. It is
best for clustering because it has 26% customer churn rate.
Different models have been used like; K-NN, random forest,
and XGBoost. For churn prediction, the XGBoost was the
best performance. All the other traditional metrics were
used; accuracy, recall, precision, and F1 score. These is no
any work related to the AUC. Even though there is no clear
novelty of such work, the authors stated that the significance
of work is delivered by making deep comparison of ML
models to predict churn of customers. The data processing
has an essential role for example, feature selection, filtering,
and noise removal.

6. CONCLUSION

The hybrid clustering model would have extra consid-
eration of accuracy, by incorporating with AUC metric.
Applying specificity and sensitivity, that provided by AUC,
with clustering model can help in offering robust evalua-
tion approach. Results of applying different linkages and
distance measurements have been applied and proven that

hybrid standard model with average FAR reached 0.108
across all the test subsets. The value was the lowest among
other results. The Data Subsets is divided into different
subsets: Probe, DoS, R2L, U2R, and Mix. Each subset is
further split into Train and Test groups. This suggests that
the models are evaluated on different types of data. Also,
there are four types: Average Standard, Hybrid Average,
Single Standard, and Hybrid Standard. These could repre-
sent different modeling strategies or algorithms.

For future work, there couple of directions for future work.
First Investigate the integration of advanced clustering al-
gorithms (like DBSCAN, HDBSCAN, or Spectral Clus-
tering) to see if they offer improvements over traditional
methods. Also, Beyond AUC, consider evaluating clustering
outcomes using other performance metrics like Precision-
Recall AUC, F1 Score, or Silhouette Score for a more
comprehensive analysis. Investigate the effectiveness of
AUC in different clustering contexts and compare it with
traditional clustering evaluation metrics. Discover the power
of feature selection and engineering in enhancing clustering
results and boosting their AUC evaluation. In respect to
real-world applications and case studies: Apply clustering
approach to real-world datasets in various domains (like
healthcare, finance, or social media analytics) to validate
its practical effectiveness. Conduct case studies focusing on
specific challenges, such as imbalanced datasets or noisy
data, and how your method addresses these issues.
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